
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2023

WiFi Sensing at the Edge Towards Scalable On-Device Wireless WiFi Sensing at the Edge Towards Scalable On-Device Wireless

Sensing Systems Sensing Systems

Steven M. Hernandez
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Computer and Systems Architecture Commons, Digital Communications and Networking

Commons, Electrical and Electronics Commons, Hardware Systems Commons, Signal Processing

Commons, and the Systems and Communications Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/7268

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F7268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=scholarscompass.vcu.edu%2Fetd%2F7268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholarscompass.vcu.edu%2Fetd%2F7268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholarscompass.vcu.edu%2Fetd%2F7268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholarscompass.vcu.edu%2Fetd%2F7268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=scholarscompass.vcu.edu%2Fetd%2F7268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=scholarscompass.vcu.edu%2Fetd%2F7268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=scholarscompass.vcu.edu%2Fetd%2F7268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=scholarscompass.vcu.edu%2Fetd%2F7268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/7268?utm_source=scholarscompass.vcu.edu%2Fetd%2F7268&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

© Steven M. Hernandez, May 2023

All Rights Reserved.

WIFI SENSING AT THE EDGE TOWARDS SCALABLE ON-DEVICE

WIRELESS SENSING SYSTEMS

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

by

STEVEN M. HERNANDEZ

Doctorate in Computer Science - 2018-2023

Director: Dr. Eyuphan Bulut,

Associate Professor, Department of Computer Science

Virginia Commonwealth University

Richmond, Virginia

May, 2023

i

Acknowledgements

I would like to begin by thanking my advisor, Dr. Eyuphan Bulut who has been

a major influence, and guiding force throughout my doctoral studies. Additionally, I

would like to thank, Dr. Tamer Nadeem, Dr. Changqing Luo, Dr. Ruixin Niu, and

Dr. Muhammad Shahzad for serving on my committee. I would also like to thank

my wife for her constant words of wisdom, and my family for all of their hard work.

Finally, I would like to thank the many other people in my life whose influence has

helped form my path up to this point.

ii

TABLE OF CONTENTS

Chapter Page

Acknowledgements . ii

Table of Contents . iii

List of Tables . viii

List of Figures . xi

Abstract . xvii

1 Introduction . 1

1.1 Benefits of WiFi Sensing . 2

1.2 Benefits of Machine Learning Inference at the Edge 3

1.3 Benefits of Machine Learning Model Personalization 4

1.4 Industry Interest . 5

1.5 Dissertation Organization . 5

2 Literature Review . 7

2.1 Applications of WiFi Sensing . 7

2.1.1 Localization . 7

2.1.2 Human Activity Recognition 9

2.1.3 Gesture Recognition . 10

2.1.4 Indoor Crowd Counting and Occupancy Detection 10

2.1.5 Health Sensing . 11

2.1.6 Other Novel Use Cases of WiFi Sensing 11

2.2 Preliminary Theory on Wireless Sensing 12

2.2.1 Orthogonal Frequency-Division Multiplexing 12

2.2.2 Channel State Information 15

2.3 Alternative Wireless Sensing Modalities 18

2.4 Machine Learning at the Edge (TinyML) 18

3 IoT Edge WiFi Sensing Toolkit (ESP32-CSI-Tool) 20

3.1 ESP32-CSI-Tool . 20

3.2 Comparison . 22

iii

3.3 Use Cases . 24

3.4 CSI Sampling Rate . 25

3.5 Broader Impact . 28

4 Signal Processing and Machine Learning Techniques and their Chal-

lenges in Real-World Edge Systems . 30

4.1 Introduction . 30

4.2 Edge WiFi Sensing Taxonomy . 33

4.2.1 Signal Processing . 34

4.2.1.1 Feature Extraction . 38

4.2.1.2 Denoising Filters . 43

4.2.1.3 Dimensionality Reduction 48

4.2.2 Data Preparation . 51

4.2.2.1 Detrending . 51

4.2.2.2 Interpolation (of Missing Frames) 54

4.2.2.3 Segmentation . 55

4.2.2.4 Feature Scaling . 57

4.2.3 Prediction Making . 58

4.2.3.1 Classification and Machine Learning 58

4.2.3.2 State Validation . 61

4.2.3.3 Voting . 62

4.2.4 Systems and Hardware . 63

4.2.4.1 Clock Synchronization 63

4.2.4.2 Data Annotation . 64

4.2.4.3 Device-to-Device Communication 64

4.2.4.4 Cyber Physical System Integration 65

4.3 Evaluation of CSI Processing Techniques 66

4.3.1 Experiment Descriptions . 66

4.3.2 Hyperparameter Optimization 68

4.3.3 Independent Evaluation of Each Method 70

4.3.4 Dimensionality Reduction . 74

4.3.5 Interpolation . 77

4.3.6 Feature Scaling . 78

4.4 Evaluation of Edge-Based WiFi Sensing System 79

4.4.1 Effect of Sampling Rates on Accuracy: 79

4.4.2 Inference Rate with Signal Processing Techniques 81

4.4.3 Inference Rate with On-board Machine Learning 86

4.4.4 Energy Consumption . 95

iv

4.5 Lessons Learned . 97

4.5.1 Selecting Signal Processing Techniques 97

4.5.1.1 Feature Extraction . 97

4.5.1.2 Denoising Filters . 98

4.5.1.3 Dimensionality Reduction 98

4.5.2 Feasibility of WiFi Sensing at the Edge 99

4.5.2.1 Identify ESP32 for Edge WiFi Sensing 99

4.5.2.2 Evaluated ESP32 for different use cases 99

4.5.3 New Considerations for Edge WiFi Sensing 100

4.5.3.1 Need for Inference Rate Evaluations 100

4.5.3.2 Need for Lightweight Model Architecture Designs . . . 101

4.5.3.3 Edge Hardware Considerations 101

4.6 Future Challenges . 102

4.6.1 Multiple TX/RX Links . 102

4.6.2 Long-Term Model Adaptation 105

4.6.3 Real-Time Segmentation . 105

4.6.4 Integration with Physical Systems 106

4.7 Chapter Contributions and Summary 106

5 Scalable WiFi Sensing using Edge Based Federated Learning 108

5.1 Introduction . 108

5.2 Preliminaries . 111

5.3 Motivation . 112

5.3.1 Experimental Setting . 113

5.3.2 Initial Results . 114

5.4 Federated Learning Framework (WiFederated) 119

5.5 Evaluation . 124

5.5.1 Impact of Averaging Interval 124

5.5.2 Impact on Unseen Locations 126

5.5.3 Impact of the Number of Training Locations 129

5.5.4 Comparison with State of the Art Approaches 131

5.5.5 Run Time Complexity Comparison 133

5.5.6 Impact of Client Selection . 135

5.6 Feasibility of WiFederated at the Client 136

5.6.1 Training and Inference at the Edge 137

5.6.2 Continuous Annotation . 139

5.7 Chapter Contributions and Summary 141

v

6 Adversarial Occupancy Monitoring using One-Sided Through-Wall

WiFi Sensing . 142

6.1 Introduction . 142

6.2 Proposed Method . 144

6.2.1 CSI Pre-Processing . 145

6.2.2 Standard LOS Through-Wall 147

6.2.3 NLOS Through-Wall . 148

6.3 Detection Framework and Evaluation 149

6.3.1 Human Presence . 150

6.3.2 Human Direction . 152

6.4 Chapter Contributions and Summary 154

7 Spatial Antenna Defense against WiFi Sensing Eavesdroppers 155

7.1 Introduction . 155

7.2 Preliminaries . 156

7.2.1 Related Work . 156

7.3 System Model . 158

7.3.1 Assumptions . 158

7.3.2 Experiment Setup . 159

7.3.3 Tree-structured Parzen Estimator (TPE) 160

7.3.4 Attack Model . 161

7.3.5 Defense Model . 162

7.3.6 Allowed RX Emulation . 162

7.3.7 Disallowed (Eavesdropper) RX Emulation 163

7.4 Motivation . 164

7.5 Evaluation . 166

7.5.1 Naive Attacker . 168

7.5.2 Advanced Attacker . 171

7.5.2.1 Random Schedule . 171

7.5.2.2 Probabilistic Schedule 172

7.6 Discussion . 176

7.6.1 Effect on Communication . 176

7.6.2 Generalizability to New Environments 177

7.6.3 Future Work . 178

7.7 Chapter Contributions and Summary 179

8 Concluding Remarks . 180

8.1 Contributions . 181

vi

8.2 Future Work . 183

References . 184

Vita . 213

vii

List of Algorithms

1 WiFederated Learning . 121

viii

LIST OF TABLES

Table Page

1 Most common WiFi sensing tasks in our literature survey along with

some examples. (N = 658) . 8

2 Comparison of Tools for Collecting CSI. 23

3 Use Cases for ESP32 based CSI collection 24

4 Comparison of This Survey to Existing Surveys On WiFi Sensing. 32

5 Feature extraction techniques along with their time and memory com-

plexity when implemented as an online algorithm for low-resource IoT

devices. Complexity variables are defined in Table 8. 35

6 Denoising filter techniques along with their time and memory com-

plexity when implemented as an online algorithm for low-resource IoT

devices. Complexity variables are defined in Table 8. 36

7 Dimensionality reduction techniques along with their time and mem-

ory complexity when implemented as an online algorithm for low-

resource IoT devices. Complexity variables are defined in Table 8. 37

8 Variable definitions for Tables 5, 6, 7, 9 and 10. 38

9 Overview of data preparation techniques (Detrending and Interpolation). 52

10 Overview of data preparation techniques (Segmentation and Feature

Scaling). 53

11 Description of the three device-free experiments performed and evalu-

ated using CSI collected from ESP32s. 69

12 List of hyperparameters and possible values used during hyperparam-

eter optimization. 71

ix

13 Comparison of feature extraction methods, denoising filter and dimen-

sionality reduction methods on the prediction accuracy for medium

scale human activity recognition. 73

14 Effect of interpolation on model accuracy. 77

15 Effect of feature scaling on model accuracy. 78

16 Time to compute each feature extraction method on an ESP32 micro-

controller as well as the maximum rate at which each method could

be performed independent of other computation tasks. 82

17 Time to compute each signal denoising method on an ESP32 micro-

controller as well as the maximum rate at which each method could

be performed independent of other computation tasks. 83

18 Time to compute each dimensionality reduction method on an ESP32

microcontroller as well as the maximum rate at which each method

could be performed independent of other computation tasks. 85

19 TFLite inference rate without PSRAM and without quantization for

different model hyperparameters and quantization methods. Inference

rates marked (–) indicate that the model was unable to run on the

microcontroller due to memory issues. Only small values for hidden

size and input size are used because RAM space is so limited. 89

20 TFLite inference rate without PSRAM and INT8 quantization for dif-

ferent model hyperparameters and quantization methods. Inference

rates marked (–) indicate that the model was unable to run on the

microcontroller due to memory issues. Only small values for hidden

size and input size are used because RAM space is so limited. 90

21 TFLite inference rate with PSRAM and without quantization. Hidden

sizes and input sizes are larger than in Table 19 because PSRAM is able

to accommodate these larger machine learning models during model

inference. 91

22 TFLite inference rate with PSRAM and INT8 quantization. Hidden

sizes and input sizes are larger than in Table 20 because PSRAM is able

to accommodate these larger machine learning models during model

inference. 92

x

23 Results of various link-prediction selection methods showing that suc-

cessfully determining the most qualified link will allow for a higher

prediction accuracy. 104

24 Average prediction rate for edge devices. 138

25 Comparison of Existing Defense Methods 157

26 Scenarios considered during training and evaluation. 162

27 Eavesdropper accuracy with periodic and non-periodic random sched-

ulers (N = 50 each). 172

28 Average accuracy (N = 25 each) for different per-station probabilities. . . 175

xi

LIST OF FIGURES

Figure Page

1 Illustration of research topic-areas discussed throughout this dissertation. 2

2 Representations of subcarrier symbol encodings in OFDM systems. (a)

Single subcarrier modelled as a sinc function in the frequency-domain.

(b) Same subcarrier in the time-domain after applying IFFT. (c) By se-

lecting orthogonal subcarrier frequencies, the peak of the sinc function

for each subcarrier corresponds to a zero valued frequency response

from all other subcarriers. (d) After summation of all subcarriers in

the frequency domain, the peak values marked in red are retained as

a result of this orthogonality. 13

3 Layout of subcarrier types in the WiFi frequency domain. 15

4 Close up of an ESP32 microcontroller board. 21

5 Number of packets received per second at an active (i.e., connected)

and passive (i.e., sniffing) receiver when a transmitter sends CSI frames

at varying rates. 26

6 CDF of CSI sampling rates from surveyed literature (N = 176). 27

7 Active communication with researchers from 30+ unique countries

around the world regarding the work discussed in this dissertation. 28

8 Taxonomy of subjects necessary for edge-based WiFi sensing systems. . . 33

9 Wavelet decomposition. 42

10 Probability distribution function showing the timestamp difference be-

tween consecutively recorded CSI frames when transmitted at a sam-

pling rate of 100Hz. 55

xii

11 Activities performed for each experiment type. (a) Small-scale hand

gesture recognition with three directional gestures. (b) Medium-scale

human activity recognition with five different actions. (c) Large-scale

human localization and activity tracking in a home environment with

nine actions and three transmitter/receiver links. 67

12 Accuracy of dimensionality reduction techniques when dimensionality

(d) changes. 75

13 Accuracy of dimensionality reduction techniques when different num-

ber of CSI-samples are used to calibrate the technique. 76

14 Decreasing the sampling rate results in lowered accuracy for all exper-

imental scales. 80

15 CDF of machine learning inference rates from surveyed literature (N =

11). 94

16 Energy consumed by individual components of our ESP32 system. 95

17 Prediction accuracy for all 9 classes of activities given different TX/RX

links pairs. (a) TX/RX Link 1. Total Accuracy: 58.52%. (b) TX/RX

Link 2. Total Accuracy: 71.24%. (c) TX/RX Link 3. Total Accuracy:

49.89%. 103

18 WiFi sensing environments in an office building. (a) Less cluttered en-

vironment. (b) Highly cluttered environment with through-wall sens-

ing. (c) Highly cluttered dynamic environment. 109

19 Typical WiFi sensing system diagram. 110

20 (a) Illustration of apartment environment where experiments are per-

formed. TX, RX and human target are shown for each room location.

(b) Four distinct actions (i.e., sit, stand up, stand and sit down) are

recorded and annotated in each location in round-robin order. 113

21 (a) Accuracy for each locally trained model when different numbers

of training repetitions of an action are performed in the location. (b)

Training time to perform 100 epochs of training on a Raspberry Pi

Edge device. 114

xiii

22 Prediction accuracy in three locations (Living Room (L.R.), Dining

Room (D.R.), Office (Off.)) when trained with data from only one

location (L̂). 116

23 Prediction accuracy in three locations (Living Room (L.R.), Dining

Room (D.R.), Office (Off.)) when trained with data from only two

locations (L̂). 117

24 Prediction accuracy in three locations (Living Room (L.R.), Dining

Room (D.R.), Office (Off.)) when trained with data from all locations

(L̂). 118

25 Illustration of one round of the WiFederated system. 123

26 (a) Accuracy of federated learning over 100 epochs when Nepochs = 50

and L̂ = L versus local machine learning. (b) Accuracy after applying

final round of FedAvg for different values of Nepochs. 125

27 Accuracy during post-training (personalization) over 100 epochs start-

ing with a randomly initialized local model versus starting with a fed-

erated model trained on L̂ = L− Li. 127

28 Accuracy for federated model versus randomly initialized local model

after 100 epochs of post-training (personalization) with different post-

training repetitions (Rpost) at Li. 128

29 Accuracy for WiFederated as |L̂| increases. 130

30 Comparison of four methods when using different numbers of pretrain-

ing locations with different post-training repetitions. 131

31 Training times required for each method with federated learning being

the fastest thanks to parallelism. 133

32 Impact of client selection with different number of training repetitions

(Rtrain). 135

33 Average training time for edge devices. 138

xiv

34 Example scenario for continuous learning. (a) User with a wearable

sensor while CSI is collected in the background. (b) When sensor data

is available, both CSI and sensor data can be used to train F . When

sensor data is unavailable (i.e., at nighttime when wearable sensors are

removed), CSI can be used with F to continue monitoring. 139

35 Through-wall hallway experiment diagrams. Dark lines indicate the

walls of the hallway while the gray areas indicate the multi-path prop-

agation of the radio signals from TX to RX as the target walks through

the hallway. (a) LOS experiment setup, (b) RSSI for LOS experiment,

(c) NLOS experiment setup, (d) RSSI for NLOS experiment. 144

36 ACSI for (a) LOS experiment setup, (b) NLOS experiment setup with-

out directional shielding, (c) NLOS experiment with directional shield-

ing, and (d) RSSI with directional shielding. Target is still not de-

tectable with RSSI even with shielding. 147

37 Prediction accuracy as threshold parameter τ changes. (a) With all

recorded samples using Psamples. (b) With all independent action seg-

ments using P
(c)
segments. 151

38 Using two receivers we are able to identify the directional movement

of the human target based on which receiver sees an increase in ACSI
first. (a) Experiment setup with all adversarial ESP32 devices on one

side of the wall: TX at the center, RX(1) to the left of TX and RX(2)

to the right. (b) Raw ACSI showing four peaks when the target moves

back and forth within the hallway environment, (c) After applying

binary human detection algorithm, we can even more clearly identify

the human target direction. 153

39 A malicious eavesdropper (i.e., Eve) can obtain CSI data to perform

adversarial WiFi sensing with a pretrained environment-independent

ML model. 156

40 Experimental setup with 5 TXs and 1 RX and 5 activities to be sensed.

The scheduler (S) decides which of the TXs that are wired connected

to the same source device (D) through an antenna switch needs to

transmit. 160

41 Accuracy with ML models developed by CSI data coming from each TX. 165

xv

42 Confusion matrix for each model in Fig. 41. 166

43 Multiple TX antennas are used to transmit the WiFi signals at different

times based on a predefined schedule known by a legitimate RX device,

which then can filter the necessary CSI data for use in the prediction

model, while eavesdropper uses all CSI and obtains inaccurate results. . . 167

44 Accuracy of eavesdropper’s model trained on a single TX CSI data

and used in obfuscated CSI data from all 5 TXs on a random schedule. . 168

45 Confusion matrix for each model in Fig. 44. 169

46 Accuracy of an eavesdropper with different number of TXs communi-

cating on a random schedule. Red dashed line shows the accuracy if

random scheduling was not used. 170

47 Eavesdropper accuracy for different per-station probabilities when us-

ing TPE (N = 100, minimum per-station probability: 5%). 173

48 Effect of minimum per-station probability on eavesdropper accuracy

(N = 100 each). 174

xvi

Abstract

WIFI SENSING AT THE EDGE TOWARDS SCALABLE ON-DEVICE

WIRELESS SENSING SYSTEMS

By Steven M. Hernandez

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2023.

Director: Dr. Eyuphan Bulut,

Associate Professor, Department of Computer Science

WiFi sensing offers a powerful method for tracking physical activities using the

radio-frequency signals already found throughout our homes and offices. This novel

sensing modality offers continuous and non-intrusive activity tracking since sensing

can be performed (i) without requiring wearable sensors, (ii) outside the line-of-sight,

and even (iii) through the wall. Furthermore, WiFi has become a ubiquitous tech-

nology in our computers, our smartphones, and even in low-cost Internet of Things

devices. In this work, we consider how the ubiquity of these low-cost WiFi devices

offer an unparalleled opportunity for improving the scalability of wireless sensing sys-

tems. Thus far, WiFi sensing research assumes costly offline computing resources

and hardware for training machine learning models and for performing model infer-

ence. To improve the scalability of WiFi sensing systems, this dissertation introduces

techniques for improving machine learning at the edge by thoroughly surveying and

evaluating signal preprocessing and edge machine learning techniques. Additionally,

xvii

we introduce the use of federated learning for collaboratively training machine learn-

ing models with WiFi data only available on edge devices. We then consider privacy

and security concerns of WiFi sensing by demonstrating possible adversarial surveil-

lance attacks. To combat these attacks, we propose a method for leveraging spatially

distributed antennas to prevent eavesdroppers from performing adversarial surveil-

lance while still enabling and even improving the sensing capabilities of allowed WiFi

sensing devices within our environments. The overall goal throughout this work is to

demonstrate that WiFi sensing can become a ubiquitous and secure sensing option

through the use of on-device computation on low-cost edge devices.

xviii

CHAPTER 1

INTRODUCTION

Over the years, wireless devices such as our smartphones, laptops, and routers have

risen in prominence throughout our homes and offices. The radio-frequency (RF)

signals emitted by these devices not only allow us to easily communicate but may

also reveal a surprising amount of personal information without our knowledge. This

is because radio frequency technologies transmit invisible radio-signals which travel

through the air and reflect off of physical objects such as walls, ceiling, furniture

and most importantly, our own bodies. RF receivers can capture amplitude and

phase variations in the signals caused by physical movements and thus, may be used

to passively observe our activities. Throughout this dissertation, we consider the

use of everyday WiFi signals to achieve WiFi sensing with the goal of identifying

both positive aspects (i.e., tracking health and safety) as well as negative aspects

(i.e., illegal surveillance). Additionally, this work aims to improve the scalability and

allow for more realistic WiFi sensing system deployment through the use of low cost

edge devices which has not been considered in the previous research literature. This

dissertation focuses on two specific topic-areas:

1. WiFi Sensing : Understanding the capabilities of WiFi sensing and identifying

new novel use cases as well as the associated benefits and risks.

2. Edge Learning : Identifying methods for performing WiFi sensing (signal pre-

processing, machine learning inference, machine learning personalization, col-

laborative intelligence) completely on the edge.

1

Trained Model

DL Model

1) Capture RF-signals
 2) Train Model
 3) DL at the Edge

TX

RX

Signal

Data

RF-Signals

WiFi Sensing Edge Learning

RF-Signals

Fig. 1. Illustration of research topic-areas discussed throughout this dissertation.

Fig. 1 illustrates a simplified system diagram demonstrating these topics.

1.1 Benefits of WiFi Sensing

WiFi sensing can be used in the place of common sensor-based systems especially

in cases where sensors must be attached to the body of a participant (i.e., wearables).

While wearable sensors do offer high quality specialized sensing data, they are plagued

with a few issues which can be overcome through the use of WiFi sensing. First,

wearable sensor may not be worn at all times. As an example, smart watches may

contain an accelerometer which can help identify and react to sudden hazardous falls

which can be highly important for elderly populations. However, the smart watch

must be removed to charge over night or must be removed during fall-prone activities

such as bathing and showering. WiFi sensing on the other hand will be able to identify

these fall activities passively without requiring devices attached to the body. Second,

wearable sensors can be cumbersome and intrusive to wear. In some cases, these

sensing systems reduce the mobility of the person meaning that the sensor is only

used for short period of times during the day, thus reducing the amount of time which

they are used. For example, the NeuLog Respiration Belt [1] is commonly used to

2

achieve respiration tracking and to identify irregular breathing patterns, however the

device is cumbersome and is typically powered from a wall outlet, thus precluding

the user from moving naturally throughout their environment. Third, sensors are

typically designed to track a single individual at a time which further increases the

cost of deploying sensor-based systems in multi-person conditions. With WiFi sensing,

the sensing occurs regardless of the number of people in the environment, albeit with

additional complexity required for the sensing model.

Another alternative to wearable sensors is the use of camera-based sensing, how-

ever these are also plagued with issues which can be solved through WiFi sensing.

First, camera-based systems are perceived to be much more privacy invasive, es-

pecially in our homes because images and videos can contain unexpected personal

information which we would not want to get into the wrong hands. WiFi sensing

relies on per-environment calibrations which ensure that the signals can only be used

to track a set of allowed actions. Second, camera-based systems can only track ac-

tivities that occur in a single line-of-sight (LOS) in front of the camera sensor. WiFi

signals on the other hand are transmitted omnidirectionally allowing for sensing to be

performed in both LOS and non-LOS (NLOS) conditions as well as in through-wall

scenarios. Third, lighting conditions reduce the capabilities of the camera-based sys-

tems while WiFi sensing can be performed independent of any lighting sources which

allows the same hardware and model to be used whether it is daytime or nighttime.

1.2 Benefits of Machine Learning Inference at the Edge

In the past, machine learning use was limited to high-powered server architectures

within the datacenter. However, there is high latency involved with communicating

raw data and predictions back and forth between the edge and the datacenter. Addi-

tionally, as more devices and sensors are added to a system, the higher the bottleneck

3

is for communicating with so many client devices. As such, by moving tasks like

signal preprocessing and machine learning inference to the edge, we can offset these

issues by allowing the devices to work standalone irrespective of any datacenter. This

also allows for improvements in privacy because the raw data no longer needs to leave

the environment where it is produced. Finally, this ensures that devices can continue

to function even when the network connection is limited or unavailable.

1.3 Benefits of Machine Learning Model Personalization

Most commonly, when machine learning is performed at the edge, a single model

is pretrained at a central server and then deployed across all devices. However, while

the model may be generalized to the data it is trained on, the model will not be

personalized to the given environment which it is deployed in. Allowing models to

be fine-tuned at the edge will help alleviate these issues by allowing for additional

context and location-specific training using data captured at the given environment.

For example, in [2], the authors demonstrate that speech recognition models can be

improved by personalizing the model based on speaker-independent attributes such as

accents. Furthermore, each environment may have unique insights which will be able

to improve the generalizability of the model for other new locations. In [3], federated

learning is used to collaboratively train a smartphone keyboard auto-suggestion sys-

tem by using the vocabulary used by many different users. Overall, training machine

learning models at the edge can improve model generalizability as well as personalize

the model for the specific conditions, while also increasing the user privacy by retain-

ing the raw data local to the edge devices rather than sharing it to a central server.

With wireless sensing platforms, the physical environment will be highly unique de-

pending on the size of the room, the furniture within the room, the placement of

the radio hardware, and other physical properties of the environment. As such, each

4

device will witness certain unique environment-specific features which will need to be

considered by the machine learning system. Performing model personalization and

model calibration schemes at the edge are important capabilities which will ensure

environment adaptability and thus accurate model predictions.

1.4 Industry Interest

Considerable industrial interest has appeared for both wireless sensing as well

as in enabling machine learning at the edge. Interest in wireless sensing has grown

over the past years with the availability of consumer products such as Google Soli [4],

Linksys Aware WiFi sensing mesh [5], Emerald Innovations [6], and Origin Wire-

less [7]. Edge-based machine learning also sees considerable interest in industry

through the development of specialized neural processing hardware such as Google

Edge TPUs [8] and Kendryte K210 [9] which is available through consumer devel-

opment boards such as the Maixduino [10]. On-device edge learning has yet to be

embraced by industry which leaves room for new industry collaboration opportunities

to be formed in the future.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows:

1. We begin by reviewing existing literature related to WiFi sensing and edge

machine learning in Chapter 2.

2. Next, we review the tool we developed for capturing and annotating the WiFi

signal data for all experiments discussed throughout this dissertation in Chap-

ter 3.

3. Chapter 4 follows with a survey of signal processing and machine learning tech-

5

niques used for WiFi sensing. These techniques are reviewed to determine their

feasibility for on-device edge prediction making. Additionally, the techniques

are evaluated on three baseline WiFi sensing tasks from small scale hand ges-

ture recognition, to medium scale human activity detection, up to large scale

localization and activity tracking.

4. After this, Chapter 5 considers methods for collaboratively training machine

learning models across multiple edge devices through federated learning. Through

this, it is demonstrated that collaboratively trained federated models allow for

reduced personalization training for newly deployed devices. This allows for

greater scalability for WiFi sensing systems.

5. Next, Chapter 6 considers adversarial attacks which are possible due to the fact

that the wireless signals are designed to pass through the wall even into private

areas.

6. To defend against this, in Chapter 7 we propose an anti-eavesdropper method

which leverages spatially distributed antennas to prevent eavesdropper WiFi

sensing devices from performing accurate sensing while still allowing and even

improving the sensing accuracy of approved WiFi sensing devices.

7. Finally, we discuss concluding remarks in Chapter 8.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Applications of WiFi Sensing

Since its inception, WiFi sensing has been leveraged for a number of novel sens-

ing tasks. Through our survey of the existing WiFi sensing literature, we find that

localization and human activity recognition are the two most common tasks for WiFi

sensing followed by hand gesture recognition, crowd counting, occupancy detection

and health tracking such as respiration sensing. Table 1 shows a breakdown of these

applications as well as a few examples of related sub-topics.

2.1.1 Localization

The most common WiFi sensing research task is localization where the phys-

ical location of a target can be tracked throughout an environment using ambient

WiFi signals. In the traditional WiFi based localization approaches, the target be-

ing tracked must have some transmitting or receiving hardware on their body such

as in [11] where some set of static WiFi devices are placed at known anchor loca-

tions within the environment. Similarly, relative positioning [23, 24] allows the use of

non-static anchor devices to achieve positioning relative to objects in an environment

rather than absolute coordinates. UAVs with on-board WiFi antennas have also been

used as both CSI transmitters and receivers for device-to-device localization [25, 26].

More recent works track the location of human targets in a device-free manner (i.e.,

without requiring a WiFi device to be placed on the individual). For example, CS-

Dict [27] and the work of Zhou et al. [28] use WiFi signal data to build a database

7

Table 1. Most common WiFi sensing tasks in our literature survey along with some

examples. (N = 658)

Applications Sub-Topics Example

Localization (14.0%)
Device-Based [11]

Device-Free [12]

Human Activity

Recognition (13.1%)

Exercise [13]

Daily Activity Tracking [14]

Gesture Recognition (9.4%)
Hand Movement [15]

Finger Movements [16]

Health (7.9%)

Respiration [1]

Heart Rate [17]

Sleep [18]

Crowd Counting (4.9%)
Indoor [19]

Outdoor (Pedestrians) [20]

Occupancy (3.3%)
Security [21]

Context-Aware Applications [22]

of environmental signal fingerprints when the target is standing at different physical

positions throughout an indoor environment. However, in localization tasks, physical

changes in the environment may reduce the accuracy of a WiFi sensing system due

to changes in the multipath environment. To account for this, some techniques have

appeared such as Domain Adaption (DA) [12, 29] and Transfer Learning (TL) [30].

8

2.1.2 Human Activity Recognition

The next most common use for WiFi sensing is to perform Human Activity

Recognition (HAR). Similar to the localization task where signals propagating through

the environment may bounce off of a human target as the signal propagates from a

transmitter to a receiver, we can also capture even finer detail about physical ac-

tion being performed by the target if we watch signal variations over time. As such,

some of the most common actions recognized are stationary activities like sitting or

standing as well as mobile activities like walking and running [31, 32]. This can be

useful to judge the occupancy of a room for applications such as smart home environ-

ments [33]. Training a model for all possible actions that a human target can perform

would be infeasible due to the sheer number of possible states. Using natural language

semantics, it has been shown in [34] that a model can be trained on a single action;

say walking, and then used to recognize other unseen actions; for example running,

due to the semantic relation between the two actions (i.e., running is like walking

at a higher pace). Fall detection [35, 31, 36] can help ensure the safety of elderly

or sick individuals without sacrificing their privacy within their own home as would

be the case with camera based systems. Low resistance calisthenic exercise tracking

provides another set of novel physical actions for device-free WiFi sensing [37, 38,

13]. WiLay [39] uses a layered approach which combines both device-free localization

with HAR where initially, a model recognizes the approximate physical location of

the target in the environment and then determines the human activity through the

use of a model trained specifically on that target location.

9

2.1.3 Gesture Recognition

Many studies look to recognize human movements at an even finer detail such

as at the hand and finger level through gesture recognition. Recognizing such fine-

grained gestures can allow for novel gesture-based interactions with smart home en-

vironments [40, 15] and in-vehicle control [41]. Gestures performed by individuals

can reveal unique characteristics which can then be used to authenticate valid users

for a given system as shown in [15]. Finger position recognition can be used as a

novel method for text input into a computer such as through recognizing the number

of fingers held up by a target [42, 43], as well as through sign language and fin-

ger spelling [16, 44]. Similarly, tracking finger movement through the air can allow

in-the-air handwriting recognition [45, 46]. WiFi sensing can also be used to reveal

information that should not be publicly available such as passwords through keystroke

detection [47, 48].

2.1.4 Indoor Crowd Counting and Occupancy Detection

Understanding the movement of people through indoor environments can be

useful in gathering real-world customer mobility analytics as suggested in [49], for

monitoring secure locations [50], as well as for detecting people indoors during rescue

missions [51]. Typically, crowd counting is performed when the targets are constantly

moving through an environment such as in [19]. Stationary crowd sizes can be es-

timated through WiFi signals by recognizing the small fidgeting movements made

randomly by members in the crowd [52]. Understanding the movement of a crowd

through an indoor environment can also improve safety during emergency building

evacuations by tracking the number of people exiting the building as well as the num-

ber of people still within the building [53]. However, adversaries can also leverage

10

this same ambient WiFi signals to track individuals in non-public environments which

reduces privacy [54].

2.1.5 Health Sensing

In private residences it can be useful to monitor health related activities at all

times. However, wearable sensors can be cumbersome to the user and camera based

systems are too privacy invasive. WiFi sensing has gained traction in health moni-

toring tasks because it is both device-free and less invasive. Specifically, respiration

tracking [1, 55] is one of the most common health related WiFi sensing tasks, which

can be achieved by recognizing peaks in signal variation over time. Tracking the

breathing patterns of multiple people in a given environment has been shown to be

possible through Blind Source Separation (BSS) [56]. Moreover, tracking respira-

tion with WiFi signals can help reveal irregular breathing patterns such as apnea

or tachypnea [57]. Similarly, monitoring people during sleep periods can help detect

unhealthy sleep actions such as rhythmic movement disorders [18] as well as noc-

turnal seizures [58]. Even more fine-grained sensing has been performed with WiFi

sensing to track heart rates of individuals which can help identify variability in heart

rhythms [17, 59]. However, we find that the transmitter and receiver typically must

be placed very close to the chest which makes the setup impractical in real-world

environments.

2.1.6 Other Novel Use Cases of WiFi Sensing

While the previously discussed applications for WiFi sensing have numerous as-

sociated research studies, there are a few use cases for WiFi sensing which have only

appeared in a small number of research studies. For example, EmoSense [60] uses

WiFi sensing to predict the emotion of a human subject based on the physical move-

11

ments that the subject performs thus providing useful measurements for tracking the

mental health of individuals. WiEat [61] leverages human movements to recognize the

eating behavior of the individual to aid in health and dietary tracking. WiFi sensing

has also been applied to track food and agricultural properties such as to detect fruit

ripeness [62] as well as to track the moisture levels of wheat [63] to ensure that the

moisture level does not cross a critical threshold which may result in crop spoilage.

The moisture levels of soil [64] has also been tracked with WiFi sensing to ensure ad-

equate water coverage while reducing overwatering for agricultural farmland. Liquid

level tracking [65] as well as liquid identification [66] have been achieved with WiFi

sensing through the measurement of dielectric properties of the liquid as well as the

resonance frequency response of the liquid due to vibration. Vibration detection [67]

through WiFi sensing has also been used for detecting faults in factory equipment.

2.2 Preliminary Theory on Wireless Sensing

As an introduction to the theory describing how WiFi sensing is capable of achiev-

ing these varying sensing tasks, we begin by introducing both orthogonal frequency-

division multiplexing (OFDM) and channel state information (CSI). These two topics

form the core from which most recent WiFi sensing innovations have arisen.

2.2.1 Orthogonal Frequency-Division Multiplexing

Orthogonal frequency-division multiplexing is a modulation scheme used in wire-

less communication systems such as 802.11n which encodes data streams into multiple

overlapping subcarrier frequencies. OFDM signals are modelled in the frequency do-

main as sinc(f) = sin(f)
f

as presented in Fig 2a. This frequency-domain representation

can be transformed into the time-domain through the Inverse Fast Fourier Transform

(IFFT) to produce an approximate rectangle function as shown in Fig. 2b. The sinc

12

-10 -5 0 5 10

Frequency

-0.5

0

0.5

1

F
re

q
u
e
n
c
y
 R

e
s
p
o
n
s
e

(a)

-0.5 0 0.5

Time

0

0.02

0.04

0.06

S
ig

n
a
l
R

e
s
p
o
n
s
e

(b)

-10 -5 0 5 10

Frequency

-0.5

0

0.5

1

F
re

q
u
e
n
c
y
 R

e
s
p
o
n
s
e

(c)

-10 -5 0 5 10

Frequency

-0.5

0

0.5

1

F
re

q
u
e
n
c
y
 R

e
s
p
o
n
s
e

(d)

Fig. 2. Representations of subcarrier symbol encodings in OFDM systems. (a) Single

subcarrier modelled as a sinc function in the frequency-domain. (b) Same subcarrier

in the time-domain after applying IFFT. (c) By selecting orthogonal subcarrier fre-

quencies, the peak of the sinc function for each subcarrier corresponds to a zero valued

frequency response from all other subcarriers. (d) After summation of all subcarriers

in the frequency domain, the peak values marked in red are retained as a result of

this orthogonality.

function is selected because it allows each subcarrier to be placed orthogonally to one

another in the frequency domain as shown in Fig. 2c where five sinc functions are

placed such that the peak center subcarrier frequency (denoted in red) is located at

a frequency where all other sinc functions are zero. As a result of the orthogonal

placement, when taking the summation of all five selected subcarriers as shown in

Fig. 2d, the peaks (denoted in red) are retained. Each subcarrier represents a single

OFDM symbol transmitted over a time period of 3.2µs with 0.8µs guard period [68]

and can be modulated through methods such as binary phase-shift keying (BPSK),

13

quadrature phase-shift keying (QPSK) or quadrature amplitude modulation (QAM)

depending on the desired data transmitted per OFDM symbol. Each OFDM sym-

bol encodes binary data as a complex number through I/Q samples where I is the

in-phase component representing the real part and Q is the quadrature component

representing the imaginary part. As an example, 16-QAM is able to represent 4-bits

of information with a single complex number [69].

Frequency selective fading may occur due to constructive and destructive inter-

ference caused by signals propagating over multiple paths of varying distances. Note

that, because each subcarrier has slightly different frequency, not all subcarriers will

witness the same constructive or destructive interference. This is an important fea-

ture of OFDM to ensure that data can still be transmitted reliably. Even so, it is

important for the receiver to recognize these variations across a single OFDM symbol.

As such, some subcarriers act as pilot subcarriers where the I/Q encoded symbols are

already known by both the transmitter and the receiver. Through these pilot subcar-

riers, OFDM can correct for variations in the received signal in different subcarriers

through subcarrier equalization [69].

Given a standard WiFi channel with a bandwidth of 20MHz, 64 subcarriers

are created and centered around some carrier frequency such that each subcarrier

represents 312.5kHz of spectrum. For example, WiFi Channel 1 has a center frequency

of 2.412GHz and a frequency range from 2.401GHz to 2.423GHz1. Subcarriers are

indexed based on this center frequency such that subcarrier 0 is the direct-current

(DC) subcarrier, subcarriers −21,−7, 7, 21 are pilot subcarriers, all other subcarriers

between −26 and 26 contain actual encoded data while the remaining subcarriers are

null guard band subcarriers as illustrated in Fig. 3.

1The frequency range for WiFi channels are actually 22MHz due to older versions
of the 802.11 standard. OFDM only considers a reduced bandwidth of 20 MHz.

14

Fig. 3. Layout of subcarrier types in the WiFi frequency domain.

2.2.2 Channel State Information

Channel state information is the metric used in OFDM systems for describing

amplitude and phase variations across subcarrier frequencies as wireless signals are

transmitted between a transmitter and a receiver. Channel estimation is the pro-

cess used to detect variations across the subcarriers in OFDM systems through the

transmission of a set of known shared pilot symbols in a comb-type pilot pattern [70]

where the pilot subcarriers remain the same over time. The CSI matrix (H) can then

be estimated using:

y = Hx+ η, (2.1)

where y is a vector indicating the signal detected at the receiver, x is the signal

vector that was transmitted based on the agreed upon pilot symbols and finally η is

an additive white Gaussian noise vector. H is a complex matrix containing a complex

value for each subcarrier (i) representing the Channel Frequency Response (CFR)

denoted as hi and represented as

hi = Aie
jϕi , (2.2)

consisting of both real (R(hi)) and imaginary (I(hi)) parts. Combining the real and

imaginary parts of each subcarrier, we can determine the amplitude (Ai) and phase

15

(ϕi) for subcarrier i by the following equations:

Ai =
√

I(hi)2 + R(hi)2 (2.3)

ϕi = atan2
(
I (hi) ,R (hi)

)
. (2.4)

Due to the complexity of any given environment, the signal received is not only

a result of a direct line of sight (LOS) transmission, but is also affected by the envi-

ronmental multipath—the multiple physical paths that the signal travels from trans-

mitter (TX) to receiver (RX). Thus,

hi =
N∑
m=1

Ame
−2πfidm

c
+jϕm (2.5)

where Am, ϕm and dm are the resulting amplitude, phase and distance, respectively,

from a given single multipath route where fi is the frequency for the given subcar-

rier i and c is the speed of light. Each multipath thus affects the signal through

amplitude attenuation caused by the environment as well as time delay and phase

shifts caused by the distance of the path. While the multipath lengths are the same

across subcarriers, each subcarrier will exhibit different frequency-selective fading due

to in-phase or out-of-phase multipath interference. OFDM systems are able to com-

bat this frequency selective fading because each subcarrier has a unique frequency

(fi) and as such, whenever some set of subcarriers exhibit destructive fading, the

other subcarriers should be free of destructive fading thus allowing communication to

continue.

Given the problem of device-free sensing of human targets, two sets of paths can

be considered. The first set (Ωs) represent static paths in an environment. Examples

of these static paths would be transmitted signals reflected off of walls unrelated to

the human target. The second set (Ωd) represent the dynamic paths, or those which

16

are affected by the movement of a given target in the environment. Considering these

two sets of paths,

hi =
∑
m∈Ωs

Ame
−2πfidm

c
+jϕm

︸ ︷︷ ︸
hstatic

+
∑
n∈Ωd

Ane
−2πfidn

c
+jϕn

︸ ︷︷ ︸
hdynamic

, (2.6)

and because hstatic is static over time, hstatic becomes a constant value which can

then be eliminated leaving only hdynamic. This is important, specifically because one

of the paths found in this static component is the LOS path between transmitter

and receiver. When unobstructed, the LOS path produces a signal which overwhelms

other paths because of higher amplitude of the LOS path. Further, by removing hstatic,

the remaining paths are only affected by the actions performed by the human target

which can allow predictions to be better resistant to static environmental changes [71].

CSI is represented in the frequency-domain and as such can be converted to the

time-domain through the Inverse Fast Fourier Transform (IFFT) by:

Hn =
N−1∑
m=0

hme
−j2πnm/N , (2.7)

where Hn is the Channel Impulse Response (CIR) for time n. CIR can be transformed

back to the frequency domain through the Fast Fourier Transform (FFT)

hm =
N−1∑
n=0

Hne
j2πnm/N . (2.8)

Some signal processing techniques such as in [40] require filters to be applied to the

CIR before converting back to the CFR for further signal processing.

Throughout this work, we collect multiple CSI samples over a time window of

17

size w which can be represented as the S × w matrix

H[t] =



h1[t− w + 1] h1[t− w + 2] . . . h1[t]

h2[t− w + 1] h2[t− w + 2] . . . h2[t]

...
...

. . .
...

hS[t− w + 1] hS[t− w + 2] . . . hS[t]


, (2.9)

where S is the number of subcarriers and w is the number of time frames where CSI

is collected. After signal preprocessing steps, H[t] can be passed as the input into a

machine learning model to make WiFi sensing predictions.

2.3 Alternative Wireless Sensing Modalities

The topics discussed throughout this dissertation focus entirely on wireless sens-

ing through the use of CSI obtained with WiFi-based devices. However, these tech-

niques and observations made through the dissertation are similarly applicable to

a number of other wireless sensing technologies. Other wireless sensing modalities

include the use of: ultra-wideband radio (UWB) [72, 73, 74], millimeter wave radar

(mmWave) [75, 76, 77], received signal strength indicator (RSSI) [78, 79], and more.

Compared to these alternative wireless sensing methods, WiFi sensing offers an im-

portant improvement in that WiFi signals are already very common in our homes

and offices and other indoor environments. Thus, WiFi sensing can be deployed in

radio-signal rich environments which allows for a reduction in hardware cost.

2.4 Machine Learning at the Edge (TinyML)

Recent pushes towards running machine learning inference at the edge have re-

sulted in several improvements for use cases such as continuous health tracking [80],

intelligent adaptive vehicle traffic control [81], and flight control and navigation for

18

UAVs [82]. Recently, this research field which combines machine learning and em-

bedded systems is referred to as TinyML. Research into TinyML can be split into

three categories: deep learning algorithm design, hardware design and applications of

TinyML [83]. However, TinyML focuses on performing model inference using models

that were pretrained at some more powerful system before being embedded into em-

bedded microcontroller units (MCUs). Notice, we perform a more thorough literature

review and investigation into the techniques required when TinyML is applied to the

task of WiFi Sensing in Chapter 4.

While model inference is the primary concern of TinyML, there are a few works

that do consider methods for training models on low resource embedded MCUs. For

example, both TinyOL [83] and TinyFedTL [84] take the approach that a pretrained

TinyML model can be personalized on-device at the edge by training a single output

layer for the given machine learning model. Specifically, all layers before the final

layer are stored on-board and run through inference like a normal TinyML model.

The output of this TinyML model is then input into a separate single training layer

which can be trained much quicker and with a simpler training algorithm than full

backpropagation. TinyTL [85] takes a different approach where each layer is still

trained on-board but only a subset of model parameters are trained while the oth-

ers remain frozen. Specifically, the model weights are frozen and only the biases are

trained on-device. This allows training to occur on all of the multiple layers through-

out the machine learning model while still ensuring training is performed in a timely

manner.

19

CHAPTER 3

IOT EDGE WIFI SENSING TOOLKIT (ESP32-CSI-TOOL)

We introduce several WiFi sensing datasets throughout this dissertation for a diverse

range of sensing tasks. However, unlike other research areas where reference datasets

are plentiful, only a small number of public WiFi sensing datasets are available for

use. In this dissertation specifically, we aim to evaluate experimental conditions

which have yet to be recorded or released to the WiFi sensing research community.

For example, in this dissertation we evaluate:

1. new embedded WiFi sensing hardware to enabled edge WiFi sensing,

2. a newly proposed system which leverages multiple TX antennas to better ensure

privacy of WiFi sensing systems,

3. additional novel WiFi sensing applications which have not yet been considered

in the research literature.

To aid in the collection and annotation of these novel WiFi sensing datasets, this

chapter introduces our Internet of Things (IoT) based WiFi sensing system which

consists of the ESP32 MCU shown in Fig. 4 which can be used as both an active CSI

RX device, an active CSI TX device, and a passive CSI RX device (PX).

3.1 ESP32-CSI-Tool

The ESP32-CSI-Tool1 can work on a standalone ESP32 MCU and can be easily

deployed with a low cost. This provides opportunities to build more practical and easy

1Open source codebase: https://stevenmhernandez.github.io/ESP32-CSI-Tool/

20

https://stevenmhernandez.github.io/ESP32-CSI-Tool/

Fig. 4. Close up of an ESP32 microcontroller board.

to maintain WiFi sensing systems especially for large scale systems2. The codebase

is implemented in C++ using the Espressif IoT Development Framework (ESP-IDF)

and consists of three specific applications which run on-board the ESP32 MCU. The

first application is an active access point (AP) which initializes the on-board WiFi

stack to allow other devices to initialize a connection, make requests and receive

responses from the AP. The second application is an active station (STA) which

automatically connects to the AP, then sends requests to the server running on the

AP. In general, the AP takes the role of the RX while the STA takes the role of

the TX however both applications are able to receive CSI due to the bidirectional

communication between AP and STA. With both applications active, it is possible

for the devices to automatically initiate communication, but more importantly, it is

possible for our user-level application to collect CSI data for further processing. The

third application is a passive receiver (PX) which passively listens for CSI from any

nearby devices communicating on a given WiFi channel. The PX is not active and

as such does not directly transmit any WiFi signals, thus, attackers may be able to

leverage the module to covertly achieve WiFi sensing based surveillance.

2Considering existing methods such as [86] which required 10 fully-featured laptops
to act as each CSI RXs.

21

3.2 Comparison

Before discussing our tool further, it is important to consider other existing tools

used for WiFi sensing research; namely, (i) the Linux 802.11n CSI Tool for Intel 5300

Network Interface Cards (NICs), (ii) the Atheros CSI Tool for a range of Atheros

NICs, (iii) Nexmon Tool for Broadcom WiFi chips, and (iv) Universal Software Radio

Peripheral (USRP) which is a full-fledged software defined radio (SDR). Table 2 shows

a comparison between each tool.

Both Intel 5300 and Atheros can be refered to simply as NICs because of their

close similarity. The NICs require direct connection to either a laptop or a full desktop

computer to function which results in excess hardware costs and increased size3. The

Nexmon tool on the other hand was shown to work on a Google Nexus smartphone,

however the implementation was built specifically for this model of smartphones and

requires firmware changes to the WiFi chip itself which could damage the hardware of

the phone. USRP provides full control of the SDR to transmit and receive CSI, how-

ever because the USRP is designed as laboratory equipment, it relies on a connection

to a host computer. Obviously, neither the NICs nor the USRP can run as standalone

device without requiring additional hardware, nor can Nexmon without a full-fledged

Google Nexus smartphone. However, with our ESP32 CSI tool, the ESP32 can collect

and process CSI directly on-board without requiring the functionality of any external

devices. This in conjunction with the small size (5cm× 3cm) and weight (< 10g) of

the ESP32 compared to a desktop computer or even a laptop or smartphone means

that the proposed tool is a smaller and is thus a more scalable solution. The cost

(i.e., < $10) for the ESP32 is on par with the cost of a NIC, however a NIC again

3While modern laptops are increasingly smaller, they typically are unable to ac-
commodate user-replaceable hardware like NICs. As such, researchers most com-
monly use large desktop computers as the host for NICs.

22

Table 2. Comparison of Tools for Collecting CSI.

Intel 5300 Atheros Nexmon USRP ESP32

Standalone Operation NO NO YES NO YES

with Smartphones NO NO YES NO YES

Size > 30cm× 20cm > 30cm× 20cm > 15cm× 7.5cm 20cm× 15cm 5.0cm× 3.0cm

Weight > 1kg > 1kg > 100g > 1kg < 10g

Cost $10 + Laptop $10 + Laptop >$100 >$1,000 <$10

Subcarriers 30 56 128 Variable 64

Resolution (imag./real) 8 11 32 Variable 8

Implementation Level Kernel Kernel WiFi Chip Firmware User User

Codebase Size (LOC) 2M 2M 1M, 60K CSI Specific N/A 1K

RAM 8GB+ 8GB+ 1GB-4GB 8GB+ 500KB - 4MB

Antenna 3 3 1 1+ 1

TensorFlow Full Full Lite Full Lite/Full

23

Table 3. Use Cases for ESP32 based CSI collection

Use case TX RX

#1 Standalone ESP32 Standalone ESP32

#2 Connected WiFi AP Standalone ESP32

#3 Connected Smartphone Standalone ESP32

#4 Unconnected WiFi AP Standalone ESP32

#5 #1,#2,#3,#4 Android device + ESP32

#6 #1,#2,#3,#4 iOS device + ESP32

cannot work standalone, thus the primary cost associated with the NIC is not in the

NIC hardware itself, but instead in the desktop or laptop computer it is connected to.

Our tool also gives access to 64 subcarriers where the resolution of each imaginary

and real number is 8 bits which is on par with other tools.

3.3 Use Cases

Collecting CSI with the ESP32 is highly versatile in the fact that the ESP32 can

collect CSI when acting as both AP and as STA. This is not possible with existing

tools because only the device (e.g., laptop) with the NIC (receiver) can be used to

collect CSI. ESP32s can thus be deployed into many additional scenarios to collect

CSI. Table 3 shows the possible use cases that could be achieved with ESP32s in a

WiFi sensing scenario. Note that this setup provides full control of both devices and

thus we can control CSI sample rate as well as the position of each device within a

given space. However, if WiFi transmitting devices already exist in the environment

(i.e., a WiFi router or an Android or iOS smartphone), then the ESP32 is also capable

24

of collecting CSI data from these devices too. Additionally, our ESP32 tool is also

capable of sniffing ambient WiFi signals and extracting the CSI information without

compromising its existence (e.g., no advertisement, visually hidden). To the best of

our knowledge, such kind of passive or sniffing based CSI collection approach has

been used in only one very recent study [87] using Nexmon tool under adversarial

WiFi sensing scenario. However, only a limited packet rate (i.e., 8-11 packets/sec) is

achieved there (even though there were devices transmitting in higher packet rates).

On the contrary, our tool is capable of sniffing orders of magnitude higher rates of

ambient packets in sniffing/passive mode. Note that if there is not much ongoing

wireless packet transmission activity in the environment or the distance from the

transmitter devices is longer, sniffing based CSI extraction can end up with low

packet rates. Moreover, in sniffing mode, varying packet rates might occur from

the uncontrolled transmitter. Therefore, a careful analysis must be performed to

determine the implications of sniffing based WiFi sensing.

3.4 CSI Sampling Rate

CSI sampling rate refers to the number of CSI frames received by the ESP32 per

second. To evaluate this sampling rate, we begin with a single TX set to transmit

frames at a constant known TX rate. In Fig. 5, the RX rate indicates the number of

CSI samples collected in a single second and may be different from the TX rate in

cases where packets are missed due to interference or when packets are dropped due

to cyclic redundancy check (CRC) errors or other communication issues. For each

TX rate value, we transmit for a period of 60 seconds such that the lines in the figure

indicate the mean sampling rate and the error bars indicate one standard deviation

25

from the mean.4

200 400 600 800 1000

TX rate (Hz)

0

500

1000

R
X

 r
a
te

 (
H

z
)

Active Passive Ideal

Fig. 5. Number of packets received per second at an active (i.e., connected) and

passive (i.e., sniffing) receiver when a transmitter sends CSI frames at varying rates.

We begin by considering the active setting where the RX is the destination for

each packet transmitted by the TX. The RX rate increases almost linearly as TX

rate increases to 1000Hz. Small dips in RX rate appear due to the tick interrupt rate

of the real-time operating system (RTOS) running on-board the ESP32 TX device

which artificially reduces the actual number of frames that are sent. Overall, this

shows that the ESP32 can collect CSI samples at an RX rate upwards of 1000Hz in

the active scenario.

Next, we evaluate the passive setting where a third device (PX) is passively

listening to the communication between the TX and RX. In this scenario, because

the packet destination is not PX, the PX cannot request packet retransmission when

communication errors may occur. As a result of this, we find the RX rate for PX is

between 13% and 37% lower than the active scenario. Additionally, compared to the

4We calculate RX rate without sending the CSI data over serial from the ESP32
to the host device. The baud rate of the serial interface limits the CSI throughput
and is not necessary for on-device model inference.

26

200 400 600 800 1000

CSI Sampling Rate (Hz)

0

50

100

%
 o

f
S

tu
d

ie
s

Fig. 6. CDF of CSI sampling rates from surveyed literature (N = 176).

active case, we can see a higher standard deviation for all values of TX rate indicating

that there is a large variance in the number of samples collected over the 60 second

period. In the case of TX rate of 1000Hz, this results in an RX rate of 662Hz and a

standard deviation of 55Hz for the PX.5

Optimal sampling rates for a given sensing task can be selected based on the

Nyquist-Shannon sampling theorem [88] which suggests that a sampling rate of at

least 2RHz must be used to capture an activity performed at RHz. For example,

in [89] it is stated that indoor exercise activities produce motion-induced frequency

shifts at a rate below R = 40Hz and as such, a rate of 100Hz is selected which

is greater than 2RHz and thus should be able to capture the important movements

during these activities. We found 176 research studies which specify the CSI sampling

rate used in their data collection. Fig. 6 shows the CDF plot of the sampling rate used

in these works. From this figure, we can see that almost 50% of works set a sampling

rate of 100Hz or lower. Both the active and passive scenarios shown in Fig. 5 can

achieve rates above 100Hz, and as such, we would expect that the ESP32 could be

used for WiFi sensing in most of the scenarios discussed in these works. We find that

5PX captures CSI from the two way communication between TX and RX. In our
results, we ignore half of the frames (i.e., from RX) to allow for a better understanding
of packet loss with PX compared to the active RX.

27

when higher sampling rates are used, they are often manually reduced afterwards

to decrease computation complexity as well as memory requirements. For example,

in [90], a sampling rate of 1000Hz was selected, but the signal was passed through a

band-pass filter between the ranges of 5Hz and 80Hz to capture the frequency changes

caused by human walking within these frequency bands. Using the Nyquist theory

here, we may assume that a sampling rate of 160Hz would have been sufficient. As

such, while the ESP32 was unable to achieve higher sampling rates in the passive

scenario, the active scenario should still be applicable for higher applications which

require high sampling rates.

3.5 Broader Impact

Fig. 7. Active communication with researchers from 30+ unique countries around the

world regarding the work discussed in this dissertation.

The WiFi sensing research and tools discussed throughout this dissertation have

resulted in active incoming communications from fellow researchers from over 30

countries around the world (see Fig. 7). This includes both academic researchers as

well as industry researchers ranging from start-ups to major technology companies.

28

The WiFi sensing toolkit has so far achieved > 150 stars, > 50 forks and between

100 − 300 page views per week on Github. Sharing these open source projects with

fellow researchers pushes the field further by finally allowing WiFi sensing to be

performed with low cost edge devices for the first time. Furthermore, by encouraging

the use of edge WiFi sensing, this work encourages improved sustainability by relying

on less expensive and more energy-efficient models.

29

CHAPTER 4

SIGNAL PROCESSING AND MACHINE LEARNING TECHNIQUES

AND THEIR CHALLENGES IN REAL-WORLD EDGE SYSTEMS

4.1 Introduction

In this chapter, we survey signal processing and machine learning techniques

used for WiFi sensing tasks by focusing on achieving on-device processing for low

powered edge devices. Typically, the metrics used to evaluate WiFi sensing systems

(i.e., prediction accuracy, training speed, and inference speed) are calculated when

running on high powered desktop-level GPUs or even multi-GPU servers [91, 92]. As

such, deploying conventional WiFi sensing systems is far too costly and bulky for

scalable deployments in the real-world, thus constraining the practicability of on-the-

edge WiFi sensing systems.

Instead, we explore the standalone ESP32 microcontroller which allows access

to the rich WiFi CSI data directly from the WiFi-enabled microcontroller. This

unique feature of the ESP32 allows us to easily deploy a lightweight, standalone and

low cost device for CSI collection and recording as well as for signal processing and

prediction making at the edge. We evaluate existing CSI signal processing techniques

which are historically computed with powerful computers and demonstrate that these

techniques can be performed on much smaller microcontroller devices which allows for

an immediate improvement in scalability of WiFi sensing systems. Furthermore, we

also demonstrate in this work that the ESP32 is capable of running machine learning

inference directly on-board, further reducing its dependency on external devices and

thus demonstrating the possibility of performing WiFi sensing on a standalone edge

30

system. The main contributions of this chapter can be summarized as follows:

• We develop a taxonomy for edge WiFi sensing systems which considers the-

ory, signal processing, data preparation, prediction making, systems-level and

hardware-level concerns along with identifying new and important metrics for

evaluating edge WiFi sensing systems.

• We perform a thorough survey into WiFi sensing studies to identify common

signal processing techniques and to determine the feasibility of running such

methods on a low-level microcontroller on the edge. We also consider which

techniques require environment-specific calibration and evaluate how calibration

can be performed in a new online setting unlike previous research which assume

offline calibrations.

• We evaluate signal processing techniques on a variety of tasks to demonstrate the

use of WiFi sensing for different real-world online use-cases including (i) small-

scale hand gesture recognition which can be used for novel device-free human-

computer interaction (HCI), (ii) medium-scale human activity recognition which

can be used to track behaviours of a person over time, and (iii) large-scale

human activity and localization sensing which can be used to understand the

movements and behaviours of people throughout an environment.

• We evaluate different aspects of an ESP32-based WiFi sensing system such as

(i) computation time required for the surveyed signal processing techniques, (ii)

machine learning model inference rate, and (iii) energy consumption.

There are some previous surveys on WiFi sensing, however they typically focus

on applications of WiFi sensing or deep learning techniques. However, our focus in

31

Table 4. Comparison of This Survey to Existing Surveys On WiFi Sensing.

Key Criteria This Chapter
Jiang et al.

[93]
Ma et al.

[94]
Liu et al.

[95]
He et al.

[96]
Liu et al.

[97]
Li et al.
[98]

Nirmal et al.
[99]

In
fo Year 2023 2018 2019 2019 2020 2020 2021 2021

Focus Edge ML Smart Home Tasks HAR Tasks HAR ML ML

T
op

ic
s

CSI-based Sens-
ing Theory

Signal Processing
Techniques

Machine Learning

Real-World Inte-
gration

Possible Applica-
tions

Hardware Re-
quirements

E
va
lu
at
io
n
s New Experiments

Accuracy

Inference Rate

Energy Consump-
tion

Fully addressed, Partially Addressed, Not addressed.

32

this work for the first time emphasizes the use of WiFi sensing on-board embedded

edge devices. Table 4 compares this chapter to previous WiFi sensing surveys.

4.2 Edge WiFi Sensing Taxonomy

WiFi Sensing

Signal Processing Prediction Making Systems and Hardware

Feature Extraction

Denoising

Dimensionality
Reduction

Detrending

Interpolation

Segmentation

Feature Scaling

Classification

State Validation

Voting

Clock
Synchronization

Data Annotation

Cyber Physical
System Integration

Data Preparation Evaluation

Prediction Quality

Sampling Rate

Inference Rate

Energy
Consumption

Device-to-Device

Communication

Amplitude

Phase

Temporal Diff.

Stat. Features

PSD

Wavelet
Transform

Wind. Stat. Filt.

Savitzky-Golay

Hampel

Butterworth

DWT

FFT Freq. Filt.

Subc. Stat.

Subc. Corr

PCA

ICA

Least Squares
Baseline
Removal

Moving Average
Trend Removal

Linear

Nearest
Neighbor

Fixed Window

Stat. Window

Sentinal
Detection

Max-Min
Normalization

Z-Score
Standardization

Quantization

Accuracy

Recall

Error

Active

Passive

Signal
Processing

Machine
Learning

Transmitter

Receiver

Inference

Deep-Sleep

KNN

DTW

SVM

DNN

CNN

LSTM

GAN

Finite State
Machine

Markov Chain

Majority Voting

Ensemble
Learning

Real-Time
Clock

Fast Phase
Correction

Wired

NTP

GPS

Manual

Camera

Motion Capture

Sound Cues

Baseline

Sensor

WiFi

Bluetooth

Theory

OFDM

BPSK

QPSK

QAM

CSI

Subcarriers

Multipath

LoRa

Fig. 8. Taxonomy of subjects necessary for edge-based WiFi sensing systems.

To produce an edge-based WiFi sensing system, it is important to understand

common existing techniques used in current CSI-based WiFi sensing research. Since

existing studies typically use high-powered desktops or servers, the complexity of

signal processing algorithms has not been much of a concern in these studies. However,

because we consider the use of low-power microcontroller devices for WiFi sensing, the

complexity of signal processing algorithms becomes a much more important area to

33

focus on. Each technique has unique characteristics that determine its applicability

in this new scenario. Most existing research ignores the need for real-time data

processing and assumes that data will instead be processed offsite at a powerful

server. Since we target a WiFi sensing system on the edge, such techniques would

not be possible, thus we must survey available techniques to validate their use for our

proposed system.

Through a thorough survey of existing works, we develop a taxonomy of compo-

nents necessary for edge based WiFi sensing systems as shown in Fig. 8. In Section 2.2,

we discussed the background theory of WiFi sensing with CSI. CSI can be collected

from WiFi-enabled devices such as the Intel 5300 NICs [100], Atheros NICs [101] or

with edge microcontrollers such as the ESP32 [102].

In this section, we discuss four components from our taxonomy, namely: signal

processing, data preparation, prediction making, and systems and hardware. We also

consider the applicability of each technique in resource constrained microcontroller

devices. Specifically, we focus on the online calculations that need to be performed

for every received CSI sample rather than focusing on computations that can be done

beforehand during an initialization phase.

4.2.1 Signal Processing

The first component after CSI data collection is to run the collected CSI data

through signal processing. These signal processing techniques are standard tasks

which will typically be applied in any WiFi sensing application. The purpose of

signal processing is to achieve improved accuracy through steps like feature extrac-

tion, denoising, and dimensionality reduction. Most methods have a unique set of

parameters which can be tuned to improve the accuracy of the technique for different

applications. Tables 5, 6, and 7 shows an overview of the discussed signal pro-

34

Table 5. Feature extraction techniques along with their time and memory complexity when implemented as an online

algorithm for low-resource IoT devices. Complexity variables are defined in Table 8.

Technique
Complexity
per Frame Sources Advantages Disadvantages

Memory Time

F
ea

tu
re

E
x
tr
a
c
ti
o
n

Amplitude O(S) O(S) [16],[103],[104]
Default CSI
representation.

May contain anomalies which
require denoising.

Phase O(S) O(S) [105],[106],[107]
Default CSI
representation.

Requires multiple antennas for
phase correction.

Temporal
Difference

O(S) O(S) [32],[59],[106]
Tracks relative change,
not absolute change.

Typically used with CSI phase.

Statistical
Features

O(S) O(S) [108],[109],[110]
Easy to compute. Re-
duces dimensionality
per CSI frame.

Loses important per-subcarrier
information.

PSD O(w) O(wlogw) [31],[50],[61]
Creates frequency-
domain features.

Applied to a single subcarrier.
Loses other subcarrier informa-
tion.

Wavelet
Transform

O(S|ψ|J) O(S|ψ|J) [105],[111],[112]
Creates frequency-
domain features.

Higher complexity than other
feature extraction methods.

35

Table 6. Denoising filter techniques along with their time and memory complexity when implemented as an online

algorithm for low-resource IoT devices. Complexity variables are defined in Table 8.

Technique
Complexity
per Frame Sources Advantages Disadvantages

Memory Time

D
e
n
o
is
in

g
F
il
te
r

Windowed
Statistical
Filter

O(wS) O(wS) [39],[113],[114]
Simple
implementation.

Does not retain original wave-
form.

Savitzky-
Golay Filter

O(wS) O(wS) [55],[115]
Closely maintains
steep peaks and valleys
in waveform.

Poor anomaly filtering.

Hampel
Filter

O(wS) O(Swlogw) [18],[27],[42]
Retains exact wave-
form except for anoma-
lies.

Anomalies detected may in-fact
be important.

Butterworth
Filter

O(wS) O(wS) [48],[116],[117]
Filters noise outside of
frequency ranges of in-
terest.

Frequency ranges dependant on
application.

DWT O(S|ψ|J) O(S|ψ|J) [118],[119],[120]

Frequency-domain fil-
tering can be applied
to multiple frequency
ranges in one-pass.

Frequency filtering is more
coarse than Butterworth filter.

FFT
Frequency
Filter

O(S) O(SlogS) [40]
Filters noise due to
multipath environ-
ment.

Filter is applied per-frame, not
applied over time range.

36

Table 7. Dimensionality reduction techniques along with their time and memory complexity when implemented as an

online algorithm for low-resource IoT devices. Complexity variables are defined in Table 8.

Technique
Complexity
per Frame Sources Advantages Disadvantages

Memory Time

D
im

e
n
si
o
n
a
li
ty

R
ed

u
c
ti
o
n

Subcarrier
Statistical
Features

O(S) O(S) [32],[40]
Simple calibration
phase. Simple online
phase.

Filtered subcarriers may still
have useful information.

Subcarrier
Correlation

O(S) O(S) [121],[122] Simple online phase.
Correlated subcarriers may
contain redundant information.

PCA O(SC) O(S2C) [48],[123],[124]
Mixes subcarriers be-
fore reduction to retain
information.

Complex calibration phase.

ICA O(SC) O(S2C) [56],[125]
Designed to separate
signal into C indepen-
dent sources.

Typically used with multi-
antennas.

37

Table 8. Variable definitions for Tables 5, 6, 7, 9 and 10.

Variable Description

S Number of subcarriers

w Window size

|ψ| Length of discrete wavelet

J Number of wavelet decomposition levels

C Number of components extracted from PCA and ICA

cessing techniques, along with their memory complexity, time complexity as well as

advantages and disadvantages of each technique. For each method, we provide mul-

tiple reference sources which explain each method in a different way or use a unique

mathematical formulation rather than citing studies which simply apply the given

method. We take this approach to allow the reader to gain a greater understand-

ing of the methods from different points of view. The variables used to define time

complexity and memory complexity are described in Table 8.

4.2.1.1 Feature Extraction

We begin evaluating signal processing techniques by reviewing common feature

extraction methods. Feature extraction transforms raw CSI data into meaningful

features for further processing and for machine learning model injection.

Amplitude and Phase: The most fundamental feature extraction method for WiFi

sensing is to convert CSI into amplitude (A) or phase (ϕ) features as shown in Equa-

tion (2.3) and Equation (2.4), respectively. For each CSI frame collected, S subcarriers

are received which can then immediately be converted to either amplitude or phase

with memory complexity and time complexity of O(S). For the following sections,

38

h[t] will denote a single CSI signal measurement for some subcarrier s at time t which

could be either amplitude, phase or some other derived signal value.

Temporal Difference: For both amplitude and phase, the absolute value may not be

as important as the relative change of the feature over time [59]. Instead, using the

temporal difference over subsequent time steps (i.e., hdiff[t] = h[t] − h[t − 1]) is a

common feature extraction step. With amplitude for example, when the temporal

difference is negative the amplitude has decreased which possibly indicates that the

LOS between TX and RX has been blocked by some obstruction such as a human

target and alternatively, when the temporal difference is positive, this may indicate

the LOS has been cleared of an obstruction. Due to the noisy nature of received

phase, some studies [106] have used the relative phase from the temporal difference

after applying phase unwrapping to better understand how much change occurred

over some time span.

Statistical Features: Standard statistical aggregation functions (e.g., mean, standard

deviation, median, kurtosis) are used to compress the high dimensional subcarrier

data per frame down to a single higher-level feature value. Furthermore, spectral

statistical functions (e.g., spectral kurtosis, spectral spread, spectral slope) can be used

given that the data is represented in the frequency domain rather than in the time

domain. Depending on the statistical function, the time complexity and the mem-

ory complexity may change, but in general, when the functions are applied to the

subcarriers from a single CSI frame, the time and memory complexity are O(S).

More commonly, statistical features are extracted from a time-series window of

size w independently per subcarrier. To accomplish this, a buffer of size O(wS) can

be allocated to store the data for aggregation. Due to the addition of a windowed

buffer, the time complexity also increases for performing the aggregation for each

subcarrier. However, trivial statistical functions such as mean (µ(·)) can achieve

39

reduced time complexity in an online system through an iterative implementation.

For example, for a single subcarrier s at time t, µ(t) = 1
w

∑w−1
i=0 h[t − i] takes O(w)

time while a recursive implementation µ(t) = µ(t− 1) + 1
w

(h[t] − h[t− w]) has O(1)

time complexity per subcarrier while still requiring the same memory complexity of

O(w) per subcarrier.

Power Spectral Density: Power Spectral Density (PSD)1 [50] converts the time-series

CSI signal (h) into the frequency domain (h̃). Typically, we find that this conversion

is only applied to a single subcarrier, however it is also possible to compute this value

independently per subcarrier. To compute PSD, we keep a buffer of window size w

and compute

hPSD[t] =
|FFTw(h[t− w + 1 : t])|2

w
. (4.1)

On a single subcarrier, this method has a time complexity of O(wlogw) and a memory

complexity of O(w). This produces a vector of size |hPSD[t]| = w even though the

input is only a single subcarrier.

Wavelet Transform: Wavelet transformations compress a signal from a time-series

representation and transform it into a set of time-frequency domain components.

Wavelet transform is achieved by decomposing the input signal recursively into a vec-

tor of approximation coefficients (α(J)) as well as a set of detail coefficient vectors

{β(1), β(2), · · · , β(J−1), β(J)} where J is the number of decomposition levels. Both ap-

proximation coefficient vector and detail coefficient vectors can be computed through

downsampling convolutional equations [127]:

α(J)[t] =

|ψ|−1∑
i=0

g[i]α(J−1)[t− i], J ∈ Z (4.2)

1Energy Spectral Density (ESD) is another term used when PSD is computed over
small time windows [126].

40

β(l)[t] =

|ψ|−1∑
i=0

h[i]α(J−1)[t− i], l ∈ 1, · · · , J (4.3)

where g is the high-pass filter and h is the low-pass filter derived from the wavelet

basis function (ψ) (i.e., Haar or Daubechies Wavelets) such that g[|ψ| − n + 1] =

(−1)n× h[n], where |ψ| is the length of the coefficients for the wavelet basis function

and n ∈ {1, . . . , |ψ|}. Both α(J) and β(l) are downsampled to remove every other

element in the array such that |α(J)| = 1
2
|α(J−1)| and |β(l)| = 1

2
|β(l−1)|. Note that the

initial approximation vector α(0)[t] = h[t], is our original CSI signal measurements,

and as such, |h[t]| = |α(0)[t]| = |α(1)[t]| + |β(1)[t]| = |α(J)[t]| +
∑J

l=1 |β(l)[t]| which

shows that even though we are downsampling at each level, the number of elements

retained is always |h[t]| no matter the value for J when computed using the pyramid

algorithm [128].

Each level of decomposition also results in a halving of the sampling rate and as

such, a halving of the frequency spectrum. For example, given CSI sampling rate of

RHz, the detail coefficient vector β(l) for level l captures frequency ranges from R
2l

Hz to

R
2l+1 Hz and α(l) captures frequency ranges from R

2l+1 Hz to 0Hz. As such, different sub-

ranges of frequency bands reveal more relevant information depending on the task.

For example, in [111], it was found that when using six-level wavelet decomposition,

the detail coefficient vectors β(4), β(5), β(6) and approximation coefficient vector α(6)

are most effective at revealing motion-induced variations for the task of occupancy

detection. Similarly, in [105] a four-level wavelet decomposition was applied where

both β(3) and β(4) were used as input for the task of breathing rate detection.

For a real-time online data processing system, a few important algorithm design

issues must be considered. Given a J-level wavelet transform decomposition, due to

the recursive nature of the wavelet transform, at time t, α(J)[t] is a function of our

signal from time t all the way back to time t −
∑J

l=1(|ψ| − 1)2J−1 where |ψ| is the

41

t t+1

D
ecom

position

R
econstruction

Signal over Time

Memory for Current Decomposition

Next Full Decomposition

t-1 ...

α(1)

α(2)

α(3)

α(0)

Fig. 9. Wavelet decomposition.

length of the wavelet function coefficients. As such, for the previous examples in [111]

where J = 6 and ψ = “db6” such that |ψ| = 12, both α(J)[t] and β(J)[t] are functions

of 694 input CSI samples. This not only introduces significant lag into the system,

but also suggests a large amount of computation work.

A simplified example of wavelet decomposition is shown in Fig. 9 where the first

layer of blocks represents distinct signal samples over time and each lower layer rep-

resents the J = 3 recursive decomposition of the approximation coefficient vector

α(l) and finally |ψ| = 4. In each layer, |α(l)| = 1
2
× |α(l−1)| due to downsampling.

In the illustration, for decomposition layer l = 1 (second layer), we can see that

α(1)[t] depends on four consecutive signal samples because |ψ| = 4 highlighted in

blue. Similarly for the second decomposition layer we can see that α(2)[t] relies on

four coefficients from α(1) which recursively have their own dependencies in α(0). As

such, α(2)[t] is a function of 10 original signal samples from h. Finally in the third

decomposition layer, α(3)[t] again only has four direct dependencies from α(2)[t], but

because of the recursive nature of the algorithm, a total of 22 signal samples are

required to make up α(3)[t]. If another layer of decomposition was attempted, then

46 signal samples would be required to compute α(4)[t] and so on. If we perform 10-

layer decomposition, then 3070 input samples would be required to compute α(10)[t].

42

Luckily, the recursive structure of the wavelet decomposition ensures that results can

be cached rather than recomputed at each time point. In the illustration, when a

CSI sample arrives at time t, only the blue boxes are required for the computation

which means that the memory complexity for each arriving CSI sample (per subcar-

rier) is only O(|ψ|J + 1) and due to the convolution operation, the time complexity

is O(|ψ|2J). We can see in Fig. 9 that there is some lag introduced between the

computation of α(J)[t] and α(J)[t+ 1] because the approximation coefficient vector for

lower intermediate levels needs to be computed before α(J)[t + 1] can be computed.

This lag can be counted by the number of CSI signal samples and is equal to 2J

samples. This means that as J increases, the prediction rate will decrease because

the approximation coefficient vector and all detail coefficient vectors need to be fully

computed before subsequent predictions can be performed.

4.2.1.2 Denoising Filters

Noise in the collected CSI data has been a great concern for many studies. Noise

can originate from a number of sources including differences in hardware such as with

Central Frequency Offset (CFO) errors and Sampling Frequency Offset (SFO) errors.

It can also come from environmental conditions such as through signal shadowing

due to LOS interference or multipath fading where the signal arrives to the receiving

antenna from multiple NLOS paths through the environment causing destructive

interference. As such, a large number of unique methods have been proposed for

denoising the incoming signal. Denoising is most commonly performed independently

per subcarrier.

Windowed Statistical Filter: Through our survey, we find that simple denoising filters

such as the mean [39] and median [113] windowed filters are commonly used. The

mean filter computes ĥ[t] = 1
w

∑w−1
i=0 h[t − i] which can be calculated on a rolling

43

basis as new data appears. Similarly, a weights vector g of length w can be used

to produce a weighted moving average ĥ[t] = 1
w

∑w−1
i=0 g[i]h[t− i] which can give less

weight to time instances further away from the current time instance and greater

weight to more recent time instances. The median filter on the other hand requires a

slightly higher time-complexity due to the use of the median function (Med(·)) as so:

ĥ[t] = Med
(
{h[t−w+ 1], h[t−w+ 2], . . . , h[t− 1], h[t]}

)
. Median filter makes up for

this higher complexity by more robustly handling highly anomalous noise within the

signal.

Savitzky-Golay Filter (SG): This filter fits a rolling window of data points with a

low-degree polynomial through linear least squares to smooth out the incoming sig-

nal. In [115], it is suggested that SG filter can maintain the shape of the waveform

better than a standard infinite impulse response (IIR) low-pass filter. To perform

this smoothing, a coefficients vector WSG of size kSG = |WSG| is used such that

hSG[t] = (WSG ∗ h)[t]

=

kSG−1∑
i=0

WSG[i]h[t− i].
(4.4)

Obviously, when WSG[i] = 1
kSG

,∀i ∈ {0, . . . , kSG−1} then
∑kSG−1

i=0 WSG[i] = 1, and SG

filter will simply compute the rolling average window. With more complex selection

of WSG, polynomial fitting can be achieved [129]. Due to the simple convolution

operation, SG filter requires a memory complexity and time complexity of O(kSG) =

O(w) per subcarrier. The SG filter has been suggested [130] because it preserves the

steep peaks and valleys of the original signal h.

Hampel Filter: The Hampel filter [110] is used to remove anomalies without changing

44

the signal values for non-anomalous values through:

ĥ[t] =


h[t] |h[t] −Medt,w(h)| ≤ 3 ×MADt,w(h)

Medt,w(h) otherwise,

(4.5)

where MADt,w(·) is the Median Absolute Deviation (MAD) function for the signal

window from h[t − w + 1] until h[t] and Medt,w(·) is the median function over the

same window buffer.2 Filtering anomalous data in this way is useful for filtering out

outliers caused by hardware related errors such as through quantization errors while

also retaining much of the original, non-anomalous signal values.

Butterworth Filter: Noise will be mostly produced by other physical phenomenon

in the environment. For example, when recording human hand gestures, the hu-

man body may slowly move during the gestures. Furthermore, background items

such as fans may produce fast variations in the noise. Thus, high-pass, low-pass and

band-pass filters have commonly been employed, most commonly in the form of But-

terworth filters [116]. The goal of the Butterworth filter is to produce a maximally

flat amplitude response in the defined frequency bands while also reducing the am-

plitude response outside of the specified frequency bands [131]. Butterworth filters

apply a rational transfer function to the input data given as a set of coefficients a and

b, where |a| = |b| = n+ 1 = kBF where n is the order of the Butterworth filter. Out-

put hBF[t] of the transfer function is calculated recursively using the Direct-Form-II

2These filters are described assuming that the current time point is the final value
in the window function. Some studies consider the current time point as the center of
an odd-sized window. This may be helpful during rising-edge and falling-edge cases,
but introduces some lag in signal processing. Only trivial changes are required to
alter these windowing methods.

45

(DF-II) structure [131]:

hBF[t] =

(
kBF−1∑
i=0

b[i]h[t− i]

)
−

(
kBF−1∑
i=1

a[i]hBF[t− i]

)
. (4.6)

The key observation here is that while the Butterworth filter is an IIR filter; which

means that each hBF[t] is a function of all previously seen signal elements in h, the

buffer size required for computing hBF[t] is only of sizeO(w) to store a, b and hBF. This

makes both the time and memory complexity O(w). Thus, the Butterworth filter is

another reasonable candidate for computation and memory constrained systems such

as low-power IoT devices.

Discrete Wavelet Transform: Another very common method for denoising is through

the discrete wavelet transform (DWT) [118]. DWT is used to decompose time-domain

signals into a time-frequency domain representation. Denoising with DWT is per-

formed in three stages, first the signal is decomposed recursively through DWT into

a vector of approximation coefficients (α(J)) as defined in Equation (4.2) as well as a

set of detail coefficient vectors (β(1), β(2), · · · , β(J−1), β(J)) as defined in Equation (4.3)

where J is the number of decomposition levels. After decomposing the signal into J

detail coefficient vector levels, threshold based denoising is applied. For each coeffi-

cient element (β(l)[i]) within each level of detail (l), we can then apply either a soft

threshold [127] by:

β̃(l)[i] =


sign

(
β(l)[i]

)(
|β(l)[i]| − τ

)
if |β(l)[i]| ≥ τ

0 otherwise,

(4.7)

or a hard threshold by:

β̄(l)[i] =


β(l)[i] if |β(l)[i]| ≥ τ

0 otherwise,

(4.8)

46

where τ is a pre-defined threshold. After applying this threshold method, we can

reconstruct the original time-domain signal from this frequency representation. This

reconstruction stage reverses the decomposition steps as illustrated in Fig. 9. To ac-

complish reconstruction, the inverse discrete wavelet transform (IDWT) is used [127,

118]:

α(l)[t] =
w−1∑
i=0

ḡ[i]α
(l+1)
UP [t− i] +

w−1∑
i=0

h̄[i]β̂
(l+1)
UP [t− i], (4.9)

where α
(l)
UP is an upsampled version of α(l) accomplished by

α
(l)
UP[n] =


α(l)
[
⌊n
2
⌋
]

if n is even

0 otherwise,

(4.10)

which allows |α(l)
UP| = 2|α(l)| = 2|α(l+1)

UP | and ḡ and h̄ are the reconstruction high-pass

and reconstruction low-pass filters, respectively, such that ḡ[n] = g
[
|ψ| − n + 1

]
and

h̄[n] = h
[
|ψ|−n+1

]
when n ∈ {1, . . . , |ψ|}. This recursive operation is performed from

l = J until l = 0 at which point |ĥ| = |α(0)| which implies that |α(0)| = |h| showing

that the computed signal length after DWT denoising (decomposition, thresholding,

reconstruction) is the same as the length of the initial signal. However, depending

on the levels of decomposition, there will be lag introduced relative to the size of the

selected J and |ψ|.

FFT Frequency Filter: A single CSI sample contains many subcarriers, each of which

is a frequency-domain representation of the signal. This means that we can use the

IFFT to capture the power delay profile (PDP) in the time-domain [40]:

h̃[t] =
N∑
i=1

aie
−jθiδ(t− ti), (4.11)

where N is the multipath count, ai and θi are the amplitude and phase angle of the

given multipath, ti is the time delay introduced by the given multipath and δ(·) is

47

the Dirac delta function. Given an initial CSI sample with 64 subcarriers, the output

of IFFT will also be of size 64 where each element of the vector represents time.

Due to the time delay introduced by different multipaths in the environment, each

element in PDP will be affected slightly differently. This understanding has been

used to achieve denoising by performing multi-path mitigation [40]. To do this, after

transforming CSI into PDP, components with large time delays are removed as so:

h̃′[t] =


h̃[t] if t < TPDP

0 otherwise,

(4.12)

where TPDP is the allowed time delay. After this, it is possible to convert PDP

from the time-domain representation back to a frequency-domain CSI representation

through standard FFT. The FFT Frequency Filter is computed immediately on each

incoming CSI sample independently and thus, this method will not introduce lag for

a real-time system.

4.2.1.3 Dimensionality Reduction

Each collected CSI sample comprises of a complex vector of S subcarriers. It has

been shown in previous studies (e.g., [132]) that some subcarriers have similar and

thus redundant information while other subcarriers are plagued with high amounts

of noise. To combat these issues, dimensionality reduction can be applied to remove

the data from these useless subcarriers thus reducing the number of subcarriers to

Ŝ < S.

Subcarrier Statistical Feature: A simple method for selecting subcarriers is to con-

sider statistical properties of each subcarrier over some pre-defined time frame. For

example, many studies [133, 132] select subcarriers which exhibit the highest variance

indicating that the subcarrier has a high sensitivity for the environment. Variance

48

can be calculated on a moving window to allow subcarrier selection to change over

time as shown in [132] or more commonly the variance per subcarrier can be com-

puted beforehand in a calibration phase for the environment [133]. When computing

the moving window, a buffer of size O(wS) is required while pre-computed subcarrier

variance values can allow the system to immediately filter out low quality subcarriers

with only O(S) time and memory complexity. Other metrics such as signal-to-noise

ratio (SNR) [58] and mean absolute deviation [59] have also been used as metrics that

can be computed independently per subcarrier for the task of subcarrier selection.

Subcarrier Correlation: Another common method for subcarrier selection is to look

at the relationship between each individual subcarrier by computing a correlation

coefficient matrix of size S×S [134]. The goal is that subcarriers with high correlation

are in agreement about the true state of the environment and thus we can assume that

the noise present in the signal is appearing due to the environment rather than from

some spurious noise source. Interestingly, in [130] it was shown that the phases of

some subcarriers have highly negative correlation which implies that the subcarriers

are being affected by the same environmental events but are being affected in opposite

directions, so the absolute correlation coefficient matrix may be preferred. Subcarrier

correlation will typically be computed during the calibration step to determine which

subcarriers to keep and which subcarriers to filter for each CSI frame. As such, the

online time complexity and the memory complexity remains at O(S).

Principal Component Analysis (PCA): Principal Component Analysis (PCA) [135,

136] is a common method for dimensionality reduction with the added benefit of

also increasing the SNR of the data through a linear transformation. PCA relies

on an initial calibration phase to compute a components coefficients matrix CPCA

of size kPCA × S through eigendecomposition where kPCA is the desired number of

components to retain. To compute the kPCA principal components at time instance,

49

t:

hPCA[t] = CPCA × (h[t] − µ), (4.13)

where µ is the vector of subcarrier means found during the calibration phase such

that |µ| = S. This process results in a reduction in dimensionality for the CSI sample

from size S subcarriers down to kPCA principal components. The memory complexity

for computing this value per sample is O(kPCAS) due to the size of CPCA and the time

complexity for each sample is O(kPCAS
2) due to the matrix multiplication required

at each time instance.

Independent Component Analysis (ICA): Signal variations in the received CSI are

affected directly by different noise sources such as environmental noise or specific

physical movements. Independent Component Analysis (ICA) attempts to solve the

blind-source separation problem by splitting out the noise caused by each unique

source (i.e., each individual human in an environment or each distinct body part

during single human body movements). ICA has been used in WiFi sensing tasks

such as for separating out respiration signals [56]. ICA relies on an initial calibration

phase to compute a components coefficients matrix CICA of size kICA × S through

singular value decomposition (SVD) where kICA is the desired number of components

to retain.

It should be noted that while both PCA and ICA are looking to accomplish

very different tasks; computationally, both methods use Equation (4.13) to perform

dimensionality reduction. As such, both methods behave exactly the same while

performing the algorithm online. The only unique aspects are how CPCA and CICA

are computed during the calibration phase.

50

4.2.2 Data Preparation

Data preparation techniques, unlike signal processing are more application-specific

and thus are not appropriate for use in all tasks. Table 9 and Table 10 show an

overview of the discussed data processing techniques, along with their memory com-

plexity, time complexity as well as their advantages and disadvantages.

4.2.2.1 Detrending

For real world implementations of WiFi sensing, the environment will inevitably

change in some ways which will cause the absolute CSI value to fluctuate over time.

Such fluctuating trends may appear over the course of a single day or in longer running

systems over multiple weeks. We find that very few WiFi sensing works consider these

long-term variations because the current research systems are typically used for short

periods of time and in controlled scenarios. WiFi-Sleep [137] on the other hand

requires CSI collection to occur throughout a full sleep cycle for an entire night which

means that drift is more likely to be observed in the measured signal.

The first method for removing drift by detrending is to fit a least squares re-

gression line [137]. After fitting this baseline, the difference between the original

signal and this baseline is calculated. WiFi-Sleep for example finds that data trends

non-linearly over an eight hour experiment, thus a higher-order polynomial curve is

selected as the baseline. However, finding the least squares baseline at the end of the

sleep period precludes the real-time online system that we target in this study.

An alternative approach is to perform Moving Average Trend Removal [138]

where; similar to the previous method, a baseline b[t] is calculated and removed from

the original signal. To accomplish this in real time, a rolling baseline is calculated as

b[t] = 1
w

∑w−1
i=0 h[t− i] where w is an important variable which will determine how well

51

Table 9. Overview of data preparation techniques (Detrending and Interpolation).

Technique
Complexity
per Frame Sources Advantages Disadvantages

Memory Time

D
e
tr
e
n
d
in

g Least Squares
Baseline Removal O(wS) O(wS) [137] High quality over

long timeframes.

Requires hours
of data collection
before process-
ing.

Moving Average
Trend Removal O(wS) O(wS) [138] Real-time

detrending.

Poor quality
with longer time-
frames.

In
te
rp

o
la
ti
o
n Linear

Interpolation O(S) O(S) [139],[140],[141]
Anomalies are
reduced through
averaging.

Alters real CSI
through averag-
ing.

Nearest Neighbor O(S) O(S) [142, 143]

Simple
implementation.
Retains real CSI
values without
alterations.

Anomalies may
propagate over
time.

52

Table 10. Overview of data preparation techniques (Segmentation and Feature Scaling).

Technique
Complexity
per Frame Sources Advantages Disadvantages

Memory Time

S
eg

m
e
n
ta
ti
o
n

Fixed Window O(wS) O(wS) [113, 134] Simple. Default
method for ML.

Constant model
inference, high
computation use.

Statistical
Window O(wS) O(wS) [14],[144],[145]

Low computation
statistical func-
tions.

Movements
are lost with
poorly selected
threshold.

Sentinel
Detection O(wS)

Dependent on
Classifier [118, 146]

Uses lightweight
ML sentinel
model.

Requires user to
initiate sensing
period.

F
ea

tu
re

S
ca

li
n
g

Max-Min
Normalization O(S) O(S) [147, 63] Constrains data

to exact bounds.

Outliers cause is-
sues with data
distribution.

Z-Score
Standardization O(S) O(S) [148, 149]

Constrains sub-
carriers to same
scales.

Outliers may
cause model
confusion.

Quantization O(S) O(S) [150]

Reduces ML
model size. In-
creases inference
rate.

Reduces data
resolution.

53

the baseline matches to the actual drift appearing in the signal. In this work, we find

that the experiments that we perform do not result in noticeable levels of drift, thus

we do not evaluate these detrending methods. However, more work into detrending

methods will be required for real world online WiFi sensing system implementations.

4.2.2.2 Interpolation (of Missing Frames)

Due to the wireless communication method used for WiFi sensing, CSI sam-

pling jitter can occur due to packet loss or even due to computation delays from

the multi-process operating systems used [120] as well as the bursty nature of WiFi

communication [151]. As a result, the timestamp for received CSI samples will not be

exactly equally spaced. To account for this, the most common technique is to apply

linear interpolation [139] such that

ĥ[t] = h[t− 1] +
(
T̂ [t] − T [t− 1]

) h[t] − h[t− 1]

T [t] − T [t− 1]
, (4.14)

where t is the index of the current time instance, h[t] is the actual CSI value at the

actual time T [t] and ĥ[t] is the interpolated CSI value for the interpolated time T̂ [t].

Alternatively, nearest neighbor interpolation [142], which is computed as

ĥ[t] =


h[t] if

∣∣∣T̂ [t] − T [t]
∣∣∣ < ∣∣∣T̂ [t] − T [t− 1]

∣∣∣
h[t− 1] otherwise,

(4.15)

has also successfully been applied for WiFi sensing tasks. Both of these interpolation

techniques can be achieved with O(1) time complexity and O(1) memory complexity

per subcarrier because only the current CSI sample and the previous CSI sample

are required. Fig. 10 shows an example where our system was set to transmit and

receive CSI frames every 10ms (100Hz). We can see that the majority of the frames

appear at 10ms, but there is some probability that the frame will appear slightly

54

0 5 10 15 20

Time Difference (ms)

0

0.2

0.4

0.6

0.8

P
D

F
Fig. 10. Probability distribution function showing the timestamp difference between

consecutively recorded CSI frames when transmitted at a sampling rate of 100Hz.

earlier or slightly later than every 10ms. When interpolation is applied to a stream of

CSI samples, an interpolated sample will be generated for every interpolation interval

(i.e., every 10ms) whether or not the CSI sample arrived early, late or exactly on time

or even if the CSI sample was missing entirely.

4.2.2.3 Segmentation

As CSI samples arrive at the RX, the system must make a decision: should the

samples be used to make a prediction or should the samples be ignored? We find that

most of the studies assume that all CSI samples should be used for prediction making.

To accomplish this, these studies (e.g., [152, 134]) use a fixed window where a window

of size w CSI samples are input into the classification algorithms with a step size of

sstep which indicates how many CSI samples should be collected between subsequent

predictions. However, the human target may not be performing any physical actions

at all times of the day. To account for this, a special predicted output class of “none”

or“empty” is often used (e.g., in [153]) for indicating when no actions are recognized

by the system. This simplifies the structure of the overall system but can result

in an overwhelming number of useless predictions. We argue that this is an even

55

more pressing problem for low-resource embedded systems because the full inference

workflow can be both time consuming and most importantly highly energy consuming.

Furthermore, because we can assume that in real world systems the “none” class may

occur with much higher frequency than other actions, the model may become overfit

to this “none” class which will cause class imbalance due to oversampling of that

single class. However, we find in some studies such as [153] that each of the actions

used to train the classifier model is given equal amounts of training and testing data

per class including the “empty” class. Evaluating without considering class imbalance

is unrealistic.

Some studies have attempted to reduce how often predictions need to be made in

their systems through segmentation. Segmentation helps identify the starting points

and the ending points for potential actions. It is usually assumed that each action

segment will be neighbored directly by a time period of static environmental CSI col-

lection before and after the action. Thus, simple rolling window statistical thresholds

are used to detect changes in state. Most commonly, we find that moving-window

variance [154] is used to indicate the starting points and ending points of individual

physical activities. The idea is that when an activity is being performed, the physical

movements cause more noise from appearing in the CSI signal compared to the static

environment both before and after the activity is performed. However, this method

assumes that activities will always be surrounded by distinct periods without any

movements, which may not be the case in practice because, for example, a walking

activity may immediately be followed by another activity such as sitting down. Fur-

thermore, when more than a single person is in the environment, activities are likely

to overlap, preventing static periods from appearing in the environment. An opposite

approach is to use a motion detector algorithm [21] to recognize when large motions

are being performed in the environment and filter out any CSI collected during these

56

large motions. This approach especially can be helpful if we are trying to monitor

very small actions such as respiration as it can remove the unrelated large motions

that are likely to overpower the smaller movements that are being tracked.

One other segmentation method commonly employed is to use a specific start

and stop sentinel movement where the user must perform a given action such as

moving their hand close and far away from the receiver multiple times [146]. These

sentinel movements should be easy to classify by the device with low computational

complexity algorithms. After performing the sentinel movement though, the device

can be “woken up” and can begin to compute higher complexity algorithms such as

deep learning inference. This is more useful for gesture recognition tasks and smart

home type interactions where a user is actively involved with interactions with the

system rather than passive sensing tasks such as surveillance.

4.2.2.4 Feature Scaling

When data is input into machine learning algorithms, the relative magnitude

of each input dimension can have great effect on the overall prediction ability of the

algorithm. If any dimension has much higher magnitude than other input dimensions,

the contribution of this dimension may begin to overshadow the other dimensions.

The process of equalizing input dimensions is called normalization. The most common

type of normalization is max-min normalization [147] where given a signal h of length

T , the normalized value ĥ[t] = h[t]−min(h)
max(h)−min(h)

. This compresses the signal range such

that 0 ≤ ĥ[t] ≤ 1,∀t ∈ {1, 2, . . . , T − 1, T} a condition which holds true only if all

elements in h are known fully upfront such as in an offline system. An alternative

approach is to use Z-score standardization with ĥ[t] = h−µ(h)
σ(h)

where µ(h) is the mean

value of the signal and σ(h) is the standard deviation value of the signal. Z-score

standardization is more forgiving in that it allows µ(h) and σ(h) to be computed on

57

smaller subsets of the signal (i.e., from an initial calibration phase). Feature scaling is

an important factor in machine learning on low-resource embedded devices. Namely,

feature input must be scaled and also quantized to better reduce the computation and

memory complexity of the algorithms. Quantization [155] can reduce the number of

bits used for encoding machine learning model weights, model input as well as model

output. For example, machine learning systems will typically encode numerical values

as 32-bit floating point values. These values can be quantized down to 16-bit or 8-bit

representations to (i) reduce the memory usage of the machine learning model; (ii)

reduce computation time especially in cases where Single Instruction, Multiple Data

(SIMD) instructions are available; and (iii) can thus reduce energy consumption.

4.2.3 Prediction Making

With the CSI signal data processed and prepared for machine learning, next we

can use the data to make predictions about the environment.

4.2.3.1 Classification and Machine Learning

Through our survey of WiFi sensing systems, we find that many different classi-

fication algorithms have been used for a wide range of tasks from simple linear and

non-linear regression algorithms, and similarity based algorithms such as k-nearest

neighbors (KNN) and dynamic time warping (DTW), to machine learning algorithms

such as support vector machines (SVM) dense neural networks (DNN), convolutional

neural networks (CNN), as well as deep learning algorithms such as recurrent neu-

ral networks (RNN) and long short-term memory networks (LSTM) and generative

adversarial networks (GAN). While there are many common signal processing tech-

niques used throughout WiFi sensing literature, the number of unique classifier model

architectures is much larger and more diverse. While DNN and CNN may be used

58

to describe a given model, the architecture of the model can still be structured in

a great number of configurations. For example, a CNN model may begin with an

arbitrary number of convolutional layers which capture spatial features in the CSI

data which are then passed into an arbitrary number of standard dense layers which

capture patterns from the extracted features. Each of these layers can have unique

hyperparameters such as number of neurons, filter-size, activation function and a

growing number of other hyperparameters.

Existing surveys such as [98] and [99] consider the use of deep learning for WiFi

sensing and wireless sensing tasks, however, we are focused on performing inference on

low-resource microcontrollers which have not yet been considered in these surveys or

in existing research literature. As such, we focus on common steps used for running

machine learning models on-board constrained microcontroller devices rather than

focusing on machine learning model training methods or architecture designs.

When using any type of classification model in a constrained microcontroller

device, it is important to be considerate of memory consumed by the model, compu-

tation time required for the model and finally energy usage of the model. Increasing

the model size increases both memory consumption as well as computation time which

subsequently increases energy consumption. As such, we can decrease all three by

reducing the size of the machine learning model. Indeed, a number of methods have

been used outside of the WiFi sensing research area to decrease the memory consumed

by machine learning models in microcontroller environments.

A simple first step towards designing a machine learning model that is applicable

in low-resource microcontrollers is to begin with an efficient architecture such as

SqueezeNet [156], MobileNets [157] and EfficientNet [158] which are designed for use

in embedded vision tasks. Considering the size and complexity of the selected model

architecture before training and evaluation can greatly reduce the amount of work

59

that must be performed afterwards.

In cases where an inefficient model is selected initially which either does not

fit in memory or does not produce predictions quickly enough, model compression

can be performed. A number of approaches have appeared in the research literature

including quantization [155], pruning [159], knowledge distillation [160], and model

weight sharing [161].

Quantization [155, 150] is one of the most common compression methods which

reduces the number of bits used for encoding numeric values for machine learning

models, thus allowing model weights to be stored in a more compact space. Two

methods for training quantized models have been explored in the research litera-

ture: post-training quantization and quantization-aware training (QAT). The first

method trains the given model like normal using standard 32-bit floating point com-

putations. After training, the model weights are compressed for use in the inference

phase. However, because the model is trained without considering these compressed

representations, quantization error can add up resulting in increased error from the

model. Instead, QAT uses these compressed numerical representations during the

training phase which allows the model to become less prone to errors introduced by

post-training quantization. Binarized Neural Networks [162] take the idea of quan-

tization to its limits by compressing all numeric values in the model to a single bit

indicating +1 and −1 values during both inference and training phases.

Another method for compressing model architectures is to perform network prun-

ing [159, 150] which can be thought of as a three-step pipeline. First, a large and

inefficient model is selected and trained. Next, some set of pruning algorithms are

used to identify and remove useless connections in the network while retaining impor-

tant weights and connections thus reducing the amount of computation that must be

performed. The third and final step is to retrain the pruned model to fine-tune the

60

model with this updated architecture. However, it has been suggested in [163] that

the three-stage pruning pipeline can be bypassed by simply starting with the smaller

pre-pruned architecture with randomly initialized weights. This suggestion leads us

back to the idea of beginning with an efficient model architecture from the beginning.

To account for the additional considerations required for designing and evalu-

ating machine learning models on microcontrollers, it is suggested in [164] that the

hardware used for model deployment should not be an afterthought when evaluat-

ing machine learning models. Instead, factors like on-board computation time and

model size should be combined with model accuracy while evaluating the model to

ensure that the model is optimized not only for prediction accuracy, but also for the

constraints of the embedded system. To achieve this, on-device benchmarks should

be performed continuously to capture real-world metrics for memory usage, compu-

tation time when using techniques like SIMD as well as energy consumption. This

is particularly important when using automated evaluation methods such as Neural

Architecture Search [165] which attempts to increase model accuracy by evaluating

numerous diverse model architectures automatically.

4.2.3.2 State Validation

State validation is used to ensure that the predictions that are output by the

classifiers are valid and possible given the previous predictions made by the system.

Finite State Machine (FSM): FSMs can be used to track the process of different

physical properties over time. For example, in [166], the FSM tracks the beginning

and ending of each individual step as a person walks. When the FSM enters specific

states, the event is shared with a separate module to estimate the stride length of the

person.

Markov Chain: Similar to the FSM approach, a Markov chain (MC) can be used to

61

understand the probability that a transition will occur at any given time. In [77],

MCs are used to track the periodic breathing behaviour of the participant while [148]

uses MCs to track longer-term human activity transitions such as transitioning from

sitting to standing and walking.

Overall, while state validation may be used to ensure the legitimacy of pre-

dictions, state validation is not a very common step used throughout WiFi sensing

literature.

4.2.3.3 Voting

Voting accomplishes a similar aim as state validation in that it attempts to

improve the validity of the predicted actions. However, voting will use the predictions

from multiple unique classifiers to improve the overall accuracy of the prediction

system.

Majority Voting: A simple method to achieve consensus with multiple classifiers is

to take a “majority vote”. For the work in [167] and [152], one classifier is trained

per TX-RX antenna pair, then a majority voting scheme is used to make predictions.

In [168] majority voting is used based on a set of binary classifiers which can be

simpler than multi-class classifiers, however, as the number of classes increases, many

more binary classifiers must be added to the system which would only increase the

complexity of the system.

Ensemble Learning: Another popular method for voting is to use a process such as

Boosting and Bootstrap Aggregation (Bagging) that specifically trains ensembles of

classifiers using a different population of training data per classifier. Through this

method, ensemble learning can ensure that any classifiers with poor prediction power

on a given subset of data samples are supplemented with another classifier which is

specifically trained on these hard-to-predict samples. In [44], this is used to train an

62

ensemble of SVM models for gesture recognition.

4.2.4 Systems and Hardware

Next, we briefly discuss some systems-level and hardware components that are

required for a complete WiFi sensing system.

4.2.4.1 Clock Synchronization

When multiple devices are used in a WiFi sensing system, it is important to

keep internal clocks synchronized between each device in the network. For example,

highly synchronized clocks are important when using phase from multiple distinct and

unconnected devices. A fast phase correction algorithm was proposed in [169], which

was used for vehicle speed estimation through the MUSIC algorithm [170]. A wired

connection between transmitter and receiver devices as suggested in [171] allows for

fine-grained and accurate synchronization, yet a wired connection defeats the purpose

of WiFi communication itself and would not be possible with independently mobile

TX and RX.

Coarse-grained clock synchronization is easier to accomplish. For example, us-

ing a Real-Time Clock (RTC) module like the DS3231 [172], we can achieve clock

synchronization accurate to within a few seconds per year. This can be important in

large networks of WiFi sensing devices which remain in sleep mode for long periods

of time followed by short bursts of TX to RX transmissions such as in [64]. The

lower the accuracy of the clock synchronization across devices, the more time devices

must wait for paired devices to awake, and thus, the higher energy wasted. The Net-

work Time Protocol (NTP) is used at the beginning of each experiment in both [25]

and [173]. Another method is to use the timestamp returned within GPS responses

as a source of truth as used in [119].

63

4.2.4.2 Data Annotation

Annotating WiFi sensing data can be thought of as the process of labelling when

physical activities have occurred while collecting the CSI data. Thus, it is an impor-

tant step for both deploying the system as well as allowing the system to continue to

be effective in the face of changes in the multipath within the environment. Record-

ing camera feeds [174, 175] while performing experiments can allow for accurately

tracking physical actions while capturing data to train a WiFi sensing model. Wear-

able sensor can also be commonly used to record baseline measurements, for example,

the NeuLog Respiration Belt [56] is commonly used to track health related metrics

such as breathing rate. Other works specifically instruct volunteers when to perform

different actions through the use of an auditory sound like a beep [176] or a voice

cue [148] as well as through tools like a metronome [177].

The clock synchronization component mentioned in the previous section is not

only important for keeping WiFi sensing device in sync, but can also be important

for data annotation systems which require external sensors such as in [142] which

uses NTP to synchronize a VICON camera-based motion capture system with the

proposed WiFi sensing system.

4.2.4.3 Device-to-Device Communication

While a few works [178, 179] consider the use of multiple TX/RX pairs, most

works in the literature assume only a single TX/RX pair is deployed in a given en-

vironment. However, by reducing the hardware cost and performing WiFi sensing

at the edge, we can achieve much more scalable systems and thus we can introduce

larger networks of WiFi sensing devices. However, by increasing the number of devices

we will find additional challenges. Namely, if different pairs of devices are making

64

predictions independently, it is important to coordinate and aggregate their predic-

tions together to achieve a holistic view into the environment that is being sensed. A

fundamental feature to accomplish this is device-to-device communication. Luckily,

WiFi sensing by definition has the capabilities of performing communication between

nodes through the already existing WiFi protocols. Other communication methods

are also an option such as Bluetooth which can be found on-board the ESP32 WiFi

sensing microcontroller, or LoRa [97] which allows for a larger communication range.

4.2.4.4 Cyber Physical System Integration

The aim of this work is in allowing WiFi sensing to be performed on the edge

using low cost embedded devices. By achieving this, we should then be able to

integrate these systems into different cyber physical systems. For example, WiFi

sensing can be used to track the occupancy of a building to intelligently control HVAC

systems. Additionally, by using WiFi sensing to track health related behaviours such

as irregular breathing or heart rate as well as falling, WiFi sensing systems could

be integrated with emergency alerting systems to rapidly request emergency aid. Of

course, with the integration of WiFi sensing into real-world system, we must also

consider security aspects [180] necessary for cyber physical systems. While there has

been much work in understanding the capabilities of WiFi sensing, very little work

has been undergone to successfully integrate WiFi sensing into real existing cyber

physical systems. By moving away from non-scalable batch-based systems to edge-

based systems, we believe that WiFi sensing can continue to grow into more real-world

use cases.

65

4.3 Evaluation of CSI Processing Techniques

Now that we have identified a number of CSI signal processing techniques through

our survey, we next evaluate how well each of these techniques perform with regards

to model accuracy. To this end, we evaluate each technique on three experimental

scales which represent unique use cases for WiFi sensing. Namely, small-scale hand

gesture recognition can be used as a novel device-free method for HCI; medium-scale

human activity recognition can be used to track behaviours of a person over some

time period; and large-scale human activity and localization sensing can be used

to understand human behaviours throughout an entire environment. Through these

three diverse applications, we can generalize which techniques achieve high prediction

accuracy for different use cases. The three tasks that we evaluate are illustrated in

Fig. 11.

4.3.1 Experiment Descriptions

For the small-scale experiment, we train our system to recognize hand movements

along three axis of motion: Z-axis (push/pull), X-axis (swipe left/right) and Y-axis

(raise/lower). For each of these three physical actions, we repeat each hand movement

30 times in round-robin order to ensure that actions are interleaved over time.

The second set of experiments that we perform are for medium-scale human

activity recognition. For this experiment, we perform five of the most common actions

that we have identified in WiFi sensing studies, namely: walking, standing, sitting,

laying, falling as illustrated in Fig. 11b. For these experiments, we repeat all actions

8 times in an interleaved round-robin order as we did in the small-scale experiment.

Finally, the third set of experiments that we perform are for large-scale localiza-

tion and activity recognition tasks. In this case, we perform actions in nine distinct

66

+x

+y

+z

−y

−x

−z

(a)

Stand SitWalk

Lay Fall

(b)

9.

7.

3.

6.

1.

8.
2.

5.

TX 1

RX

1,2,3

TX 2

4.

TX 3

(c)

Fig. 11. Activities performed for each experiment type. (a) Small-scale hand ges-

ture recognition with three directional gestures. (b) Medium-scale human activity

recognition with five different actions. (c) Large-scale human localization and activ-

ity tracking in a home environment with nine actions and three transmitter/receiver

links.

67

locations within a home-environment as shown in Fig. 11c. Namely, we perform three

actions in the kitchen: (1) wash dishes at the sink, (2) cook on stove-top, (3) open

fridge; three actions in the dining room: (4) write in a book at table, (5) open and

close closet door, (6) wash hands in washroom; and three actions in the living room:

(7) walk up and down stairs, (8) sit on sofa, (9) walk around. For this experiment

we collect data from three distinct TX-RX pairs. In our initial evaluation of these

large-scale experiments we use the second TX-RX pair by itself to predict all nine

actions. Later on in this chapter, we will evaluate methods for leveraging predictions

from multiple devices within a single environment.

Additional information about the experimental setting are shown in Table 11. For

example, for all three scales, we collect CSI at a sampling rate of 100Hz. Additionally,

each experimental scale has a progressively larger sensing area where actions are

performed.

4.3.2 Hyperparameter Optimization

For our initial evaluation of each of the three experimental scales, we wish to iden-

tify how feature extraction, denoising and dimensionality reduction techniques affect

the accuracy of our model. Different hyperparameter settings such as learning-rate,

number of hidden neurons and regularization methods may result in varying predic-

tion accuracy for each methods. Additionally, each technique itself has a unique set of

hyperparameters which must also be tuned to achieve better model accuracy for the

given task. Table 12 shows the list of hyperparameters and possible hyperparameter-

values that we used during our evaluations. The six hyperparameters marked as

global are model specific parameters that are present no matter which feature extrac-

tion, denoising, or dimensionality reduction technique is used. We can see that the

Hampel, window statistical filter and Savitzky Golay denoising methods each have

68

Table 11. Description of the three device-free experiments performed and evaluated using CSI collected from ESP32s.

Scale Sensing Task # Actions # Repetitions # Links Sampling Rate Sensing Area Figure

Small-Scale
Gesture

Recognition
3 30 1 100Hz 1.0m × 1.0m Fig. 11a

Medium-Scale
Human Activity

Recognition
5 8 1 100Hz 2.5m × 4.0m Fig. 11b

Large-Scale

Localization

and Activity

Recognition

9 13 3 100Hz 5.0m × 10.0m Fig. 11c

69

window-size as a common hyperparameter, however each of these methods also has

other technique-specific hyperparameters as well. Performing a grid-search to evalu-

ate every possible combination of hyperparameters would be infeasible. Instead we

use the Tree-structured Parzen Estimator (TPE) using the Optuna framework [181]

where we perform 100 trails, each with a uniquely selected set of hyperparameters. In

the first few trials, hyperparameter values are selected randomly from the set of op-

tions shown in Table 12. Subsequent trials with TPE use the results of previous trials

to guide the hyperparameter optimization towards maximizing the model accuracy.

For each trial, the models train for 100 epochs, however to reduce the search time

spent training the model on non-optimal hyperparameter values, trials are pruned

early (i.e., before 100 epochs) if the trial validation accuracy is below the median

validation accuracy of all previous trials.

Table 13 shows the result of this hyperparameter optimization method when

evaluated on five feature extraction methods, five denoising methods and four di-

mensionality reduction methods for each of the three scales of experiments. Through

this method, we perform a total of 4, 200 independent hyperparameter optimization

trials. At the top of the table, we can see the accuracy of a randomly guessing model

for each experimental scale based on the number of actions performed at each scale.

Specifically, the small-scale would achieve an accuracy of 33.33% with three actions,

medium-scale would achieve an accuracy of 20.00% with five actions, and large-scale

would achieve an accuracy of 11.11% with nine actions.

4.3.3 Independent Evaluation of Each Method

In this study, we begin by evaluating each signal processing technique indepen-

dently to recognize if there are any techniques which clearly perform better across the

board. For example, when evaluating feature extraction methods, we do not apply

70

Table 12. List of hyperparameters and possible values used during hyperparameter

optimization.

Technique Parameter Name Values

Global Input Window Size {25, 50, . . . , 475, 500}

Global Learning Rate {1e−9, 1e−8, . . . , 1e0, 1e1}

Global # Hidden Neurons {25, 50, . . . , 475, 500}

Global Droput {0.0, 0.1, . . . , 0.8, 0.9}

Global Kernel Regular. {True,False}

Global Activity Regular. {True,False}

Hampel Window Size {50, 100, . . . , 450, 500}

Hampel Threshold {0.25, 0.5, . . . , 3.75, 4.0}

Win. Stat. Filter Window Size {50, 100, . . . , 450, 500}

Win. Stat. Filter Stat. Function {Mean,Median, STDev,Var.}

Savitzky Golay Window Size {51, 101, . . . , 451, 501}

Savitzky Golay Poly. Order {1, 2, . . . , 8, 9}

Butterworth Order {1, 2, . . . , 10, 11}

Butterworth Frequency {1, 2, . . . , 49, 50}

Butterworth Type {Lowpass,Highpass}

DWT Threshold {0.0, 0.25, . . . , 3.75, 4.0}

DWT Mode {Hard, Soft}

Subcarrier Stat. Max/Min {Max,Min}

Subcarrier Stat. Stat. Function {Mean,Median, STDev,Var.}

Subcarrier Corr. Max/Min {Max,Min}

71

any denoising or dimensionality reduction techniques. However, when we evaluate

denoising and dimensionality reduction, we keep the amplitude feature as the de-

fault because it is so commonly used throughout the research literature and because

without it, the raw CSI is essentially meaningless.

Amplitude and PSD feature extraction methods achieve the highest prediction

accuracy for all three scales. For medium-scale, this is significant at 86.00% and

76.12% accuracy respectively, but for small-scale and large-scale, neither method alone

can surpass even 55% accuracy. This shows that using feature extraction techniques

alone may not be sufficient for all types of tasks. It also shows that the actions

performed during the medium-scale experiments are easier to distinguish than the

small-scale and the large-scale experiments.

Moving to denoising techniques, we can see that once again, medium-scale is able

to achieve greater than 80% accuracy for all denoising methods except for the Hampel

filter and the FFT frequency filter. We must note however that while these denoising

methods achieve good accuracy values; window statistical filter performs worse than

when using amplitude without a denoising filter and DWT achieves essentially the

same prediction accuracy. For the small-scale experiment, all denoising methods

increase the accuracy compared to no denoising method except for the Savitzky Golay

filter and the FFT frequency filter. The window statistical filter increases the accuracy

the greatest by +9.89%. Three out of six denoising methods increase the accuracy for

the large-scale experiment, namely Hampel filter (+0.83%), window statistical filter

(+5.51%), and Savitzky Golay (+3.59%). FFT frequency filter performs consistently

much worse than all other denoising methods likely due to the fact that it is calculated

independently over each CSI frame rather than being calculated over a window of

CSI frames. None of the evaluated denoising methods performs better in all three

experimental scales. In fact, for all denoising methods, at least one of the experimental

72

Table 13. Comparison of feature extraction methods, denoising filter and dimensionality reduction methods on the

prediction accuracy for medium scale human activity recognition.

Feature

Extraction
Denoising

Dimensionality

Reduction

Accuracy

Small Scale Medium Scale Large Scale

Random Guess 33.33% 20.00% 11.11%

Default: Amplitude

Default: None Default: None

40.33% 86.00% 53.99%

Phase 36.01% 25.05% 11.81%

Amplitude (Diff.) 36.36% 26.00% 40.02%

Phase (Diff.) 34.75% 24.76% 23.40%

PSD 40.75% 76.12% 48.94%

Default: Amplitude

Hampel

Default: None

46.85% 76.76% 54.82%

Window Stats Filter 50.20% 81.31% 59.50%

Savitzky Golay 38.81% 97.22% 57.58%

Butterworth 41.65% 89.57% 52.98%

DWT 41.47% 86.06% 53.41%

Default: Amplitude Default: None

Subcarrier Stats 38.91% 36.70% 13.09%

Subcarrier Correlation 36.69% 64.87% 26.05%

PCA 87.36% 100.00% 71.24%

ICA 81.82% 87.26% 72.79%

73

scales results in a decrease in model accuracy compared to the baseline of using just

amplitude. This shows that denoising methods are use-case specific and will not be

guaranteed to provide improved accuracy.

Finally, we move on to evaluating dimensionality reduction techniques which

have consistent results across each experimental scale. Using subcarrier statistics

for dimensionality reduction achieves only a small improvement to the accuracy of

a randomly-guessing model, thus subcarrier statistics are not a wise choice for di-

mensionality reduction. Using subcarrier correlation for dimensionality reduction

achieves a slightly higher accuracy for both medium-scale and large-scale, but the

prediction accuracy is still significantly lower than using the baseline amplitude with-

out dimensionality reduction. Finally, PCA and ICA achieve the highest accuracy

among all evaluated techniques across the three experimental scales. For small-scale

and medium-scale, we find that PCA performs significantly better results than ICA,

while in the large-scale experiment, both PCA and ICA achieve approximately the

same prediction accuracy. Based on these results, PCA achieves the highest accuracy

for all experimental scales.

4.3.4 Dimensionality Reduction

When we evaluate the four dimensionality reduction methods with hyperparame-

ter optimization, we define d = 10 such that we reduce the CSI data from a subcarrier

vector of size 64 down to a subcarrier vector of size 10. In Fig. 12, we use the same

optimal hyperparameters found for Table 13, but we change the value for d to under-

stand how dimensionality affects the accuracy of the model. For all three scales, we

can see that Subcarrier Statistics and Subcarrier Correlation each achieve the same

accuracy no matter how the value for d changes. For PCA and ICA, we can see that

the accuracy starts low when d = 1 but quickly reaches a plateau by d = 8 where

74

1 8 16 24 32 40 48 56 64

Dimensionality

0

50

100

A
c
c
u
ra

c
y

(a) Small-Scale

1 8 16 24 32 40 48 56 64

Dimensionality

0

50

100

A
c
c
u
ra

c
y

(b) Medium-Scale

1 8 16 24 32 40 48 56 64

Dimensionality

0

50

100

A
c
c
u
ra

c
y

(c) Large-Scale

Subcarrier Stats Subcarrier Correlation PCA ICA

Fig. 12. Accuracy of dimensionality reduction techniques when dimensionality (d)

changes.

the accuracy remains relatively stable while d continues to increase. However, in the

small-scale evaluation we find that ICA reaches a peak accuracy when d = 24, but

afterwards, the accuracy decreases. This implies that increasing the dimensionality

with ICA results in more noisy components which makes it harder for the model to

distinguish different CSI samples. PCA on the other hand exhibits robustness even

as d increases. In this case, PCA seems like the better choice for dimensionality

reduction.

In Section 4.2, when we discussed different signal processing techniques we fo-

cused primarily on the steps that run on-device for every incoming CSI sample. For

each of the dimensionality reduction methods, there is also a calibration phase which

runs only when the device is deployed in the environment. For example, when subcar-

rier statistics are used for dimensionality reduction, we need to collect some number

(Ncalibration) of CSI samples to calculate some statistics of each subcarrier. Similarly,

for PCA and ICA, we calculate a components coefficients matrix with Ncalibration CSI

samples. We can assume that the calibration phase only runs once when the system

is deployed, so we do not need to worry about the exact time-complexity of the algo-

75

0 1000 2000

N
calibration

0

50

100

A
c
c
u
ra

c
y

(a) Small Scale

0 1000 2000

N
calibration

0

50

100

A
c
c
u
ra

c
y

(b) Medium Scale

0 1000 2000

N
calibration

0

50

100

A
c
c
u
ra

c
y

(c) Large Scale

Subcarrier Stats Subcarrier Correlation PCA ICA

Fig. 13. Accuracy of dimensionality reduction techniques when different number of

CSI-samples are used to calibrate the technique.

rithm. However, we should consider how many CSI samples (Ncalibration) are required

to successfully calibrate each dimensionality reduction method. In the experiments

shown in Table 13 we allow each method to calibrate on 100% of the available training

data and 0% of the testing data. It is important to not allow the model to see any data

from the testing data for fairness. In Fig. 13, we evaluate the accuracy as we change

Ncalibration. At 100Hz, the range for the x-axis of this plots shows a maximum of 20

seconds of calibration data when Ncalibration = 2, 000. Similar to Fig. 12, only PCA

and ICA show variation as parameters change. Specifically, as Ncalibration increases,

the accuracy also increases but after Ncalibration = 500, we can see that the accuracy

flattens out. This shows that we can calibrate our system in a new location with only

5 − 10 seconds worth of CSI-samples which can be achieved quickly and passively.

However, while small-scale and large-scale achieve approximately the same accuracy

in both Table 13 and Fig. 13 when Ncalibration = 2, 000, medium-scale only achieves

77.6% for PCA when Ncalibration = 2, 000 compared to 100.0% in Table 13. This shows

that while sufficient prediction accuracy is possible with low values for Ncalibration, if

we are able to collect more data, we might be able to increase the accuracy slightly.

76

Table 14. Effect of interpolation on model accuracy.

Small-Scale Medium-Scale Large-Scale

None 87.36% 100.00% 71.24%

Nearest Neighbor 90.06% 100.00% 67.18%

Linear 89.34% 100.00% 68.97%

However, increasing Ncalibration results in an increase in the time to collect CSI data for

calibration and also increases the computation time required during the calibration

phase.

4.3.5 Interpolation

Interpolation has been used in other studies to account for sample jitter due to

packet loss or computation delays. In Table 14, we compare the accuracy achieved

by two such interpolation methods: nearest neighbor and linear interpolation as well

as the accuracy achieved without applying interpolation (i.e., none). We used the

optimal hyperparameters identified when using Amplitude for feature extraction and

PCA for dimensionality reduction. We find that interpolation does not result in much

change in the accuracy for any of the experimental scales. As we showed in Fig. 10,

the time difference between subsequent CSI samples collected using our system is

relatively precise, meaning that interpolation is not needed when CSI is received at a

constant rate of 100Hz. Interpolation may be more important when the CSI sampling

rate is not controlled by the system or if environmental noise results in higher packet-

loss.

77

Table 15. Effect of feature scaling on model accuracy.

Small-Scale Medium-Scale Large-Scale

None 87.36% 100.00% 71.24%

Max-Min Normalize 83.80% 99.51% 69.00%

Z-Score Standardize 70.39% 97.43% 53.19%

Quantize 69.99% 99.92% 55.14%

4.3.6 Feature Scaling

Feature scaling can be used in machine learning workflows to ensure that fea-

tures with a large range of values do not overshadow features with a smaller range

of values. In Table 15, we compare three feature scaling methods: max-min nor-

malization, z-score standardization, and quantize with a model trained and evaluated

without feature scaling (i.e., none). As a baseline, we again use the optimal hy-

perparameters identified when using Amplitude for feature extraction and PCA for

dimensionality reduction. We apply feature scaling using statistical metrics taken

from the entire CSI matrix. For example, with max-min normalization, we find a

single maximum value and a single minimum value using CSI measurements across

all time instances and all subcarriers. Typically, normalization and standardization

will find these statistical metrics individually for each feature (i.e., subcarrier or PCA

component) to prevent individual features with higher ranges from overshadowing

features with smaller ranges of possible values. However, with PCA, we find that the

first component has the largest range of values followed by the second component

and then the third component and so on. This is expected and beneficial because

each subsequent component is known to have less important information. Scaling

each PCA component independently removes this relative scale and makes it harder

78

for the model to understand the relative importance of each component and thus, it

is harder for the model to make accurate predictions. As such, we find that feature

scaling does not result in an improvement to the prediction accuracy of the model

and in fact results in decreased prediction accuracy for all experimental scales.

4.4 Evaluation of Edge-Based WiFi Sensing System

Now that we have reviewed the accuracy of our ESP32-based WiFi sensing system

when used for WiFi sensing tasks ranging from small-scale hand gestures to medium-

scale human activity recognition up to large-scale localization and activity recognition,

we next evaluate the feasibility of deploying our WiFi sensing hardware into real-world

scenarios. Specifically, we consider how WiFi sensing can be deployed on resource-

constrained ESP32 microcontrollers. To judge the feasibility of this ESP32 system,

we must evaluate both the hardware and the software running on-board. We begin

by considering the rate at which the ESP32 can compute different signal processing

steps as well as machine learning prediction (i.e., on-board model inference rate). We

compare these rates to the inference rates achieved in other WiFi sensing studies in

the literature. Finally, we review energy consumed by each component of the system

to understand the feasibility of deploying the system at the edge.

4.4.1 Effect of Sampling Rates on Accuracy:

In this chapter, we use a sampling rate of R = 100Hz as the baseline for our small-

scale, medium-scale and large-scale experiments. To understand how sampling rate

affects prediction accuracy, we decrease R while using the optimal hyperparameter

values as used in Table 13. In addition to reducing the sampling rate, we must also

reduce the window size w down to ŵ = ⌊wR
100

⌋ so that each window still covers the

same span of time no matter the value of R. From Fig. 14, we can see that there

79

20 40 60 80 100

R (Hz)

0

50

100

A
c
c
u
ra

c
y

Small Scale Medium Scale Large Scale

Fig. 14. Decreasing the sampling rate results in lowered accuracy for all experimental

scales.

is a general trend where the accuracy decreases if R decreases. For small-scale, we

achieve an accuracy of 52.27% and 88.11% when R = 1 and R = 100, respectively

(35.84% difference) while in the medium-scale accuracy is 86.00% and 100.00% when

R = 1 and R = 100, respectively (14.00% difference) and finally large-scale accuracy

is 39.77% and 70.86% when R = 1 and R = 100, respectively (31.09% difference).

Medium-scale is the best at handling lower values of R and can even achieve an

accuracy of 99.88% when R = 20. Small-scale sees the largest decrease in accuracy as

R decreases which makes sense considering that the small-scale movements are both

small and performed very quickly. From these results, we can say that increasing R

will result in an increase in model accuracy. However, we must also recognize that

each increase for R will not result in a linear increase in accuracy. For example,

increasing R from 10 up to 20 results in an increase of +12.37%, +1.95% and +3.64%

for small-scale, medium-scale and large-scale experiments, respectively. However,

increasing R from 50 up to 100 only results in an increase of +4.18%, +0.001% and

+7.47% for small-scale, medium-scale and large-scale experiments, respectively. This

demonstrates that the curves in the figure are non-linear and as such, increasingly

80

higher values for R would be required to continue to push the accuracy higher. Of

course very high sampling rates are not reasonable for edge based devices which have

low computation resources and low power budgets.

4.4.2 Inference Rate with Signal Processing Techniques

Capturing CSI at a consistent rate is the first step towards developing a complete

WiFi sensing system on the ESP32. After capturing the CSI, we must then use the

CSI to make predictions in the environment. Inference rate indicates the number of

samples that can be processed per second. As mentioned in Section 4.2, WiFi sensing

systems will begin with signal processing followed by machine learning prediction

making. As such, we begin our evaluation by reviewing the rate at which we can

compute different signal processing methods directly on the ESP32. After this, we

then review the effect of machine learning model architecture on inference rates.

Finally, we compare the rates which our system can achieve to the rates achieved in

other works.

For each CSI frame received by the system, we can perform signal preprocessing

steps to extract certain features, denoise our signal or reduce the dimensionality of

the CSI vector. In Tables 16, 17, and 18 we review the computation time for a set of

these preprocessing steps when implemented and run on an ESP32. For preprocess-

ing methods with relevant parameters, we also evaluate their effect on computation

time and maximum sample throughput rate. We repeat the computation directly on-

board the ESP32 10 times and capture the average run-time. Starting with feature

extraction (Table 16), we begin by looking at the computation time for transforming

the raw data to amplitude and phase. We can see that computing amplitude takes

0.54ms while phase takes just 0.16ms due to the square power required for comput-

ing amplitude. Using just these signal preprocessing techniques individually, we can

81

Table 16. Time to compute each feature extraction method on an ESP32 micro-

controller as well as the maximum rate at which each method could be performed

independent of other computation tasks.

Method Parameters Time (ms) Max. Rate (Hz)

Amplitude None 0.54 1,855

Phase None 0.13 7,710

Temporal Diff None 0.03 30,581

Statistical Features Mean 0.02 64,935

PSD w = 16 0.57 1,742

PSD w = 64 2.11 473

PSD w = 128 4.38 228

Wavelet Transform ψ = db4 0.47 2,111

Wavelet Transform ψ = db5 0.62 1,621

achieve a maximum throughput of 1, 855Hz and 6, 134Hz, respectively which should

both far exceed our CSI sampling rate. However, note that subsequent signal prepro-

cessing steps typically assume that either amplitude or phase is computed beforehand.

For example, the temporal difference feature extraction method takes only 0.2ms to

compute and thus can be computed at a maximum rate of 63, 291Hz, however if the

amplitude feature extraction method was performed first we must consider a sum-

mation of computation times for all methods to determine the maximum achievable

rate. In this example, computing amplitude takes 0.54ms while computing the tem-

poral difference takes 0.02ms which means that our achievable rate when using both

methods together would be 1,000
0.54+0.02

= 1,000
0.56

= 1, 785Hz. Given N signal preprocess-

ing steps where Tn is the time to compute the n-th preprocessing step in milliseconds

82

Table 17. Time to compute each signal denoising method on an ESP32 microcontroller

as well as the maximum rate at which each method could be performed independent

of other computation tasks.

Method Parameters Time (ms) Max. Rate (Hz)

Hampel w = 10 1.21 828

Hampel w = 50 4.59 217

Hampel w = 100 9.51 105

Statistical Window Filter w = 10 0.40 2,528

Statistical Window Filter w = 50 1.78 561

Statistical Window Filter w = 100 3.48 287

Savitzky Golay w = 10 0.77 1,304

Savitzky Golay w = 50 3.69 271

Savitzky Golay w = 100 7.33 136

Butterworth w = 10 1.42 705

Butterworth w = 50 7.22 138

Butterworth w = 100 14.56 68

DWT ψ = db4 0.72 1,390

DWT ψ = db5 0.88 1,135

FFT Frequency Filter None 0.08 12,121

83

where n ∈ {1, 2..., N−1, N}, the maximum achievable rate can be formally calculated

as

Rmax =
1, 000∑N
i=1 Tn

. (4.16)

For signal denoising methods (Table 17), each method except DWT and FFT

frequency filter uses a window size (w) when performing the filtering computation.

DWT instead uses different wavelet functions ψ where the lengths are typically much

smaller while FFT frequency filter is computed only over a single CSI frame rather

than over a window of frames. When w = 100, the maximum achievable rates were

105, 287, 136, and, 68Hz for the Hampel filter, statistical window filter, Savitzky Golay

filter and Butterworth filter, respectively. Out of all of the evaluated signal prepro-

cessing steps, Butterworth with w = 100 is the only method which is unable to achieve

greater than 100Hz and Hampel with w = 100 is the filter with the second lowest

rate of 105Hz. This implies that if we want to increase the number of predictions

possible per second, we must reduce w for these methods to ensure that the total

sample preprocessing time is low enough. With DWT, ψ = db4 has a filter length

of only |ψ| = 8 while ψ = db5 has a filter length of |ψ| = 10. Even so, because of

the recursive nature of the method, the time to compute is relatively high and thus

the maximum achievable rate is only 582Hz and 427Hz per wavelet type. Notice, for

each CSI sample passed into DWT, the number of decomposition and reconstruction

levels may vary as shown in Fig. 9. To reliably calculate the average computation

time in our evaluations, we assume the worst case for DWT where L = 3 levels of

decomposition and L = 3 levels of reconstruction are performed for the incoming

sample. As such, DWT can be expected to achieve higher rates when run in real

world scenarios.

For dimensionality reduction methods (Table 18), we can see that the subcar-

84

Table 18. Time to compute each dimensionality reduction method on an ESP32

microcontroller as well as the maximum rate at which each method could be performed

independent of other computation tasks.

Method Parameters Time (ms) Max. Rate (Hz)

Subcarrier Stats. k = 10 0.01 121,951

Subcarrier Stats. k = 32 0.01 89,285

Subcarrier Stats. k = 64 0.02 65,359

Subcarrier Correlation k = 10 0.01 120,481

Subcarrier Correlation k = 32 0.01 89,285

Subcarrier Correlation k = 64 0.02 65,359

PCA k = 10 0.77 1,300

PCA k = 32 2.40 416

PCA k = 64 4.78 209

ICA k = 10 0.77 1,303

ICA k = 32 2.40 416

ICA k = 64 4.79 208

85

rier statistics methods and subcarrier correlation methods can be computed faster

than any other method. With these reduction methods, the most time-consuming

computations are calculated during the initial calibration steps where a subset of

subcarriers are preselected based on statistics of each subcarrier. For each incoming

CSI sample, we only need to select the k subcarriers that were preselected during this

process. This allows dimensionality reduction to be an extremely low-cost operation.

PCA and ICA on the other hand both take approximately the same time to compute

because the online portion of these algorithms is the exact same computation. The

calculations performed during the initial calibration phase is what sets the two meth-

ods apart. When k = 64, we can see that both methods can only achieve a maximum

sampling rate of just over 200Hz, however performing PCA or ICA to transform a 64

subcarrier CSI vector down to a vector of size 64 does not actually achieve dimen-

sionality reduction. In such a case, PCA and ICA will only be acting as denoising

methods. Instead, k will typically be less than 64 so that PCA and ICA will not only

denoise the incoming signal, but will also reduce the dimensionality and thus increase

the throughput of the signal. For example, in Table 13, when evaluating these dimen-

sionality reduction methods, we set k = 10, in which case, both PCA and ICA would

be able to achieve a maximum rate of 1, 300 Hz or when combined with the amplitude

feature extraction method can achieve a maximum rate of 1,000
0.54+0.77

= 763Hz.

4.4.3 Inference Rate with On-board Machine Learning

After performing signal preprocessing, we can pass the filtered CSI data into a

machine learning classifier model. Throughout our experiments in Section 4.3, we used

a DNN with four layers (one input layer, two hidden layers, one output layer) where

the hidden layers each contain some number of hidden neurons (we call this number

the hidden size). The input for the DNN is a matrix of S × w where S indicates the

86

number of subcarrier dimensions and w indicates a window size parameter where w

consecutive CSI samples are collected and passed into the model. We use Tensorflow-

Lite3 (TFLite) which offers a method for running our machine learning models directly

on embedded devices such as the ESP32.

The ESP32 microcontroller is a highly resource constrained device with lower

available resources than would be expected on a typical ML server used for train-

ing and evaluating WiFi sensing models in the existing literature. For example, the

ESP32 is limited to a maximum of 240MHz clock rate and 520kB of RAM. Further-

more, by default, the ESP32 only allows for 160kB of storage to be allocated to the

Dynamic RAM (DRAM) Heap which is the default method for storing data such

as the machine learning model definition as well as the TFLite library implementa-

tion. In Table 19 and Table 20, we list the prediction rate achieved along with the

model size when run on the ESP32 with two different quantization methods as well

as varying number of hidden neuron size and CSI input size. We can see that 19

of the rows do not have an associated prediction rate. This is because the model

size was too large to fit in the available DRAM Heap after all other overhead was

accounted for. The largest model size that was able to run on-board the ESP32 was

34.3kB when hidden size was set to 10 and input size was 16× 50. It is important to

notice that when we use INT8 quantization, this same model can be reduced from

34.3kB to 10.9kB. This shows that quantization greatly reduces model size on-board

the ESP32. Interestingly, in both cases where quantization is used (INT8) and where

quantization is not used (NONE), using quantization counter-intuitively decreases

the prediction rate. This is because, while INT8 quantization reduces the size of the

model by converting 32-bit floating point numbers to 8-bit integers for model weights,

3https://www.tensorflow.org/lite.

87

https://www.tensorflow.org/lite

additional quantization-specific layers are automatically added throughout the model

architecture which results in additional computation that must be performed for the

quantized model compared to the non-quantized model. Out of the 17 models that

are able to fit in DRAM, only 6 are possible without quantization while 11 are possi-

ble with quantization, showing that quantization is still important to allow for larger

machine learning models. However, 16×100 is the largest input size that was possible

in a single case when quantization was INT8 and the hidden size was a paltry 10.

Only a single model evaluated in the table was able to increase the hidden size to

100 hidden neurons, but this was only achievable when the input size was a meager

4 × 10 matrix. This shows that by default, the ESP32 is unable to allocate large

architecture models with only DRAM.

However, while ESP32 modules by default are limited to 520kB of available

RAM and 160kB of compile-time DRAM, some boards offer an additional PSRAM

(Pseudo-Static RAM) up to a maximum size of 4MB. By using PSRAM and statically

allocated TFLite models, we are able to increase the allowable size for the machine

learning model definition and thus increase the hidden size and the CSI input size

compared to the default ESP32 without PSRAM. We compare on-board inference

rate and model size with different quantization methods, hidden size and input sizes

in Table 21 and Table 22. With PSRAM, the largest machine learning model which

can be used on-board the ESP32 for edge inference has a size of 3, 147.5kB when

quantization is set to INT8, hidden size is set to 100, and CSI input size matrix is of

size 64×500. It is important to achieve such high values because the hyperparameters

we used during our hyperparameter search as detailed in Table 12 are similarly high,

with a maximum of 500 for hidden size, and a maximum CSI input size of 64 × 500.

It has been suggested in [165] that it can be useful to consider not only increasing

the accuracy of the models during hyperparameter optimization, but to also increase

88

Table 19. TFLite inference rate without PSRAM and without quantization for dif-

ferent model hyperparameters and quantization methods. Inference rates marked (–)

indicate that the model was unable to run on the microcontroller due to memory

issues. Only small values for hidden size and input size are used because RAM space

is so limited.

Quantization Hidden Size Input Size Rate (Hz) Size (kB)

NONE 10 4 × 10 9717 4.6

NONE 10 4 × 50 5054 10.9

NONE 10 4 × 100 3170 18.7

NONE 10 16 × 10 5717 9.3

NONE 10 16 × 50 1832 34.3

NONE 10 16 × 100 – 65.6

NONE 50 4 × 10 1915 29.9

NONE 50 4 × 50 – 61.2

NONE 50 4 × 100 – 100.3

NONE 50 16 × 10 – 53.4

NONE 50 16 × 50 – 178.4

NONE 50 16 × 100 – 334.6

NONE 100 4 × 10 – 96.7

NONE 100 4 × 50 – 159.3

NONE 100 4 × 100 – 237.4

NONE 100 16 × 10 – 143.6

NONE 100 16 × 50 – 393.6

NONE 100 16 × 100 – 706.1

89

Table 20. TFLite inference rate without PSRAM and INT8 quantization for different

model hyperparameters and quantization methods. Inference rates marked (–) indi-

cate that the model was unable to run on the microcontroller due to memory issues.

Only small values for hidden size and input size are used because RAM space is so

limited.

Quantization Hidden Size Input Size Rate (Hz) Size (kB)

INT8 10 4 × 10 2620 3.5

INT8 10 4 × 50 1607 5.0

INT8 10 4 × 100 1087 7.0

INT8 10 16 × 10 1778 4.7

INT8 10 16 × 50 662 10.9

INT8 10 16 × 100 372 18.7

INT8 50 4 × 10 996 9.8

INT8 50 4 × 50 567 17.6

INT8 50 4 × 100 369 27.4

INT8 50 16 × 10 636 15.7

INT8 50 16 × 50 – 46.9

INT8 50 16 × 100 – 86.0

INT8 100 4 × 10 399 26.5

INT8 100 4 × 50 – 42.2

INT8 100 4 × 100 – 61.7

INT8 100 16 × 10 – 38.3

INT8 100 16 × 50 – 100.8

INT8 100 16 × 100 – 178.9

90

Table 21. TFLite inference rate with PSRAM and without quantization. Hidden sizes

and input sizes are larger than in Table 19 because PSRAM is able to accommodate

these larger machine learning models during model inference.

Quantization Hidden Size Input Size Rate (Hz) Size (kB)

NONE 25 16 × 25 145.0 46.3

NONE 25 16 × 100 41.3 163.5

NONE 25 16 × 500 8.7 788.5

NONE 25 64 × 25 41.3 163.5

NONE 25 64 × 100 7.6 632.2

NONE 25 64 × 500 1.5 3132.2

NONE 100 16 × 25 28.3 237.4

NONE 100 16 × 100 9.6 706.1

NONE 100 16 × 500 – 3206.0

NONE 100 64 × 25 9.6 706.1

NONE 100 64 × 100 2.7 2581.1

NONE 100 64 × 500 – 12581.1

NONE 500 16 × 25 2.5 2740.4

NONE 500 16 × 100 – 5084.3

NONE 500 16 × 500 – 17584.3

NONE 500 64 × 25 – 5084.3

NONE 500 64 × 100 – 14459.3

NONE 500 64 × 500 – 64459.3

91

Table 22. TFLite inference rate with PSRAM and INT8 quantization. Hidden sizes

and input sizes are larger than in Table 20 because PSRAM is able to accommodate

these larger machine learning models during model inference.

Quantization Hidden Size Input Size Rate (Hz) Size (kB)

INT8 25 16 × 25 492.1 13.9

INT8 25 16 × 100 100.3 43.1

INT8 25 16 × 500 21.3 199.5

INT8 25 64 × 25 100.3 43.2

INT8 25 64 × 100 26.4 160.3

INT8 25 64 × 500 4.0 785.3

INT8 100 16 × 25 71.0 61.6

INT8 100 16 × 100 25.2 178.8

INT8 100 16 × 500 5.7 803.8

INT8 100 64 × 25 25.2 178.9

INT8 100 64 × 100 7.0 647.6

INT8 100 64 × 500 1.1 3147.5

INT8 500 16 × 25 6.7 687.5

INT8 500 16 × 100 3.6 1273.3

INT8 500 16 × 500 – 4398.4

INT8 500 64 × 25 3.6 1273.3

INT8 500 64 × 100 – 3617.2

INT8 500 64 × 500 – 16117.2

92

the on-board inference rate and reduce the model size. For simplicity, valid model

sizes could be constrained to the maximum space available on the ESP32 for model

definitions.4 Depending on the hyperparameters used, we can achieve inference rates

from 145Hz to 1.5Hz when not using quantization or 492.1 down to 1.1Hz when using

INT8 quantization. Using INT8 quantization can achieve much greater inference

rate compared to a non-quantized model because the model definition is stored in

PSRAM which has a relatively slow-speed Serial Peripheral Interface (SPI) data bus.

This means that the larger the model size, the longer it takes to transfer the model over

the SPI interface. As such, models with the same hidden size and input size achieve

much higher prediction rates with quantization. However, if we compare models with

similar sizes such as quantization: NONE, hidden size: 25, input size: 64×25 where

the model size is 163.5kB compared to the quantized model with quantization: INT8,

hidden size: 25, input size 64 × 100 where the model size is 160.3kB, we find that

they achieve a prediction rate of 41.3Hz and 26.4Hz, respectively even though the

quantized model is slight smaller in size. This shows that models of similar size in

memory are still slower with quantization than without. Even so, it is still the case

that out of the 10 models that are too large to fit in PSRAM, only 3 models use INT8

quantization while the other 7 models do not use quantization. Thus, quantization

still proves to be an important method to increase the model architecture size when

run on-board the ESP32 hardware.

With such a diverse set of possible inference rates based on the signal prepro-

cessing steps and the model hyperparameters, we should consider what other WiFi

sensing research works are able to achieve. In Fig. 15, we show the CDF plot for the

4We do not use on-board inference rate nor model size when performing hyper-
parameter search in Section 4.3 due to the additional time required to perform these
evaluations as well as the additional hardware and software requirements.

93

20 40 60

Inference Rate (Hz)

0

50

100

%
 o

f
S

tu
d
ie

s
Fig. 15. CDF of machine learning inference rates from surveyed literature (N = 11).

inference rates found during our survey of WiFi sensing literature. While we were

able to find at least N = 176 papers which discuss the CSI sampling rate, inference

rate was discussed in far fewer (N = 11) research works. Furthermore, out of the 11

works which discussed achievable inference rate, more than half of the works use one

or more GPU devices which would not be reasonable to deploy at the edge. Two of the

eleven sources explicitly use CPUs rather than GPUs for inference, for example, [12]

uses a GPU for training and CPU for testing and is able to achieve an inference rate

of 12.5Hz on an Intel Core i5 CPU while [132] uses an Intel Core i5 CPU for both

training and testing because of a lack of access to GPU and achieved an inference rate

of less than 1Hz. The highest inference rate was achieved in [142] at approximately

60Hz when using an NVIDIA Titan XP GPU. Based on the figure, more than 50%

of the works noted can only achieve an inference rate of 10Hz or less even though the

models are run on far more powerful computers and servers compared to the ESP32.

Due to the relatively low number of works discussing inference rate, we suggest that

inference rate should be more commonly evaluated in the broader WiFi sensing re-

search community. Otherwise, as machine learning architectures become deeper and

more complex, we will not be able to gauge if the architectures are reasonable in

real-time edge scenarios.

94

0 50 100 150 200

CSI Rate (Hz)

40

60

80

100

120

140

160

m
A

RX

Standby

TX

TFLite

Passive

Fig. 16. Energy consumed by individual components of our ESP32 system.

4.4.4 Energy Consumption

In Fig. 16, we show the energy consumption for different individual tasks running

on the ESP32. Specifically, we look at the energy consumption for the active RX, as

well as the active TX and passive RX for different CSI sampling rates. In addition

to these three applications, we look at the energy consumed by an ESP32 performing

model inference with TFLite as well as the default energy consumption of an ESP32

when not running any specific computation tasks. We can see that the active RX

line requires the highest amount of energy. Additionally, the energy requirement for

RX also increases to 121mA when the CSI sampling rate is set to 200Hz compared

to 110mA when the sampling rate is set to 10Hz. The RX acts as an access point

and thus must take on additional overhead tasks such as broadcasting of the SSID

and listening for probe requests from new stations. The TX on the other hand has

a reduced energy consumption compared to the RX but still shows an increase from

95mA when the CSI sampling rate is 10Hz up to 105mA when the rate is increased

to 200Hz. In the passive experiment, we setup a TX and RX to communicate with

one another while the passive module simply listens passively to this communication

traffic. In this passive case, the energy consumption does not change much as the

95

CSI rate increases, achieving 92mA and 93mA when the sampling rate is set to 10Hz

and 200Hz, respectively.

To evaluate energy consumption when performing TFLite inference on-board, we

allow the model to perform inference at the maximum achievable rates that we found

in Table 21 and Table 22. We find that the energy consumption is similar no matter

the sampling rate, for example with quantization method: INT8, hidden size: 25,

input size: 16× 25, the energy consumption is measured at 74.5mA when performing

492.1 samples per second while with quantization method: INT8, hidden size: 10,

input size: 64×100 which only achieves an inference rate of 7.0 samples per second, the

energy consumption is measured at 75.0mA. Additionally, we find that quantization

has no effect on energy consumption. Since in these experiments we perform inference

back to back without allowing the microcontroller to idle between predictions, the

ESP32 is continuously performing computations at all times whether the sampling

rate is low or high. As such, if we wish to decrease the energy consumed by the

ESP32, we would need to allow idle time between each model inference computation

so that the ESP32 is not continuously performing computational work.

By default, when the ESP32 is running in standby idle mode (i.e., no computa-

tions are being performed and the WiFi radio is not enabled), the energy consumption

is 58mA. Compare to this, performing TFLite inference increases the energy consump-

tion by approximately +17mA. Similarly, when using the WiFi radio interface, the

energy consumption can increase anywhere from approximately +35mA when using

the passive application mode up to as much as +63mA when using the active RX

application. As such, the active RX increases energy consumption by +108.6% while

the passive application increases it by +60.3% and the TFLite application increases

it by +29.3%. Energy consumption may be an important concern when the ESP32

is powered by a battery. For example, a 9, 000mAh rechargable battery may power

96

an ESP32 active RX for 9,000mAh
120mA

= 75 hours on a full charge or 9,000mAh
93mA

= 96.8 hours

when running the passive firmware. The length of time required on battery is highly

dependant on the application being performed and whether or not it is possible to

attach the ESP32 to some central power source indoors. Furthermore, collecting CSI

may not be required 24 hours every day such as cases where the indoor location is

unoccupied. In which case, the ESP32 can switch to idle standby mode when WiFi

sensing is not needed and can achieve 9,000mAh
93mA

= 155.2 hours on standby. Typically,

when CSI is not being collected, the ESP32 can be put into an even lower power

mode such as deep sleep mode which can achieve up to 9,000mAh
7mA

= 1, 285.7 hours of

battery life.

4.5 Lessons Learned

4.5.1 Selecting Signal Processing Techniques

We surveyed a set of signal processing techniques in Section 4.2 which we then

evaluated based on accuracy in Section 4.3, and based on system concerns such as

achievable inference rates and energy consumption in Section 4.4. As a result of these

evaluations, here we summarize our observations.

4.5.1.1 Feature Extraction

Through our evaluation, we find that amplitude can achieve greater accuracy

compared to phase in the experimental datasets evaluated. This is because phase

typically requires denoising methods which are only possible when multiple anten-

nas with synchronized oscillator frequencies are available. Furthermore, while other

feature extraction methods (i.e., statistical feature, PSD, and wavelet transform) are

more specialized compared to strictly amplitude features, we find that none of these

97

other feature extraction methods are able to achieve consistent higher accuracy than

amplitude. Additionally, these other methods also require more computation and

thus increase energy consumption and reduce the inference rate. Even so, we find

that amplitude alone is still not a sufficient choice as input into a machine learning

classifier.

4.5.1.2 Denoising Filters

None of the explored denoising filters achieved top performance across all experi-

mental scales (small, medium, large). However, we do recognize that applying certain

denoising methods still improves the accuracy compared to using the default noisy

amplitude signal. Since denoising filters appear to increase accuracy uniquely on a

per-application basis, we suggest that selecting denoising filters should only be used

when smaller accuracy improvements are required. This is especially true when de-

noising is used in addition to dimensionality reduction techniques. However, we find

that denoising can greatly reduce the inference rate of a WiFi sensing system and as

such, hyperparameters selected per denoising method must be selected appropriately.

4.5.1.3 Dimensionality Reduction

Through this work, we identified that both PCA and ICA provide the most

consistent results out of each of the evaluated signal processing techniques when it

comes to model accuracy for all three experimental scales. As such, we suggest that

by default, PCA or ICA should be used for dimensionality reduction. In addition,

dimensionality reduction like PCA and ICA also decreases the input size for the

model, thus further increasing the inference rate and decreasing the training time.

98

4.5.2 Feasibility of WiFi Sensing at the Edge

The goal throughout this work is to identify a taxonomy of components required

for a full edge WiFi sensing system (i.e., signal processing, data preparation, predic-

tion making, and systems and hardware). Through this survey, we have evaluated and

recognized important metrics such as accuracy, inference rate, and energy consump-

tion which must be considered to achieve edge-based WiFi sensing systems. Through

this effort, we performed initial evaluations on each of these metrics to compare

techniques such as feature extraction, signal denoising, and dimensionality reduction

which are applicable to most WiFi sensing applications.

4.5.2.1 Identify ESP32 for Edge WiFi Sensing

Towards the goal of understanding the feasibility of WiFi sensing at the edge, we

have identified a hardware candidate capable of achieving edge WiFi sensing; namely

the ESP32 microcontroller. This low-cost microcontroller provides WiFi communi-

cation on-board and offers access to the important CSI metric which is integral to

achieving WiFi sensing tasks. Furthermore, with reasonable machine learning archi-

tectures, we can even perform prediction making directly on-board the ESP32, thus

allowing for a standalone WiFi sensing device which can be leveraged in scenarios

similar to any standard sensor. This is important in ensuring the scalability of WiFi

sensing systems towards greater ubiquity for daily sensing tasks.

4.5.2.2 Evaluated ESP32 for different use cases

Within this work, we further evaluated the use of the proposed ESP32 for differ-

ent use cases, specifically: small-scale hand gesture recognition, medium-scale human

activity recognition, as well as large-scale localization and activity recognition. While

99

there are many different use cases that are possible with WiFi sensing, by demon-

strating the capability of the ESP32-based edge WiFi sensing in these varying scales,

we show that the ESP32 is a feasible candidate for a variety of tasks. Thus, we be-

lieve that this work will encourage further efforts in edge-based WiFi sensing with

the ESP32 microcontroller.

In addition to these evaluations on different use cases, another important step

to evaluate is the feasibility of performing prediction making directly on-board these

small edge devices. There are a number of important issues to consider when running

data processing and machine learning such as energy consumption and the low amount

of storage available on-board edge devices. Towards improving this, we look at model

quantization which is able to reduce storage usage as well as reduce the amount

of computation and thus energy consumed in machine learning inference. While

quantization is one method for improving model inference on edge devices, there are

many other methods that can still be explored.

4.5.3 New Considerations for Edge WiFi Sensing

Through our efforts, we believe we have demonstrated the feasibility of WiFi

sensing at the edge which is an important step towards achieving real-world and

scalable systems which rely on WiFi sensing. However, allowing for edge-based sensing

introduces some new considerations which must be taken in future research works.

4.5.3.1 Need for Inference Rate Evaluations

Through our survey, we identified that very few works discuss the inference rate

offered by their model architectures. Furthermore, we find that the research works

that discuss inference rate tend to use high powered GPU-based systems which are

not appropriate for real-world systems. Increasing inference rates offers a number of

100

improvements including (i) improved real-time human-computer interaction respon-

siveness, (ii) the opportunity to decrease energy consumption by adding gaps between

each prediction, and (iii) more processing time for other tasks such as communicating

results with neighboring devices.

4.5.3.2 Need for Lightweight Model Architecture Designs

As the popularity of deep learning continues to increase, model architectures are

becoming more accurate while also becoming far more complex. While deep learning

may be reasonable on highly powerful systems, they are not appropriate for edge-

based systems where low-costs are required and thus only low-powered devices are

available. Based on this observation, we believe that it is important that WiFi sensing

researchers should consider developing lightweight model architectures to accommo-

date this edge-based scenario. One method we discuss through this work to achieve

more lightweight architectures is through the use of quantization where full 32-bit

floating weights can be reduced down to 8-bit integers, thereby reducing the overall

size of the model. However, there is far more room to explore in this direction.

4.5.3.3 Edge Hardware Considerations

We also found that it is important to take the hardware into consideration

when developing edge-based WiFi sensing solutions. For example, towards using

the ESP32-MCU for WiFi sensing tasks, we identify that larger model sizes can be

achieved through the use of on-board PSRAM modules, however, this results in a

slight reduction in inference rate due to slow SPI speeds compared to standard RAM.

Furthermore, the availability of neural accelerator hardware can offer additional im-

provements in inference speed. However, because these accelerators are not designed

as general-purpose computation systems, they often require workflows to be converted

101

to match the expectations of the accelerator.

4.6 Future Challenges

4.6.1 Multiple TX/RX Links

Typical WiFi sensing experiments assume a single TX and a single RX device.

However, in real world environments we might have multiple TX devices such as

our laptops, smartphones, and IoT devices. Leveraging multiple links that are dis-

persed throughout an environment may allow WiFi sensing systems to better identify

physical actions in much larger environments. For example, in our large-scale experi-

ment; as illustrated in Fig. 11c, we deploy three transmitters in three unique locations

throughout the home environment. The transmitters send CSI-frames to the receiver

location in the center of the environment.

So far through this chapter, we have only considered the model accuracy when

using a single pair in this large-scale experiment. If we train a model for each of

the links independently, we expect that some of the links will work well for some of

the classes while other links will work better on other classes. In Fig. 17, we can

see the prediction accuracy for each of the nine activities when using models trained

independently at each of the three links. The model trained on CSI from Link 1

(Fig. 17a) achieves poor prediction quality for three classes: Wash Dishes, Writing at

Table, and Walking in Living Room. However, the model trained on CSI from Link

2 and Link 3 (Fig. 17b and Fig. 17c) are able to supplement these inadequacies by

achieving much higher accuracy for these three classes. In Table 23, we can see the

accuracy achieved by each link independently as well as if we perform different link-

selection methods. The first method; labelled Best Case, indicates the accuracy if any

of the three locations make a correct prediction while the second method; labelled

102

Wash Dishes
Oven

Fridge
Table

Open Closet

Wash Hands
Stairs Sofa

Walking

0

0.5

1

A
c
c
u

ra
c
y

(a)

Wash Dishes
Oven

Fridge
Table

Open Closet

Wash Hands
Stairs Sofa

Walking

0

0.5

1

A
c
c
u

ra
c
y

(b)

Wash Dishes
Oven

Fridge
Table

Open Closet

Wash Hands
Stairs Sofa

Walking

0

0.5

1

A
c
c
u

ra
c
y

(c)

Fig. 17. Prediction accuracy for all 9 classes of activities given different TX/RX links

pairs. (a) TX/RX Link 1. Total Accuracy: 58.52%. (b) TX/RX Link 2. Total

Accuracy: 71.24%. (c) TX/RX Link 3. Total Accuracy: 49.89%.

103

Table 23. Results of various link-prediction selection methods showing that success-

fully determining the most qualified link will allow for a higher prediction accuracy.

Link Selected Accuracy

Link 1 58.52%

Link 2 71.24%

Link 3 49.89%

Best Case 89.14%

Worst Case 29.65%

Worst Case, indicates the accuracy if any of the three locations makes an incorrect

prediction. This gives us our bounds for how well our WiFi sensing system could

perform when using the three independently trained model. The best case scenario

shows an improvement of +17.90% compared to using a Link 2 and +39.25% for Link

3. Thus, we can see that leveraging multiple links leaves room for major improvements

for the accuracy of a WiFi sensing system.

A few methods for link selection have appeared due to the multiple antennas

available on hardware like the Intel 5300 NIC. For example, WiWrite [45] selects

two of the on-board antennas with the highest correlation while Wi-Mose [182] uses

the antenna link with the highest variance. More research must be performed to

(i) identify methods for leveraging diversely positioned devices, (ii) communicate

predictions amongst these devices, (iii) leverage additional links such as from IoT

devices.

104

4.6.2 Long-Term Model Adaptation

In this chapter, we primarily focused on understanding the feasibility of running

different signal processing techniques over time, however this work does not consider

how these methods can adapt to changes over time. Indeed, we find that there are no

noticeable trends in the datasets that we collected for this work. However, longer-term

CSI data collection (i.e., months or years) may introduce variations that current re-

search works are unable to adapt to. Detrending streaming data signals is a common

tactic to handle variations over long periods of time that may reduce the accuracy

of a given method. So far in the research literature, we find only three works which

consider detrending. These works are: [137] which focuses on sleep stage monitoring,

[138] which tracks human walking speeds, and [130] which captures respiratory infor-

mation over time. In one other work [183], it is suggested that WiFi sensing models

can be continuously trained on-device using online stream sampling which allows the

system to adapt to changes over time. We suggest that more research work must

be done to further identify and understand methods for adapting to changes in CSI

signals over time as well as for adapting to physical changes in the signal multipath

environment.

4.6.3 Real-Time Segmentation

As CSI samples stream into a WiFi sensing system, segmentation can be used

to determine whether or not an important action is being performed at any moment.

This is useful to reduce how often machine learning inference needs to be performed

and thus can also reduce the energy usage of the overall system. In this chapter,

we use a fixed window approach where predictions are made for a rolling window of

CSI. We discussed additional methods for performing segmentation in Section 4.2.2.3,

105

however these methods are specialized to specific use-cases [146, 118] and may not

be generalizable to other applications of WiFi sensing. Most works [117], [184], [185];

including the work performed in this chapter, assume that we can evaluate our model

only on CSI samples with an associated action. However, more often than not, a WiFi

sensing system deployed in an environment will not see any actions being performed

(i.e., in the middle of the night). As such, segmentation is another important challenge

that we must continue to consider into the future.

4.6.4 Integration with Physical Systems

WiFi sensing can be used to recognize an outstanding number of unique physical

actions or properties of a given environment. However, while we have seen a great

number of laboratory experiments demonstrating novel methods for sensing, to the

best of our knowledge, none of these works integrate WiFi sensing predictions into

real physical systems. To push WiFi sensing forward as a technology, we need to

not only think about interesting use cases and interesting sensing modalities, but

we need to deploy these systems and allow them to be leveraged in the real-world

such as through intelligent HVAC systems [186, 187], integration with health alert

systems [123, 188], and home or office security monitoring and alerting systems [189,

134]. When integrating WiFi sensing into physical systems, additional issues will arise

related to device-to-device communication, clock synchronization across devices [190],

and knowledge sharing between edge devices [191].

4.7 Chapter Contributions and Summary

In this chapter, we considered techniques and challenges when designing real-

world WiFi sensing systems that make predictions at the edge. We discussed the

theory for topics such as OFDM and CSI which have given rise to a number of

106

novel WiFi-based sensing applications. Through an extensive survey of hundreds of

WiFi sensing research works, we identified many signal processing techniques that are

commonly applied to incoming CSI data to achieve signal denoising, dimensionality

reduction and others. We discussed the mathematics behind these techniques to un-

derstand the feasibility of performing each technique on-board low-cost edge devices.

It is not only important to understand whether the techniques are possible at the

edge, but to also understand if the method is useful in providing improvements in

prediction accuracy.

To this end, we performed an extensive set of CSI data collection experiments at

small-scale (hand gesture recognition), medium-scale (human activity recognition),

and at large-scale (activity and location sensing). Using different experimental scales

allows us to identify techniques which result in consistent prediction improvements for

many different WiFi sensing applications. For these three experiments, we collected

CSI using the ESP32 WiFi-enabled edge microcontroller. The ESP32 is a perfect

candidate for edge-based WiFi sensing because it can collect CSI on-board without

requiring additional hardware and also because it is low-powered and low-cost. After

evaluating the accuracy achieved by each method, we then evaluated the time to

compute each signal processing technique on-board the ESP32 microcontroller and

recognized which techniques are possible to run in real-time on the incoming stream

of CSI data. Additionally, we evaluated the use of TFLite for performing machine

learning inference on-board the ESP32. We identified that PSRAM and quantization

are required to accommodate larger model architectures on low-resourced edge devices

like the ESP32.

107

CHAPTER 5

SCALABLE WIFI SENSING USING EDGE BASED FEDERATED

LEARNING

5.1 Introduction

Leveraging existing WiFi AP for sensing purposes provides a remarkable ad-

vantage compared to sensor-based methods by reducing costs associated with both

hardware and labor for deploying new sensors. However, typical WiFi sensing sys-

tems require large amounts of data to train their deep learning models [192, 193,

194, 195], thus it is very cumbersome to build such systems. As the number of ac-

tions to be recognized increases for the model, the required amount of training data

also increases. Moreover, the models produced in most existing works are specialized

to a single given physical location. Thus, the physical actions must be performed

over many repetitions for each individual location to train a model for it. This is

time-consuming and impractical especially in cases where the locations are already

occupied such as in the case of patient monitoring in hospital settings.

Consider the three physical environments illustrated in Fig. 18a-c for a typical

office building. Each location has unique environmental properties (e.g., size, envi-

ronmental clutter such as furniture), thus the characteristics of the signals received

in one location will vary from that of each of the other locations. For example, in

a less cluttered hallway environment such as in Fig. 18a, very few physical obstruc-

tions block the transmission path between WiFi devices. In some environments, the

WiFi devices can only receive signals through the wall when performing sensing tasks

such as in the private office rooms shown in Fig. 18b. Additionally, some other envi-

108

(a) Hall

(b) Offices and cubicles

(c) Meeting Room

Fig. 18. WiFi sensing environments in an office building. (a) Less cluttered envi-

ronment. (b) Highly cluttered environment with through-wall sensing. (c) Highly

cluttered dynamic environment.

ronments may have very dynamic physical features such as meeting rooms as shown

in Fig. 18c where furniture like chairs and tables are constantly shifted around. As

such, the core issue with deploying WiFi sensing systems is to develop generalizable

models that can be used in new locations without requiring complete and extensive

data recording and annotation steps for each new environment. Fig. 19 shows a typ-

ical WiFi sensing system diagram where for each environment, a technician must

repeat many trials of each physical action before sending the manually labelled data

to a server. Once at the server, the data must be run through data cleaning and

preprocessing steps followed by extensive hyperparameter selection steps to deter-

mine the best model parameters for the given environment. After fully training, the

location-specific model can finally be shared back to the edge for model inference.

There are some recent studies [136, 148, 196, 144, 197] looking into the creation

of generalizable models that can also be used in new environments, however these

studies mostly focus on creating a single model upfront rather than in designing a

109

CSI
Hyperparameter Selection

Send Edge Model Model Training

Fig. 19. Typical WiFi sensing system diagram.

system which allows collaboration between new environments. Additionally, these

studies still require a long duration of data collection and training from a large num-

ber of different locations. Instead, our goal here is to develop a collaborative training

framework for WiFi sensing that shares knowledge learned from one set of locations to

improve the prediction capability of models at other new locations. To account for this

goal, we propose WiFederated, a system for collaboratively training machine learning

models for WiFi sensing tasks at multiple unique environments using federated learn-

ing (FL) [198]. Through WiFederated, WiFi sensing tasks can scale to multi-location

settings by (i) reducing the overall amount of annotated training data required per

location; (ii) reducing the duration of training required for each new location; (iii)

allowing for parallel edge training across multiple locations; and (iv) reducing the

amount of data to be transmitted to a central server. The contributions of the work

in this chapter are the following:

1. We perform human activity recognition experiments in ten locations and demon-

strate that a model trained on data from one set of locations will not necessarily

be generalized to new locations.

2. We propose WiFederated, a framework which introduces federated learning for

the first time with WiFi sensing allowing for distributed model training across

client devices within the network.

110

3. We evaluate WiFederated through extensive experiments and show that it out-

performs the existing solutions.

4. We propose and evaluate client selection methods which select a subset of can-

didate locations based on local training-loss, resulting in a further increase in

accuracy.

5. Lastly, we evaluate the feasibility of running WiFederated on real edge devices

for inference and training and also introduce continuous annotation which allows

clients to continue to capture representative CSI data and annotation labels for

further model training over time.

5.2 Preliminaries

CSI amplitude measurements can have spurious noise which is unrelated to any

physical movements in the environment as a result of variations caused by the physical

radio hardware as well as other environmental noise.

In this chapter, a rolling mean denoising approach is taken, which uses a window

of size W samples, and applies the mean function over the previously collected W −1

samples along with the currently collected sample across a single subcarrier. More

formally, we calculate

Â
(i)
(t) =

1

W

W−1∑
w=0

A
(i)
(t−w). (5.1)

Assuming that we have 64 subcarriers, we then must keep a record of the previous

W − 1 values for each of these 64 subcarriers independently in memory on the edge

device.

Using the preprocessed CSI data, we then train a machine learning model using

a DNN architecture with three dense layers. Each layer has 100 hidden units and

each unit uses a Rectified Linear Unit (ReLU) activation function. Each layer uses

111

L2 regularization for the kernel weights as well as an L1 regularization penalty term

for the activation output of each layer. The size of the input matrix for the model

is 100 × 64, where 64 is the number of subcarriers and 100 is the number of CSI

frames which is approximately one second worth of data since our sampling rate is

set to 100Hz. The network terminates with a softmax multi-class output layer so that

we can make predictions on multiple class types with a single network architecture.

During training, we use a dropout value d ∈ (0, 1) between each layer to define the

probability that a given weight is ignored during training to help prevent the model

from overfitting to the training data. Dropout is ignored during model evaluation.

We use Stochastic Gradient Descent (SGD) with learning rate η = 10−5 to minimize

the loss function

L(θ, x, y) =
1

N

N∑
i=1

(
Fθ(xi) − yi

)2
, (5.2)

where θ is the set of parameters for the model (F), Fθ(x) is the prediction output

of the model given input x, and y is the expected output based on the given action

class which is a one-hot encoded vector of size N , where N is the number of possible

predicted classes. The overall architecture is designed with edge devices in mind. This

is why we do not consider more complex models (i.e., RNN or LSTM architectures)

which would require more training data and longer training periods.

5.3 Motivation

To demonstrate our motivation for this work, we begin by explaining the exper-

iments that are performed during our data collection and annotation process. We

then review initial performance results on the collected data when using the stan-

dard training approach common to many other WiFi sensing research as illustrated

in Fig. 19.

112

Bedroom Dining Room

Living Room

RX
RX

TX

TX

TX - Transmitter

RX - Receiver
 - Target

RX

TX

RX

RX TX

TX
RX

RX TX
RX TX

RX

TX

Stairw
ell

Office

(a)

Sit Stand Up

Sit Down Stand

(b)

Fig. 20. (a) Illustration of apartment environment where experiments are performed.

TX, RX and human target are shown for each room location. (b) Four distinct actions

(i.e., sit, stand up, stand and sit down) are recorded and annotated in each location

in round-robin order.

5.3.1 Experimental Setting

In this study, we consider a collaborative network of WiFi sensing devices in

different and disconnected physical locations. The illustration in Fig. 20a shows

the ten distinct areas that we record experiments at as well as the placement of

the TX, RX and the human target. Each location has different positions for the

TX and RX corresponding to the preexisting power outlets which were built into

the building which provides a natural selection of locations for TX/RX rather than

selecting the most optimal locations for performing the sensing tasks. The goal here

is to demonstrate that the system can leverage existing infrastructure. The target

113

5 10 15 20 25

R
train

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

(a)

5 10 15 20 25

R
train

0

20

40

60

T
ra

in
in

g
 T

im
e

 (
m

in
)

(b)

Living Room Dining Room Office

Fig. 21. (a) Accuracy for each locally trained model when different numbers of train-

ing repetitions of an action are performed in the location. (b) Training time to

perform 100 epochs of training on a Raspberry Pi Edge device.

performs four actions (sitting, standing up, standing, sitting down) as illustrated

in Fig. 20b. In each location, we perform 50 individual repetitions of each of the

four actions in round-robin order resulting in a total of 2, 000 annotated action-

segments with corresponding CSI samples. For each location, we designate the first

25 repetitions for training our models and the final 25 for evaluating. This allows us

to check if the traits learned by the model are generalized by evaluating the accuracy

on these final 25 testing repetitions which are never seen when training the model.

5.3.2 Initial Results

The goal of this work is to demonstrate how collaborative WiFi sensing devices

can achieve better prediction results compared to devices that work alone. This can

be especially important when we aim to use preexisting WiFi infrastructure to build

a WiFi sensing system [93]. In a non-collaborative system of WiFi sensing devices,

we will need to record and annotate multiple new repetitions of each action before

114

a local model can perform well in the environment. For example, Fig. 21a shows

the accuracy of a non-collaborative local model with different numbers of training

repetitions (Rtrain). We can see that training this local model on a small number of

training repetitions produces a model which is overfit onto the training data and is

unable to generalize to achieve high validation accuracy. Given our goal of large-scale

deployments, performing a large number of repetitions at every location is not viable

because it would increase the time and labor spent at each location. Similarly, this

also increases the time to train the model as shown in Fig. 21b where we observe

mostly a linear relation between the training time and the number of repetitions of

each action when trained on a Raspberry Pi 4 model B edge device.

Training independent local models at each location without some collaboration

mechanism means that we will not gain additional knowledge by adding new devices

into the network. To account for this, an initial näıve approach is to collect and

annotate CSI data at a few selected locations (we will denote this set of training

locations as L̂ throughout the chapter) which we use to globally train a single machine

learning model that will then be shared with all locations (L) including those which

have zero collected or annotated CSI samples.

In Fig. 22, 23, and 24 we show the prediction accuracy of our model (Fθ) when

evaluated on each location Li ∈ L, where L = {Living Room,Dining Room,Office},

after being trained on CSI data from different sets of L̂ ⊆ L. We select these three

locations because they represent different multipath characteristics from one another.

For example, the living room location provides a large open area with a low amount

of environmental clutter; the dining room location offers a similar large environment

but with higher amounts of environmental clutter; and finally the office location

represents a smaller enclosed room environment with low clutter. We evaluate with

the number of training repetitions Rtrain ∈ {10, 25} to identify how increasing Rtrain

115

R
tr
a
in

=
10

0 50 100

Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

0 50 100

Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

0 50 100

Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

R
tr
a
in

=
25

0 50 100

Epochs

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

(a) L̂ = {L.R.}

0 50 100

Epochs

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

(b) L̂ = {D.R.}

0 50 100

Epochs

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

(c) L̂ = {Off.}

Living Room Dining Room Office

Fig. 22. Prediction accuracy in three locations (Living Room (L.R.), Dining Room

(D.R.), Office (Off.)) when trained with data from only one location (L̂).

affects the prediction capability of locations in L̂ as well as locations not in L̂ (i.e.,

L− L̂).

In Fig. 22a, we consider the case when Fθ is trained on the Living Room location

only. As we would expect, because the model is trained directly on data from this

location (i.e., only first 25 repetitions), we can see that for both Rtrain = 10 and

Rtrain = 25, the accuracy (on the last 25 repetitions) for the Living Room is high

at 92.82% and 96.30%, respectively. Interestingly, we can see that increasing Rtrain

from 10 up to 25 also allows for an increase in prediction accuracy for two unseen

locations, namely Dining Room going up from 76.76% up to 83.90% and Office going

from 59.49% up to 65.98%. However, we can still see a noticeable gap between the

accuracy for each of these locations demonstrating that the model is still better fit to

the data at the Living Room location.

Following this, in Fig. 22b we train only on the Dining Room location. When

116

R
tr
a
in

=
10

0 50 100

Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

0 50 100

Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

0 50 100

Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

R
tr
a
in

=
25

0 50 100

Epochs

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

(a) D.R. ̸∈ L̂

0 50 100

Epochs

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

(b) L.R. ̸∈ L̂

0 50 100

Epochs

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

(c) Off. ̸∈ L̂

Living Room Dining Room Office

Fig. 23. Prediction accuracy in three locations (Living Room (L.R.), Dining Room

(D.R.), Office (Off.)) when trained with data from only two locations (L̂).

Rtrain = 10 both the Living Room location (seen during training) and Dining Room

(unseen during training) achieve very close accuracy after 100 epochs of training.

This shows that the model trained on the Dining Room location can also be used

in a completely unseen new location. However, we can see that the accuracy for the

Office location is still low at 65.38% demonstrating that even though the model is

applicable to some locations, it is not necessarily a generalizable model that can be

applied in all new locations.

On this note, we look at the case in Fig. 22c where we train only on the Office

location. While the model is able to achieve a high evaluation accuracy for the

location that it is trained on (i.e., Office), the model cannot be used in new and

unseen locations. Comparing to Fig. 22a where a slight improvement is observed in

unseen locations, the model trained exclusively on the Office location dataset is only

able to achieve between 48.12% and 58.76% accuracy in the unseen locations with

117

R
tr
a
in

=
10

0 50 100

Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

R
tr
a
in

=
25

0 50 100

Epochs

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

(a) L̂ = L

Living Room Dining Room Office

Fig. 24. Prediction accuracy in three locations (Living Room (L.R.), Dining Room

(D.R.), Office (Off.)) when trained with data from all locations (L̂).

a gap of approximately 44% difference between the accuracy in the seen and unseen

locations.

Training our model on data from two locations rather than one produces Fig. 23.

The model accuracy in the unseen locations mostly converge to a static value except

in Fig. 23b when Rtrain = 25, where the gap in accuracy between seen and unseen

locations grows as training continues. In Fig. 23b, when Rtrain = 10, the gap is only

+10.04%, but when Rtrain = 25, the gap increases significantly to +18.05%. Out of

each of these three cases where |L̂| = 2, Fig. 23c shows the largest overall gap of

+21.04% when Rtrain = 10 and +24.53% when Rtrain = 25. This again demonstrates

that a model with high accuracy on trained locations may not be generalizable to

unseen locations.

As such, we can only be sure that a high accuracy is achievable across each

location when all locations are involved in training (i.e., L̂ = L) as we can also see

118

from the results in Fig. 24. However, for global models, annotated data needs to be

shared with a central server for all devices. For example, if CSI data and annotations

are collected continuously over time such as in [199, 200, 201], the amount of data

transmitted to the server can be large. As the network of locations also increases

in size, the server resources used to handle all of the incoming data may be too

much. Thus, it would be more preferable to do training on an edge device at the

physical location. However, to accomplish this, we will need a new method for sharing

knowledge between multiple locations which reduces the amount of data transmitted

over the network.

5.4 Federated Learning Framework (WiFederated)

In order to develop a system which can collaboratively train a machine learning

model in parallel across many edge devices (or clients) in disparate physical locations,

we propose a collaborative WiFi sensing framework using federated learning [198],

which we call WiFederated. FL is useful in our case because we expect that each

client will have a different data distribution corresponding to their unique physical

environment, and we want to benefit from all data while also reducing the amount

of data shared to any central server so as to reduce network usage. This also has

a secondary purpose in allowing for massively parallel machine learning by enabling

each client to perform machine learning locally rather than at the central server.

Our overall goal is to find model weights (θ) minimizing:

min
θ∈Rd

|L|∑
k=1

1

nk

∑
xi,yi∈Pk

L(θ, xi, yi), (5.3)

where L is the set of the clients at diverse physical locations, Pk = {xk,yk} is the set

of annotated data points for a client k where xk is the set of CSI input and yk is the

119

corresponding set of annotated labels recorded at the location of client k such that

nk = |Pk|, and L(·) is a loss function as described in Equation (5.2).

The issue with this optimization is that |L|, the total number of clients, is ex-

pected to be large which will result in a high computation and communication cost

and thus slower model training. Furthermore, some locations may have either small

amount of data or low quality of data which will only poison the prediction quality

for other clients. To combat this, our proposed FL system selects a subset of clients

(L̂ ⊆ L) to iteratively update the model weights. For each client (k ∈ L̂), we learn

unique model parameters (θk) by optimizing:

min
θk∈Rd

1

nk

∑
i∈Pk

L(θk, xi, yi). (5.4)

After Nepochs of training per client, each client sends ∆θk to a central server to perform

Federated Averaging (FedAvg) [198] to determine new model parameters for the next

round (r + 1):

θ(r+1) = θ(r) +
K∑
k=1

nk
n

∆θk, (5.5)

where ∆θk is gradient change over top of θ(r) learned from the data available to client

k. Whenever new clients join the network, they can use the pretrained federated

model parameters (θ(r)) for the given round as-is if no additional labelled data points

are available for the locations or alternatively can perform Npost-epochs additional train-

ing epochs (i.e., model personalization) on top of the federated model to better fit to

their own unique data distribution for the client.

Note that the FL approach is different from transfer learning [202] in which a

single parent model is trained over a large number of training epochs on a large

amount of annotated data, typically on a powerful computation system. The goal

of transfer learning is to create a model which can be reused in a new somewhat

120

Algorithm 1: WiFederated Learning

Input: Set of all WiFi sensing locations L.

Global model G where G.W is the set of weights for the model.

Local model Ml ∀l ∈ L.

1 G.W = RandomWeights()

2 forall r ∈ {1, . . . , Nrounds} do

3 forall l ∈ L do // Share weights.

4 Ml.W = G.W

5 L̂ = SelectClientsTrain(L)

6 forall l ∈ L̂ s.t. L̂ ⊆ L do // In parallel.

7 Ml.train(Nepochs, Rtrain)

8 L̂′ = SelectClientsFedAvg(L̂)

9 G.W = 1

|L̂′|

∑
l∈L̂′ Ml.W // FedAvg.

10 forall l ∈ L do // Post-Train.

11 Ml.train(Npost-epochs, Rpost)

related task by using a small amount of additional data from the new task. While

FL gains from this same idea, the goal of our FL framework is not to just reuse a

pretrained model for some new task, but instead to allow many disparate clients to

massively train a model in parallel from scratch so that new clients can gain directly

from this pretrained model upon joining the network. Furthermore, transfer learning

requires all data to be located at a single central location for training, thus removing

the parallel training capabilities found with FL systems. While some WiFi sensing

studies utilize transfer learning, to the best of our knowledge, FL based training has

not been proposed for WiFi sensing tasks.

121

Algorithm 1 shows the steps of the proposed WiFederated learning model. L

is the set of locations where we aim to perform WiFi sensing and G is our global

federated model where G.W is the set of weights for all layers of the model. L

can potentially change over time as new locations are added or as locations are re-

moved due to battery power loss or disconnection from the network. Note that in

the algorithm, we only perform a predetermined number of rounds (Nrounds) before

terminating, however federated training can be performed continuously to allow the

network to recognize newly annotated data over time. At the beginning of each round,

the weights of the global model are shared with each location so that they can each

begin from a similar starting point. Within each round, we select our set of clients

(L̂) to train locally for some fixed number of training epochs (Nepochs). This step

can be thought of as a model-personalization step because at the beginning of the

round, the model is initially fit on the global distribution of CSI data and at the

end of the round, the models at each selected client are slightly more personalized

to their own distribution of data. It is important that we do not perform too many

training epochs locally during each round because then the local models will become

more overfit onto location-specific data. Additionally, high Nepochs will result in over-

utilization of individual devices which will result in a higher power consumption for

these edge devices. Moreover, as mentioned in [203, 204], if we perform federated

averaging on models which are fit to very different distributions, the resulting feder-

ated averaged weights will not be fit to either of the distributions of location-specific

data but will also not be fit to the global distribution of CSI data. Thus, as long as

Nepochs is not too large, at the end of each round, the FedAvg step will help prevent

the global federated model from diverging too far away from fitting onto the global

CSI data distribution. To understand how federated learning behaves with varying

amounts of training samples, we also limit the number of training-repetitions to Rtrain

122

L1 L2 L3 Ln

3) Send weights
6) Share new weights

5) FedAvg

L L ^

2) Train local models
1) Select L

^

4) Select L'̂

Fig. 25. Illustration of one round of the WiFederated system.

for each location. Furthermore, after the personalization step, we may decide to fur-

ther refine our selected clients down to L̂′ ⊆ L̂ ⊆ L before applying FedAvg. This

can be important because we may find that the weights proposed by the initially

selected clients may cause the federated model to converge in a negative way. Finally,

after training our model over Nrounds, each location in L can perform Npost-epochs of

post-training using Rpost repetitions. While this step will not produce completely

new models per location, it will be able to take the generalizable features discovered

through the federated learning process and alter the model weights slightly to give

better location-specific results.

The illustration in Fig. 25 demonstrates the six key steps taken for performing

FL in our WiFederated framework on multiple locations and a central server. In

the illustration, L1 and L2 are selected to train locally and then share their weights

to the central server. Each location only transmits the new model weights rather

than sharing the actual CSI data and annotation labels through the network. This

means that we can keep a constant bound on the amount of data transmitted over

the network by selecting an appropriately designed and sized machine learning model

architecture. If we were to instead share annotated CSI data, then the size of the data

123

could be unbounded especially in cases where our devices are able to self-annotate.

Once the server receives the weights from each client location Li ∈ L̂, the server

can perform another round of client selection to select L̂′ ⊆ L̂ before performing the

federated averaging step. This second client selection phase allows the server to filter

out the weights received from locations that are deemed to be lower quality based on

some metric such as loss. After the federated averaging step is performed, we end the

loop by resharing the central model to each of the locations. After performing these

steps over subsequent rounds, any location can perform a final set of personalization

training epochs on their locally available data. This step takes the shared federated

model and performs a final number of personalization training epochs which can be

useful for totally new locations or locations with few training locations. The key here

is that this can be performed without requiring the location to share the results back

to the central server. The goal accomplished by this framework is that new locations

can achieve higher prediction accuracy by using the federated model as a base rather

than starting from scratch.

5.5 Evaluation

In this section, we evaluate the proposed WiFederated learning framework for

use in the setting described in Section 5.3.1.

5.5.1 Impact of Averaging Interval

Two types of clients exist in our system, clients participating in federated aver-

aging (i.e., the clients in L̂) and clients with data that is unseen during the training

phases (i.e., the clients not in L̂).1 We first look at how the federated averaging process

1For the initial evaluations in this section, we say L̂′ = L̂. Client selection methods
for selecting L̂′ are further evaluated in Section 5.5.6.

124

20 40 60 80 100

Epochs

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

(a)

1 2 4 5 10 20 25 50 100

N
epochs

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

%
)

(b)

Living Room - local

Living Room - federated

Dining Room - local

Dining Room - federated

Office - local

Office - federated

Fig. 26. (a) Accuracy of federated learning over 100 epochs when Nepochs = 50 and

L̂ = L versus local machine learning. (b) Accuracy after applying final round of

FedAvg for different values of Nepochs.

affects the prediction capability of the locations participating in training the federated

model. To evaluate this, we set L̂ = L = {Living Room,Dining Room,Office} and

evaluate on each of these clients individually. Fig. 26a shows the prediction accuracy

when the number of epochs per round Nepochs = 50. Initially, for all three locations,

the accuracy remains exactly the same between the local model and the federated

model. This is because, up until epoch 50, the models are the same; no federated

averaging has occurred. However, after 50 epochs, a sudden dip in accuracy is found

for the federated models. This dip is expected because at the end of this epoch, the

first round of local training has concluded and the three local models are aggregated

together through the federated averaging step. The key observation is that the fed-

erated averaging step aims to create model parameters which are generalizable to

many locations rather than specialized to any one location. On the other hand, when

we train a local model solely on the data available at a single location, the model

will be better fit to the distribution of data at the given location, but it will be too

specialized to aid other new locations when they join the network. The goal for all

125

of the training clients in L̂ is to sacrifice some amount of predictive capability so as

to benefit other new locations. Even so, we can see in Fig. 26a that after the sudden

dip caused by the FedAvg step, the accuracy quickly returns to a similar accuracy as

we would see if we had simply trained the local model. This shows that the federated

averaging step does not cause the accuracy to deteriorate too much for the partic-

ipating locations. Fig. 26b shows the accuracy comparison between locally trained

models and federated models during the final FedAvg aggregation. We can see that,

as Nepochs increases, the accuracy for the Office location decreases indicating that if

we set Nepochs too large, the FedAvg step has a big impact on the prediction capability

of the model at that location. On the other hand, because we assume a fixed total

budget of Nbudget = Nepochs × Nrounds = 100 epochs, increasing Nepochs decreases the

number of rounds and thus consequently decreases the network communication. This

is because at the end of each round, |L̂| locations must first communicate ∆θk back

to the central server for FedAvg aggregation and then the server must communicate

θ(r+1) back to |L| clients.

Thus, we must find a balance between communication overhead and prediction

accuracy. To this end, for the following experiments, we set Nepochs = 10 which gives a

minor decrease in prediction capability when compared to Nepochs ∈ {1, 2} but greatly

reduces the amount of communication required.

5.5.2 Impact on Unseen Locations

It is useful to see how FL performs from the perspective of clients within L̂.

However, our primary goal is to see how such an FL framework can be helpful for

new locations which are added to the network with zero or only a small number of

available annotated training repetitions. To show this, in the following results when

we evaluate a given client Li, we set L̂ = L−{Li} when training our federated model

126

20 40 60 80 100

Epochs

0

0.5

1

A
c
c
u

ra
c
y
 (

%
)

(a) Li = Living Room

20 40 60 80 100

Epochs

0

0.5

1

A
c
c
u

ra
c
y
 (

%
)

(b) Li = Dining Room

20 40 60 80 100

Epochs

0

0.5

1

A
c
c
u

ra
c
y
 (

%
)

(c) Li = Office

Federated (R
post

 = 0)

Local (R
post

 = 0)

Federated (R
post

 = 1)

Local (R
post

 = 1)

Federated (R
post

 = 5)

Local (R
post

 = 5)

Fig. 27. Accuracy during post-training (personalization) over 100 epochs starting with

a randomly initialized local model versus starting with a federated model trained on

L̂ = L− Li.

so that we can show that the parameters learned by the model are learned generally

from all other locations and the model does not have any beforehand knowledge of the

data or distribution of data at client Li. This is important to evaluate because when

deployed into a real world system, we may not have annotated data for all clients. In

those cases, we can select L̂ based on attributes such as the availability of annotated

data or even in cases of battery powered units, we can select only those which have

surplus power to complete a given training round. As such, L̂ can also change for

every subsequent round to prevent wasting networking resources or power at any

single location and also to prevent overfitting on data from the selected locations.

Consider the three subfigures in Fig. 27 where Li is set to a different client

for each. The figures show the accuracy over all 100 training epochs for the two

training methods. We begin by comparing the local training method. For this method,

the models are randomly initialized and then trained on some number of training

repetitions (Rpost) from location Li. For the following evaluations note that a single

post-training repetition (Rpost = 1) includes a sample for each class type, as we

127

0 2 4 6 8 10

R
post

0.2

0.4

0.6

0.8
A

c
c
u
ra

c
y
 (

%
)

(a) Li = Living Room

0 2 4 6 8 10

R
post

0.2

0.4

0.6

0.8

A
c
c
u
ra

c
y
 (

%
)

(b) Li = Dining Room

0 2 4 6 8 10

R
post

0.2

0.4

0.6

0.8

A
c
c
u
ra

c
y
 (

%
)

(c) Li = Office

Federated Local

Fig. 28. Accuracy for federated model versus randomly initialized local model after

100 epochs of post-training (personalization) with different post-training repetitions

(Rpost) at Li.

discussed in Section 5.3.1. Consider the case where a new client is added to the

network without any post-training repetitions (i.e., Rpost = 0). For this case, the

model cannot be trained for these 100 epochs, which means that the accuracy of

the model remains constant at whatever value it started at. Since the model was

initialized to have random values for θ, the accuracy when Rpost = 0 is approximately

25% for each value of Li because there are 4 classes to predict from. We should next

compare this to a model which is instead initialized on a federated model pretrained

on L̂. For the federated model, these 100 post-training epochs are represented in

Algorithm 1 as Npost-epochs. We can see that, with the federated model, the accuracy

for Rpost = 0 is also constant over the epochs because we do not have any post-

training repetitions to train the model further. However, because the model learns

generalizable traits from L̂, the initial accuracy is much higher than the randomly

initialized local model. This is a very important feature for ensuring that WiFi sensing

can scale without requiring all new client locations to pass through extensive CSI data

collection and annotation steps.

128

Suppose now that a new client is added to the network, but we are able to

perform very few repetitions of our actions in the environment (i.e., Rpost ∈ {1, 2, 3}).

We can see in Fig. 28 that the addition of these post-training repetitions allows

both models to increase their predictive accuracy by the end of the 100 post-training

epochs. However, with small values for Rpost, the local model is still unable to surpass

the initial accuracy achieved by the federated model. Thus, even when some number

of training samples are available, using the pretrained federated model can achieve

higher prediction accuracy compared to training from scratch at each location.

5.5.3 Impact of the Number of Training Locations

So far, we have evaluated the WiFederated system when the number of training

clients |L̂| ∈ {2, 3}, however FL is able to accommodate larger number of clients

especially considering that the training is processed in parallel across each selected

client. To evaluate larger number of training locations, we collected data at ten total

locations. The same three locations (i.e., {Living Room,Dining Room,Office}) are

used to evaluate our system since they have unique multipath characteristics and also

to keep results consistent with our evaluations in the previous sections. Thus, seven

remaining candidate locations are available for pretraining such that

L̂ ⊆ L− {Living Room,Dining Room,Office}.

Fig. 29 shows the accuracy for each of the evaluation locations as |L̂| increases

up to 7 which corresponds to an increasing trend in the accuracy for the evaluation

locations. When |L̂| = 7 all seven candidate locations are selected for federated

averaging. When |L̂| < 7, different combinations of clients could be selected for L̂.

To account for this, we repeated each experiment 10 times with randomly selected

value for L̂ each time. This ensures that we do not accidentally select values for

129

2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y
 (

%
)

(a) Rpost = 1

2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y
 (

%
)

(b) Rpost = 5

Living Room Dining Room Office

Fig. 29. Accuracy for WiFederated as |L̂| increases.

L̂ which are consequently overly good or overly bad. Furthermore, we use a static

client-selection process where the clients in L̂ are selected randomly at the first round

of federated training and then reused for all subsequent rounds without further client

selection. This process emulates the case where CSI data is collected at some random

initial set of |L̂| client locations so that future client locations require a much shorter

data collection and annotation period. When the technician selects these first |L̂|

clients, they cannot be sure whether the locations they selected will be useful for

building a generalizable federated model. Even so, we can see that increasing |L̂|

from 2 up to 7 clients offers an accuracy increase of +11.88% for Li = Dining Room,

+9.21% for Li = Living Room and +10.43% for Li = Office when the number of

post-training repetitions Rpost = 1 and +5.91% for Li = Dining Room, +1.52% for

Li = Living Room and +4.77% for Li = Office when Rpost = 5. This shows that

increasing the number of locations involved in training the federated model improves

the prediction accuracy of the models for new locations which are unseen during the

FL steps.

130

2 3 4 5 6 7
0.4

0.6

0.8
A

c
c
u
ra

c
y
 (

%
)

(a) Rpost = 0

2 3 4 5 6 7
0.4

0.6

0.8

A
c
c
u
ra

c
y
 (

%
)

(b) Rpost = 1

2 3 4 5 6 7
0.4

0.6

0.8

A
c
c
u
ra

c
y
 (

%
)

(c) Rpost = 5

Federated Transfer EI Framework Global

Fig. 30. Comparison of four methods when using different numbers of pretraining

locations with different post-training repetitions.

5.5.4 Comparison with State of the Art Approaches

In some recent studies[205, 197], in order to address scalability issue of WiFi

sensing, a transfer learning based approach is proposed. However, for transfer learn-

ing based model training, data from L̂ must be aggregated to a central location to

train the model. Another approach is the EI framework [196] which uses adversarial

networks. EI models are composed of two separate network branches connected by a

parent feature extraction network. The first branch acts as a single activity recognizer

with loss value La while the second branch acts as a domain discriminator with loss

value Ld. The domain discriminator attempts to recognize the domain or physical

location where the CSI data was collected. The goal is to minimize LEI = La − Ld

which can be read as minimizing the loss of the activity recognizer while maximiz-

ing the loss of the domain discriminator. By training in this method, it is expected

that the model will be generalizable to unseen locations by learning features that are

representative of the activities being performed but not specific to any domain.

For the remaining evaluations, we look at the average accuracy across all three

evaluation locations rather than individual client accuracy values. Fig. 30a-c show

131

a comparison of four methods: our federated approach, the commonly used transfer

learning approach, the adversarial EI approach and the globally trained model ap-

proach. In Fig. 30a, both Transfer and Global achieve the same accuracy. This is

because when Rpost = 0, there are no training repetitions to personalize the trans-

fer learning model and as such, the transfer learning method and the global training

method are the exact same. Both methods train their model on the same |L̂| locations

at a global server before sharing the model with the client. Fig. 30b demonstrates how

Transfer is different from Global. Namely, because Rpost = 1, transfer learning allows

some additional post-training or personalization steps over top of the globally trained

model. Even so, we can see that our federated model consistently achieves higher ac-

curacy than the Transfer model by +7.69% when Rpost = 0, +8.87% when Rpost = 1

and +4.26% when Rpost = 5. With EI, we find that when Rpost = 0, and |L̂| ∈ {2, 3, 4},

the accuracy is similar to our federated approach but when |L̂| ∈ {5, 6, 7} the accu-

racy is more similar to the transfer learning approach. We find that as |L̂| increases,

the number of training epochs for the EI framework must also increase. Thus, be-

cause we limit all models to a total budget of 100 epochs, the accuracy for the EI

framework decreases. However, we find that even increasing the total budget to 500

epochs for EI still achieves a lower accuracy than the FL model trained with a budget

of 100 epochs. When Rpost ∈ {1, 5}, EI exhibits similar accuracy to transfer learning

suggesting that the extracted features are similar between both methods.

All methods have a general trend towards improvement as |L̂| increases. However,

it is hugely important to consider the training time required for each of these methods.

The key important insight is to see that our FL method is able to train in parallel

across clients while the other methods must first aggregate the data to a central server

which must then train the model sequentially on all of the same data. In Fig. 31, we

demonstrate how the time to train global and transfer learning models increases as

132

2 3 4 5 6 7
0

500

1000

1500

T
ra

in
in

g
 T

im
e

 (
s
)

Federated Transfer EI Framework Global

Fig. 31. Training times required for each method with federated learning being the

fastest thanks to parallelism.

more locations are used for training while the time required for FL remains relatively

constant as a result of parallel training. EI method requires twice the amount of time

required by the transfer learning method because it is essentially training two models,

the activity recognizer and the domain discriminator. Note, unlike Fig. 21b results

which are obtained on a Raspberry Pi, because of the memory overhead required for

global, transfer learning and the EI methods, this evaluation is completed on a more

powerful server.

5.5.5 Run Time Complexity Comparison

The training process for all of the discussed methods is composed of four stages:

(i) data collection, (ii) preprocessing, (iii) training the model, and (iv) post-training,

after which evaluation is followed. Out of these steps, the most time consuming step

is the training step followed by the post-training step, thus they both define the

overall duration for the model development. For the results in Fig. 30a-c, we allow all

models to initially be trained on the datasets available in L̂ for a total of Nbudget = 100

epochs after which the federated models, transfer learning models and adversarial

133

EI Framework models are trained for an additional Npost-epochs = 100 epochs. For

simplicity in our notation, we say that e = Nbudget = Npost-epochs. The time complexity

of training is related to the product of the number of epochs (e) and the number

of samples (S) used which we can denote as O(e × S). In the case of FL, the data

from each location is trained independently and distributed in parallel, thus the time

complexity would be O
(
e×max(Sl ∀ l ∈ L̂)

)
. On the other hand, transfer learning

would have a dataset size S =
∑

l∈L̂ Sl, thus the time complexity is O
(
e×

∑
l∈L̂ Sl

)
,

which becomes O(e × Sl × |L̂|) if we assume Sl = Sk ∀l, k ∈ L for simplicity. The

difference between the transfer and EI methods is that EI essentially trains two model

networks, an activity recognizer and a domain discriminator while transfer learning

only trains a single activity recognizer model. However, this will still keep the time

complexity for EI asymptotically similar to transfer learning at O(e× Sl × |L̂|). The

post training step at a given location for FL, transfer learning and EI is performed on

Spost number of post training samples, where typically Spost << Sl, for an additional

e epochs which results in an added time complexity of O(e × Spost). Thus, we can

conclude that FL has a time complexity of O
(
e × (Sl + Spost)

)
, global learning has

a time complexity of O(e× Sl × |L̂|), and transfer learning and EI both have a time

complexity of O
(
e × (Sl × |L̂| + Spost)

)
, where |L̂| is the number of locations from

which samples are aggregated for training at the central server. We can see that the

complexity of global learning, transfer learning and EI methods all increase as |L̂|

increases while FL is able to maintain a consistent time-complexity showing that FL

will be a much better option for scalability as additional locations are added to the

system.

134

2 3 4 5 6 7

0.4

0.6

0.8
A

c
c
u

ra
c
y

(a) Rtrain = 0

2 3 4 5 6 7

0.4

0.6

0.8

A
c
c
u

ra
c
y

(b) Rtrain = 1

2 3 4 5 6 7

0.4

0.6

0.8

A
c
c
u

ra
c
y

(c) Rtrain = 5

Random Static Loss Highest Loss Lowest

Fig. 32. Impact of client selection with different number of training repetitions

(Rtrain).

5.5.6 Impact of Client Selection

Client selection can be performed at two different times during the entire FL

process as denoted in Algorithm 1. First, we select L̂ to be the clients that are used

to train in parallel. After this, we can further reduce this selection to L̂′ ⊆ L̂ ⊆ L.

Typically the first client selection step is used to distribute tasks fairly across the

network. For example, it would not be fair to require any single client to take part

in all FL rounds. This would consume more power and waste time for this individual

client. As such, it can be useful to be selective when choosing L̂ so that we do

not overburden any single device. Furthermore for battery powered devices, it is

important to select clients which have a battery level above some threshold to filter

out any devices that may lose power during training.

The second client selection step can further guide the optimization of the feder-

ated model. For example, there may be clients with poor quality training repetitions

or clients (k) whose ∆θk will cause some negative impact onto the model parameters

for the federated model as a whole. As such, we consider some other client selection

135

methods. Specifically, we use the calculated loss L(·) for all clients in L̂ to determine

which clients should be used for FedAvg. It was previously recognized [206] that

selecting the client with the highest loss during client selection will increase the ac-

curacy of the federated model overall. The idea is that a high loss is directly related

to a high amount of error. If a client has a high error, then the distribution of the

data at the client must have some amount of novelty which may be applicable to

other clients as well. In Fig. 32 we can see a comparison between client selection

methods. Comparing the Random Selection method we used for previous evaluations

to the Loss Highest method, we can see that using this loss-based approach to guide

the federated system actually results in lower accuracy overall. Our intuition here is

that if we guide the training with high-loss clients, then we are selecting clients with

the worst fit to the federated model from the previous round. This means that the

clients are likely to have low-quality data available for training and thus the federated

model as a whole will suffer. Alternatively, if we use the low-loss clients, then data

available from these clients is similar to what is expected by the federated model

and by extension, the data would also be similar to the data found in the locations

selected for L̂′ in previous rounds. In fact, if we take this opposite approach and

guide the FL process through a Loss Lowest approach, we achieve a greater accuracy.

When |L̂| = 2 we achieve an accuracy of 79.89% with Loss Lowest versus 55.05% for

Random Static. Similarly with Rpost = 1, the Loss Lowest approach achieves 81.74%

compared to 73.25%.

5.6 Feasibility of WiFederated at the Client

We demonstrated that our proposed WiFederated system achieves increased pre-

dictive accuracy by training local models across different locations using a federated

averaging and client selection process in comparison to starting from a randomly ini-

136

tialized model. Moreover, we demonstrated that our framework reduces the amount

of training data that is required at each location when compared to training a local

model at a single location independently without some form of collaboration. For the

development and deployment of a full system leveraging this FL framework for WiFi

sensing, we must also consider some additional issues.

5.6.1 Training and Inference at the Edge

Training deep learning models at a desktop computer or at a server benefits

from the use of GPUs to speed up the training time especially as more data is added.

However, as we discussed, sending all data to a central server for processing may

not be feasible and with the use of FL is no longer a requirement. However, we

must consider that local training at the edge requires special consideration. When

designing the model used throughout this work, special care was placed to ensure

that the complexity of the model will not require GPU-based training. Thus, we

can use less powerful devices to train our model at each location. While Chapter 4

discussed the use of WiFi sensing signal processing techniques on-board the ESP32

edge device, here, we additionally analyze and compare single-board edge computer

like the Raspberry Pi and NVIDIA Jetson for WiFi sensing models.

Single-Board Edge Computers: Single board computers such as the NVIDIA Jetson

series of boards are designed specifically for machine learning at the edge with an

on-board GPU and a full Ubuntu operating system. This means that any software

written to run on a standard computer or server can directly be ported to the Jetson

single-board computer, allowing for fast development time. Alternatively, lower cost

single-board computers such as a Raspberry Pi can also be used in the same way,

however without direct access to an onboard GPU. In Fig. 33, we show the time

required for training a local model on different values of Rtrain for both a Raspberry Pi

137

5 10 15 20 25

R
train

0

20

40

60

T
ra

in
in

g
 T

im
e
 (

m
in

)

Raspberry Pi (CPU)

Jetson (GPU)

Fig. 33. Average training time for edge

devices.

Device Rate (Hz)

ESP32 5.726

Raspberry Pi 2252

Jetson 5359

Table 24. Average prediction rate for

edge devices.

4 B and an NVIDIA Jetson Xavier NX. We can see that the GPU on the Jetson speeds

up the computation considerably, but at a higher cost compared to the Raspberry

Pi. Even so, the Raspberry Pi can still train the model in under 10 minutes when

Rtrain ≤ 6. This is useful considering that post-training for most edge devices in the

WiFederated system can still achieve good prediction accuracy even with only a small

number of repetitions.

Using standard ESP32s: To allow for the fewest additional hardware components

in the system at each location, it would be most beneficial to train on the ESP32

microcontroller used to collect CSI. Recent research literature shows that training

machine learning models on such low-powered devices is desirable [207, 208] and

code libraries such as MicroMLP [209] have appeared for training machine learning

models on low resource microcontrollers such as the ESP32. We attempted to train

our federated model using this library, but we find that the model does not fit in

memory due to some inefficient memory allocation within the library itself. Instead

we look at using a popular model inference library called Tensorflow Lite. Using this

library, with model quantization, we are able to store our model directly in memory

on the ESP32 and we are able to achieve a prediction rate of 5.726Hz. In Table 24,

we can see a comparison of prediction rates possible with each edge device. Even

138

CSI

Sensor
Data

(a)

C
S

I

Time

S
e

n
s
o

r
D

a
ta

 missing

(i.e. nighttime)

(b)

Fig. 34. Example scenario for continuous learning. (a) User with a wearable sensor

while CSI is collected in the background. (b) When sensor data is available, both

CSI and sensor data can be used to train F . When sensor data is unavailable (i.e., at

nighttime when wearable sensors are removed), CSI can be used with F to continue

monitoring.

though both Raspberry Pi and NVIDIA Jetson devices are able to achieve prediction

rates of greater than 1, 000Hz, CSI collection rate is only 100Hz. This shows that the

single-board computers can make predictions for every received CSI sample. Many

applications may not need such high prediction rate because human activities should

not change at such a high rate, so a standalone ESP32 is still useful for inference due

to its low power consumption and small size.

5.6.2 Continuous Annotation

The process of annotating and recording CSI for a single location can be time

consuming, repetitive and error prone. Luckily, as demonstrated in the previous

section, leveraging a model obtained through FL in multiple different locations can

greatly reduce the number of action repetitions which are needed to obtain a useful

139

model.

Furthermore, we find that some sensing tasks have the ability to be continuously

annotated over time, thus allowing for the model to continuously be trained on new

data from the environment. Wearable respiratory monitoring belts have commonly

been used in WiFi sensing research to label ground truth data for monitoring patient

breathing patterns [105]. However, these works assume the belts are used only to

train the initial model, but are never used again afterwards. An alternative approach

is to use the sensor data to train the CSI based model continuously over time. Fig. 34a

illustrates that CSI can be collected in the background at the same time a wearable

sensor is being worn and Fig. 34b shows a time series view of the data being collected.

While CSI is continuously collected in the background, there is a span of time where

wearable sensor data is missing. This may happen when the user removes the wearable

for example before going to bed at nighttime or due to discomfort. However, even

when the sensor is not being worn, it can be important to continue to track the user.

To do this, whenever sensor data is available (i.e., sensor is worn), the sensor data

can be used to automatically annotate the collected CSI data to train WiFi sensing

model F . Then, whenever sensor data is unavailable, F can continue to monitor

the user using the available CSI data. This ensures that the model can continue to

learn over time and the person can be safely monitored even when the sensor data

is unavailable. Continuous data labelling and thus continuous model training means

that the proposed WiFederated system can continue to learn without requiring time-

consuming manual data collection steps and can also help reduce the effects of data

drift [210] over time due to environmental changes.

140

5.7 Chapter Contributions and Summary

In this chapter, we introduced WiFederated, a federated learning framework

designed for scalable deployment of multi-location CSI-based WiFi sensing systems.

By training local models at each location in parallel and then performing federated

averaging of the model weights at the central server over multiple FL rounds, we are

able to train a federated model which is generalized to location-independent features.

We showed that we can leverage this federated model to reduce the number of training

repetitions required per physical action when training at new locations. We concluded

that this reduction of training repetitions allows for more rapid deployment of WiFi

sensing devices into new locations without increasing the complexity or workload for

the technician installing any new WiFi hardware for the system. Additionally, in

cases where hardware such as WiFi access points are already deployed throughout

a building, the technician does not need to enter each location to perform a large

number of time-consuming training repetitions of the actions before seeing useful

prediction accuracy. We also found that using WiFederated can reduce the number

of local training epochs required compared to other methods. Finally, we evaluated

training and evaluation at the edge and consider possible methods for continuous

annotation to ensure that clients are able to continue to capture accurate annotation

labels over time to further train the federated model.

141

CHAPTER 6

ADVERSARIAL OCCUPANCY MONITORING USING ONE-SIDED

THROUGH-WALL WIFI SENSING

6.1 Introduction

Occupancy monitoring and crowdcounting offers the ability to collect analytics

and insights into traffic within indoor spaces for use in intelligent energy efficient

heating and air conditioning control systems [211], building security through intruder

detection [212] and crowd safety [213]. Unfortunately, human target surveillance in

public and private scenarios can also benefit from both occupancy monitoring and

crowdcounting techniques. For private locations such as businesses or homes, typical

surveillance devices such as cameras or microphones would require an adversary to

have full access to the target areas. This of course is not always possible when

considering private residences. Further, even when access is possible, the device

payload will likely attract attention by the presence of features such as a camera lens.

This chapter proposes the use of WiFi sensing techniques to understand actions

occurring in a physical environment through an adversarial or unauthorized manner.

Because WiFi is designed to penetrate walls, device payloads no longer need to be

placed directly in the target area. Instead, the WiFi receiving device can be placed

on the outer perimeter of a room or building to then sense through the walls. Fur-

thermore, because of the ubiquity of WiFi devices and routers in environments such

as residential homes and commercial buildings, a WiFi sniffer device can also lever-

age the natural ambient radio traffic from the existing devices in the environment

to detect human presence or activities. In this study, we consider the case where an

142

adversary places a WiFi transmitter and a WiFi receiver in a NLOS location that is

behind the wall of the target hallway area.

While there exist studies which consider through-wall crowdcounting such as

in [214], in this chapter, we take these efforts further and investigate if it is possible

to perform crowdcounting successfully when the access to the monitored area is much

more limited. That is, in existing through wall research, it is assumed that both

TX and RX can be placed across from one another as illustrated in Fig. 35a. In an

adversarial scenario however, an attacker may not be able to place the devices in both

areas to perform LOS sensing. Instead, an attacker may only have access to a single

room in a building or to the exterior of the building resulting in a limited monitoring

ability from only one side. However, this limits the attacker to NLOS conditions as

shown in Fig. 35c. Indeed, WiFi sensing based recognition has been shown to be

successful in NLOS scenarios [215] in a hallway environment, however the radio is

considered to be in the center of the hallway rather than being hidden behind a wall.

Also note that these methods require extensive training phases with labeled data for

each new target environment before successful results are achieved. Thus, any person

tasked with tracking targets must have full access to the environment and then must

perform time-consuming setup training before each new deployment. Our proposed

system in this study instead leverages signal features common to all environments

for prediction. While there are several existing studies that look at the through-wall

occupancy detection and crowdcounting problem through device-free WiFi sensing,

to the best of our knowledge, this NLOS scenario has not been considered yet, while

it is a more practical scenario for an adversary.

143

Target

TX

RX

(a)

0 100 200 300 400

Time (seconds)

-80

-75

-70

-65

-60

R
S

S
I

(b)

Target

wall reflection

RX TX

(c)

200 300 400 500

Time (seconds)

-60

-55

-50

-45

-40

R
S

S
I

(d)

Fig. 35. Through-wall hallway experiment diagrams. Dark lines indicate the walls

of the hallway while the gray areas indicate the multi-path propagation of the radio

signals from TX to RX as the target walks through the hallway. (a) LOS experiment

setup, (b) RSSI for LOS experiment, (c) NLOS experiment setup, (d) RSSI for NLOS

experiment.

6.2 Proposed Method

To begin explaining this through-wall occupancy monitoring system, we first

consider some empirical experiments performed in a real-world hallway environment.

For the first experiment, we record radio signal data in LOS conditions as illustrated

in Fig. 35a as performed in previous works [216, 217]. Then we move transmitter and

receiver into NLOS positions shown in Fig. 35c.

RSSI has previously been used as a simple and more easily obtained signal met-

ric because of its immediate availability on smartphones and other consumer radio-

144

enabled devices. In LOS, RSSI works well to recognize targets as demonstrated in our

experiment result in Fig. 35b where the vertical dotted lines indicate the time when

the target is passing the LOS. We can see directly that as the target passes, more

RSSI variation occurs. However, if we perform a NLOS experiment as illustrated in

Fig. 35c, we find that RSSI no longer reveals any signal variations when the target

passes as we can see in our NLOS experiment result in Fig. 35d. Instead, in this

work, we evaluate the use of the CSI signal metric in similar situations which gives

much more fine grained details compared to RSSI.

6.2.1 CSI Pre-Processing

Channel State Information varies in new environments because of the unique

multi-path conditions of each location. Thus, received A(i) and the change of A(i) over

time will vary uniquely when similar actions are performed in different environments.

To combat this for our occupancy monitoring problem, we suggest the following signal

pre-processing steps to be applied to A(i). We begin the pre-processing by applying

a windowed outlier filter. That is, we find

Ā
(i)
t =


A

(i)
t ,

∣∣∣A(i)
t −µ(A(i){t−w1:t})

∣∣∣
σ(A(i){t−w1:t})

< λ

A
(i)
t−1, otherwise

(6.1)

where

µ(x) =
1

|x|

|x|∑
j=1

x(j) (6.2)

is the mean function which is applied to the received signal from time t−w1 until the

current time t on A(i), where w1 represents the window length parameter. Similarly,

σ(x) =

√∑|x|
j=1 (x(j) − µ(x))

2

|x|
(6.3)

145

is the standard deviation function applied to the same window of A(i). The goal

of Equation (6.1) is to replace any outlier samples (those which are greater than

λ standard deviations from the mean) with the most recent valid/normal sample.

Outlier filtering is applied to each subcarrier independent of one another.

After filtering outliers, we want to gather aggregated statistics across all sub-

carriers independently across another time window of size w2. Here, while we can

use different values for both w1 and w2, for simplicity, we keep w1 = w2. For this,

we apply some windowed statistical aggregation function Φ(x) on each subcarrier

independently,

Ãt
(i)

= Φ
(
Ā

(i)
(t−w2:t)

)
. (6.4)

For our experiments, we consider Φ(x) ≡ σ(x) because our goal is to understand how

noisy each subcarrier is independently, however Φ(x) can be replaced with any other

statistical function as needed.

After collecting a noise metric for all time instances on each subcarrier, we want

to find if the noise present in one subcarrier is similar to the noise present in other

subcarriers. Again, we apply a new statistical aggregation function Ψ(x), this time

on all subcarriers for a single time instance t,

ACSI,t = Ψ
(
Ãt

(1:|At|)
)
. (6.5)

For our purposes, Ψ(x) ≡ µ(x) with the intuition that if all subcarriers are high in

noise, then ACSI,t will be larger than it is when only a small subset of subcarriers are

affected by noise. This is important because the noise resulting from the environment

may cause subcarriers to randomly produce noise which is not represented across

any other subcarriers. Instead, when a target is present, noise will be present across

more subcarriers which will more consistently produce a higher value for ACSI,t. On

146

0 20 40 60 80

Time (seconds)

1

1.5

2

2.5

3

3.5

A
C

S
I

(a)

0 20 40 60 80

Time (seconds)

2

3

4

A
C

S
I

(b)

0 20 40 60 80 100

Time (seconds)

0

1

2

3

A
C

S
I

(c)

300 400 500 600 700

Time (seconds)

-65

-60

-55

-50

-45

R
S

S
I

(d)

Fig. 36. ACSI for (a) LOS experiment setup, (b) NLOS experiment setup without

directional shielding, (c) NLOS experiment with directional shielding, and (d) RSSI

with directional shielding. Target is still not detectable with RSSI even with shielding.

the other hand, when no target is present, any noise anomalies present on a single

subcarrier will be filtered out because of disagreement across subcarriers. For notation

simplicity, we will denote ACSI ≡ ACSI,t with the understanding that ACSI is a scalar

metric for some time instance t.

6.2.2 Standard LOS Through-Wall

As shown in many previous experiments in WiFi sensing, recognizing targets as

they pass through the LOS between a transmitter and a receiver is a trivial task and

can then be used to estimate the number of targets in an area [214, 217]. We perform

our first experiment with one target passing through the LOS. The results in Fig. 36a

show when a target passes the LOS four separate times, ACSI gives distinct peaks,

147

indicating that the target has passed by the receiver four separate times. In between

these passing events, ACSI returns to some lower noise-floor level.

6.2.3 NLOS Through-Wall

As discussed, in certain environments it may not be possible to place a trans-

mitter and a receiver to create such LOS conditions. For example, when rooms are

not available on both sides of a hallway or if access is restricted for these adjacent

rooms. In these cases, it would be most advantageous for both the transmitter and

the receiver to be placed in a single room together against one wall. This is partic-

ularly useful in adversarial conditions where an attacker has access to only a single

location because they can then keep an eye on the radios as they perform sensing

tasks. Fig. 35c illustrates this setup. To the best of our knowledge, such adversarial

placement of the transmitter and the receiver has not been attempted by any of the

device-free WiFi sensing studies in the literature.

In this case, the target will no longer be in the LOS of the devices, thus a NLOS

monitoring will be required. For our first experiment with this NLOS placement, we

position both a transmitter and a receiver 6 meters apart, both 50 centimeters away

from the wall. The resulting ACSI in Fig. 36b shows that the target passing times

are not clearly visible. This is because the direct LOS between the transmitter and

the receiver dominates the received signal path which travels through the wall and

comes back. As a result, the targets passing through the hallway does not cause a

distinguishable change on the received signal amplitude collected. Thus, an update

to the setting is needed in order to make the effect of such through-wall NLOS signals

prominent.

Typically, WiFi antennas are designed to transmit omnidirectionally, but unidi-

rectional antennas allow for signals to be focused in more specific areas. Unidirectional

148

antennas however must be aimed with great accuracy to ensure that signals are even-

tually received by the receiver. This may not be an easy task without knowing the

characteristics of the environment on the other side of the wall. Our solution is to

shield both transmitter and receiver against the wall to prevent the direct LOS sig-

nal from dominating the NLOS signal while still allowing for partial omnidirectional

propagation in the target area. This will be additionally useful if multiple receivers

are used for through-wall sensing with a single transmitter. After adding the direc-

tional shielding, we can see in Fig. 36c that we can again identify distinct peaks when

the target passes through the hallway environment. Note that RSSI still cannot be

used to recognize the passing target in this directional setting as shown in Fig. 36d.

6.3 Detection Framework and Evaluation

We now move on to defining our full framework for target detection. For all

of the experiments in this work, we use our ESP32-CSI-Toolkit1 [102] to collect CSI

which uses two ESP32 WiFi-enabled microcontrollers for our transmitter and receiver,

respectively. Using these small, low-cost microcontrollers demonstrates how an adver-

sary could both implement and distribute large numbers of adversarial devices with

less fear of discovery because of their small size and without fear of loss because of the

low-cost of each standalone ESP32 module. The ESP32 devices are set to send and

receive CSI at a packet rate of 100Hz. The entire framework is designed such that

a low resource device such as the ESP32 can perform all tasks in real time without

requiring additional external computation power such as a server of laptop as it is

often required in WiFi sensing literature. From an adversarial perspective, this is

important to ensure that the devices remain small and easy to conceal.

1https://github.com/StevenMHernandez/ESP32-CSI-Tool

149

6.3.1 Human Presence

As shown in Section 6.2, we see that our ACSI metric can be used visually to

detect activity whenever a target passes. For our model to predict the binary presence

of a target, we designate a threshold parameter τ . When ACSI ≥ τ , then the model

predicts the presence of the target. We perform our experiment with a target passing

the monitored area five times. For each time instance, our model predicts whether a

target is present. To evaluate how well different thresholds work in predicting the class

of our samples, we define a class prediction probability metric P
(c)
samples for samples of

a given class c ∈ {‘target’, ‘no target’}. The class for a sample at time t is denoted

as C(t). We thus define T (c) = {t ∈ T s.t. C(t) = c} to be the set of time instances

labeled as class c, where T is the set of all time instances. Further, N (c) =
∣∣T (c)

∣∣ is

the number of CSI frame samples marked as class c. From this, we define P
(c)
samples as:

P
(c)
samples =

1

N (c)

∑
t∈T (c)

Y (t, c) (6.6)

where

Y (t, c) =


1 if ACSI,t ≥ τ and c = ‘target’

1 if ACSI,t < τ and c = ‘no target’

0 otherwise

(6.7)

We can interpret P
(c)
samples as the percentage of CSI frame samples which are truly

class c and are predicted as class c; or put simply, the true-positive and true-negative

rates. In Fig. 37a we see the results of our model. As it is expected, as τ increases,

P
(‘no target’)
samples increases and P

(‘target’)
samples decreases. Specifically, when τ < 1.0, P

(‘no target’)
samples =

0.0 and P
(‘target’)
samples = 1.0, this is because there are no samples where ACSI < 1.0. In

addition to this, we can see that there is no value for τ where we are able to achieve

perfect accuracy on predicting both the true positives and true negatives. However,

150

0 1 2 3 4

(a)

0

20

40

60

80

100
%

0 1 2 3 4

(b)

0

20

40

60

80

100

%

True Positives True Negatives

Fig. 37. Prediction accuracy as threshold parameter τ changes. (a) With all recorded

samples using Psamples. (b) With all independent action segments using P
(c)
segments.

our goal is not to predict the action for all time instances individually. Instead, we

are only interested in correctly classifying each action segment overall.

To define action segments, we first collect a set of time instances (I) which

indicate the beginning and ending of different actions. To determine these indices,

we apply the following:

I = {0} ∪
{
t ∈ {2 : T} where C(t−1) ̸= C(t)

}
∪ {T}. (6.8)

With this, we can describe the number of action segments recorded Nseg = |I|−1. We

say that the target is predicted as present (P
(i)
‘target’) during some action segment i if

∃t ∈ {I(i) : I(i+1)} s.t. ACSI,t ≥ τ . Action segments containing no target on the other

hand are denoted P
(i)
‘no target’ which is simply the negation of P

(i)
‘target’. The number of

segments for a given class is described as N
(c)
seg. To evaluate our predictions on all

151

segments, we define:

P
(c)
segments =

1

N
(c)
seg

Nseg∑
i=1


1 if P

(i)
(c) and C(t) = c

0 otherwise

(6.9)

which is described as the percentage of segments correctly labeled as class c. With

this, our final goal is to find a value for τ such that we maximize the number of

segments where a target was present and minimize the number of time segments

predicted as containing a target when no target was present. When considering this

segmented approach, we see in Fig. 37b that when τ ∈ [2.5, 2.7] both the true positive

and true negative rate reach 1.0, indicating a range of perfect predictions.

6.3.2 Human Direction

Our next task is to recognize the moving direction of the target in the hallway

environment. While we show in Section 6.2 that ACSI reveals human presence, moving

direction of the target is not directly revealed by the metric. To address this, we use

two receiving devices, one located to the left of the transmitter and the other to the

right as shown in Fig. 38a. Both receivers again use directional shielding so that when

the central transmitter sends radio signals, they are both able to receive the signals for

different areas within the hallway environment. The expectation is that when a target

moves from left to right, the device located to the left-most side will recognize the

target first, then later on, the right-most device will recognize the target. Afterwards,

we would expect the left-most device will stop recognizing the target before the right-

most device. In Fig. 38b we see ACSI for both RX(1), which is placed to the left-hand

side of the TX, and RX(2), which is placed to the right. As the target moves back

and forth through the hallway environment, ACSI for RX(2) increases before ACSI for

RX(1) indicating that the user moved in the direction of right-to-left. In the second

152

Target

wall-reflection

RX(1) TX RX(2)

(a)

10 20 30 40 50 60 70 80 90 100 110 120

Time (seconds)

0

2

4

A
C

S
I

RX(1) RX(2)

(b)

10 20 30 40 50 60 70 80 90 100 110 120

Time (seconds)

0

1

P
re

d
ic

ti
o
n

RX(1) RX(2)

(c)

Fig. 38. Using two receivers we are able to identify the directional movement of the

human target based on which receiver sees an increase in ACSI first. (a) Experiment

setup with all adversarial ESP32 devices on one side of the wall: TX at the center,

RX(1) to the left of TX and RX(2) to the right. (b) Raw ACSI showing four peaks

when the target moves back and forth within the hallway environment, (c) After

applying binary human detection algorithm, we can even more clearly identify the

human target direction.

153

pair of peaks at around 40 seconds, ACSI for RX(1) increases first, indicating that the

target moved back to the starting point from left-to-right. By applying the binary

human detection algorithm from Section 6.3.1, we can see this relationship even more

clearly as shown in Fig. 38c.

6.4 Chapter Contributions and Summary

In this chapter, we studied the use of Channel State Information for adversar-

ial through-wall occupancy monitoring in hallway environments. We demonstrated

through real world experiments how an attacker could perform surveillance of a build-

ing if given access to a single room or even from a single exterior wall. Through the

use of our previously developed WiFi sensing toolkit [102], we demonstrated how this

sort of attack is very low cost and much easier to conceal compared to camera-based

surveillance methods. Using the signal pre-processing steps proposed in this work,

we were able to demonstrate that the two components required for tracking humans,

namely, presence and moving direction, can be successfully predicted even in one-sided

through-wall scenarios which can then be used for crowdcounting by adversaries.

154

CHAPTER 7

SPATIAL ANTENNA DEFENSE AGAINST WIFI SENSING

EAVESDROPPERS

7.1 Introduction

Despite the benefits of using ubiquitous WiFi sensing for several diverse applica-

tions, there is still an inevitable security and privacy risk of WiFi sensing. That is, an

adversary (e.g., Eve in Fig. 39) sniffing the WiFi signals in the environment can track

private information about the users (e.g., if they are at home or not, or even which

room they are in [87], their walking direction behind the wall [102]) and leverage

this information for malicious purposes. Recognizing this risk, in some WiFi sensing

studies [218], the machine learning model used in WiFi sensing is trained in a way

such that only the allowed behaviors (e.g., falling of a senior) can be sensed prop-

erly while private activities (e.g., bathing) are prevented. However, such solutions

provide only partial protection as it assumes that the trained model is the source of

potential privacy leakage only. However, ambient WiFi signals can be sniffed by an

eavesdropper and CSI data can be used for detection of activities using a pretrained

environment-independent model [196, 148, 191] (i.e., a model trained using CSI data

collected from different environment(s) but can perform accurate predictions in a

totally new environment).

There are some recent efforts that aim to protect CSI signals from adversaries and

thus invalidate their proper WiFi sensing capability. However, they are either more

complicated as they use specialized hardware (e.g., using USRP [224], IRS[225]), and

are not easy to implement in practice. Moreover, some of the solutions aim to totally

155

Fig. 39. A malicious eavesdropper (i.e., Eve) can obtain CSI data to perform adver-

sarial WiFi sensing with a pretrained environment-independent ML model.

avoid WiFi sensing even for legitimate devices, thus these solutions are not desirable.

Our goal is to allow legitimate WiFi sensing with allowed receiver (RX) devices but

prevent illegitimate RX devices or eavesdroppers from performing adversarial WiFi

sensing. To this end, we propose a WiFi sensing solution where multiple spatially

distributed transmitter (TX) antennas are used to transmit WiFi packets to the RX.

The rest of the chapter is organized as follows. In Section 7.2, we provide a

background on WiFi sensing and discuss the literature in particular in adversarial

WiFi sensing and solutions to avoid it. In Section 7.3, we present our system model

together with the assumptions made and attacker and defense models. We then

present our motivation for this work in Section 7.4 and evaluate how our method

can prevent eavesdroppers from performing WiFi sensing through experiments in

Section 7.5. Finally, we provide additional discussion about our method in Section 7.6

and make our concluding remarks in Section 7.7.

7.2 Preliminaries

7.2.1 Related Work

With the growing number of studies (e.g., [87, 230]) showing various levels of

activity information and location leakage through adversarial WiFi sensing systems,

156

Table 25. Comparison of Existing Defense Methods

References Method Issues

[219],[220],[221] Transmitter

altered signals

By altering the signals, the data is no

longer valid WiFi frames.

[222] Signal strength

variations

Reduces communication capacity of the

network.

[223],[224] External

obfuscator node

Requires an additional device used solely

for noisy transmissions.

[225] Intelligent reflect-

ing surface (IRS)

Requires hardware with low consumer us-

age.

[226],[227] Omnidirectional

jammer

Prevents all legitimate sensing and com-

munication.

[228] Directional

jammer

Requires additional physically moving de-

vices.

[229] Alters signals to

emulate activities

Requires specialized USRP equipment and

non-standard WiFi frames.

developing counter mechanisms has become a necessity. Thus, several recent studies

have looked at this problem and proposed different solutions. Table 25 provides a

summary of existing defense mechanisms against eavesdropping with WiFi sensing.

In [219], an obfuscation based solution is proposed which captures ambient wireless

signals and relays them back into the environment with randomized modifications.

However, the proposed solution uses full-duplex radio which requires specialized and

costly hardware. A similar approach without using full-duplex is studied in [228], but

it uses a motorized component to change the orientation of the antenna and introduces

157

randomized delay. In [222], a solution is proposed which varies signal strengths of

the transmitters and a game-theoretical model is studied between the attacker and

defender considering the trade-off between privacy and utility in the system. This

can however reduce the communication capacity between the devices.

Jammer-based solutions [227, 226], introduce randomized signal noise to prevent

proper sensing. However, these solutions hamper the communication, thus they may

not be practical in most of the real-life scenarios. Instead, in [224], a selective obfus-

cating solution is proposed to avoid extraction of location information from CSI. The

solution superimposes a duplicated copy of the signal on each frame which does not

affect the reception but does hinder the location-relevant information. However, this

is mainly for protection of location and not applicable to activity detection use cases.

In [229], a modification to the radio training system is proposed to change the

transmitted symbols over time, space and frequency as if they are affected due to hu-

man activities in the environment. While this approach prevents eavesdroppers from

distinguishing real and fake human gestures, due to the requirement of specialized

hardware (e.g., USRPs), it incurs a high cost and will not be practical. Note that

our work also differs from the studies (e.g., [221]) that look at solutions against mali-

cious radiometric fingerprinting of devices. These studies focus on the device-specific

fingerprinting which could be used for impersonation attacks.

7.3 System Model

7.3.1 Assumptions

In our proposed system, we assume multiple TX antennas that are spatially dis-

tributed in a target sensing area as illustrated in Fig. 40. There is a single source

device (D) that is equipped with an antenna switch to automatically select the trans-

158

mitting antenna at a per-packet level. This ensures that low layer attributes (e.g.,

MAC address and sequence number) will not directly reveal antenna changes to the

eavesdropper. Usage of TX antennas are determined by a predefined schedule model

(S) which is shared between D and any legitimate RX devices. When evaluating our

proposed system, only a single TX antenna communicates at any given time, however,

S may be extended to allow multiple antennas to communicate simultaneously.

7.3.2 Experiment Setup

In our experiments, we consider a home environment where ESP32 microcon-

trollers are used as both TX and RX devices using the 802.11n protocol and 2.4GHz

frequency band for CSI collection. Five TX devices that are placed 70 centimeters

apart in a room of size 2.8 meters×3.2 meters and 1 RX device are used as illustrated

in Fig. 40. The RX is placed in an adjacent room to emulate an attacker which does

not have direct access to the targeted sensing area. Each of the five TXs transmit

WiFi frames to the RX at 20Hz concurrently resulting in CSI samples arriving at the

RX at an overall rate of 100Hz. During our experimental data collection we allow all

TXs to transmit concurrently so that we can emulate different transmission schedules,

however in a real world system, only selected TXs will transmit at any given point of

time. We collect CSI data to a Raspberry Pi single-board computer for processing.

For our dataset1, we perform the following 5 activities:

• Door: Opening/closing main door

• Sit: Sitting and swiveling on a chair at a desk

• Stand: Standing at a desk and writing in a book

1Dataset and codebase for this project can be found in
https://github.com/MoWiNG-Lab/AntiEave-WiFi-Sensing.

159

https://github.com/MoWiNG-Lab/AntiEave-WiFi-Sensing

Bob (RX)Alice (TX)

Eve

RX
TXA

Eve

TXB

TXC

TXD

RX

RX

TX-A TX-B TX-C TX-D TX-E

DoorSit

Stand
Closet

Empty

RX

TX-A TX-B TX-C TX-D TX-E

1. Door2. Sit

3. Stand
4. Closet

5. Empty

RX

TX-A TX-B TX-C TX-D TX-E

DoorSit

Stand
Closet

Empty

RX

TX-A TX-B TX-C TX-D TX-E

DoorSit

Stand
Closet

Empty

S
Scheduler
Module

Antenna
Switch

RX

TX-A TX-B TX-C TX-D TX-E

DoorSit

Stand
Closet

Empty

TX Source
Device

Antenna
Switch

S
Scheduler
Module

D

Fig. 40. Experimental setup with 5 TXs and 1 RX and 5 activities to be sensed. The

scheduler (S) decides which of the TXs that are wired connected to the same source

device (D) through an antenna switch needs to transmit.

• Closet: Opening/closing closet door

• Empty: No movement within the room

These activities are performed in a round-robin fashion 6 distinct times. The first

set of 3 repetitions are used for training our model while the final 3 are used for

evaluation. Note that while the activities considered in this dataset are performed in

diverse locations, WiFi sensing techniques are also applicable when multiple activities

are performed at the same location [37, 231]. Additionally, while we use multiple

ESP32s to act as TX antennas during our data collection phase, a similar system can

also be achieved with a single WiFi device (e.g., one ESP32) and an antenna switch

as illustrated in Fig. 40.

7.3.3 Tree-structured Parzen Estimator (TPE)

For our evaluations, we use the Tree-structured Parzen Estimator (TPE) [232]

which is a hyperparameter optimization technique which selects some set of hyper-

160

parameters (θ) in an attempt to decrease some loss function L through the use of an

expected improvement (EI) function:

EI(θ) =
p
(
θ|L′(θ) > L∗)

p
(
θ|L′(θ) ≤ L∗

)
,

(7.1)

where L∗ is the average loss of the previously evaluated hyperparameter values for

a given hyperparameter and L′(θ) is formed based on previously observed hyperpa-

rameter values.

7.3.4 Attack Model

We consider a scenario where an attacker aims to sense the activities performed

by an individual and subsequently localize the individual using the temporal CSI data

obtained from the sniffed ambient WiFi signals. Fig. 39 illustrates our scenario where

Alice transmits a signal to Bob. As the signals propagate through the environment,

some of them reflect off of the human within the environment before continuing to

propagate to Bob, thus allowing Bob to perform WiFi sensing. However, a malicious

eavesdropper (Eve) can also receive the reflected signal which then allows Eve to

perform WiFi sensing and thus Eve can achieve covert surveillance.

We assume that the attacker knows the set of localized activities and has a

pretrained ML model for these activities. We also assume that this model is ob-

tained through the solutions in the literature that offer environment-independent ML

models [196, 148] or generic models that are obtained through a federated learning

process [191]. However, we consider CSI data generated from both a single TX and

multiple TX devices for training the attacker’s model. Additionally, we assume that

the attacker has a device and a tool that can extract CSI data from sniffed signals,

which can be easily achieved through recent low-cost off-the-shelf solutions [102]. At-

tacker then uses this extracted CSI for predictions using the pretrained model. Similar

161

Table 26. Scenarios considered during training and evaluation.

Scenario Train on
CSI from

Evaluate on
CSI from Section

Normal Sensing Single TX Single TX Section 7.4

Naive Eve Single TX Multiple TX Section 7.5.1

Advanced Eve Multiple TX Multiple TX Section 7.5.2

to the training scenario, we look at the predictions when the attacker uses CSI data

received from (i) a single TX and (ii) multiple TXs. These scenarios and the sections

looking at the evaluation of each scenario are given in Table 26.

7.3.5 Defense Model

To prevent eavesdroppers from sensing physical activities using WiFi sensing

without also hindering allowed RX devices from sensing physical activities, we lever-

age a multi-TX setup as illustrated in Fig. 40. We define a scheduler S which pseudo-

randomly decides which TX should transmit at a given time instance, t, such that

S(t) ∈ {1, 2, . . . , |TX|}. Allowed RX devices are given access to S which ensures that

they are able to accurately identify which TX is transmitting at any given time while

the disallowed eavesdropper is unable to make this distinction. To further obfuscate

the physical activity and reduce the sensing capability of the eavesdropper, we de-

fine specific probability values for each TX device to determine how often the TX is

selected from our scheduler module (S).

7.3.6 Allowed RX Emulation

To evaluate the proposed system, we begin by describing the CSI data as seen by

the allowed RX. This RX can recognize which TX is transmitting at any given time

162

(from scheduler information). In our evaluations, we begin with a 3-dimensional CSI

tensor H ∈ R|T |×|TX|×|s| where |T | is the number of time steps in our dataset, |TX| is

the number of transmitters, and |s| is the number of subcarriers per CSI frame. We

apply a transformation to H based on our scheduler model S as so:

(
H⊕ S

)
[t, i, :] = H[t, i, :] ∗ soft equals(i,S(t)), (7.2)

where H[t, i, :] is a tensor slice of all subcarriers for station i collected at time t and

soft equals(a, b) = 1 − tanh(|a− b|β), (7.3)

which has an output approaching 1 when a = b, and 0 when a ̸= b and when β is

some large value (i.e., β = 1e4). Through this, the allowed RX receives a tensor(
H ⊕ S

)
∈ R|T |×|TX|×|s|, however for each i ∈ {1, 2, . . . , |TX|} which is not selected

at time t, the values for
(
H ⊕ S

)
[t, i, :] = 0 because the model being trained would

not be able to witness the CSI for the i-th TX.

7.3.7 Disallowed (Eavesdropper) RX Emulation

Now that we have reviewed the CSI data as seen by an allowed RX, next we

review the CSI data as seen by a disallowed RX (i.e., an eavesdropper). The only

difference in the allowed RX versus the disallowed RX is that the disallowed RX is

not able to directly identify the difference between which TX is actively transmitting

at any given time. As such, we define:

(
H ⊕̌ S

)
[t, :] =

|TX|∑
i=1

((
H⊕ S

)
[t, i, :]

)
=
(
H⊕ S

)
[t,S(t), :],

(7.4)

163

where
(
H ⊕̌ S

)
∈ R|T |×|s|. It is important to note that while

(
H ⊕ S

)
and

(
H ⊕̌ S

)
have different tensor shapes, they both contain the same amount of CSI amplitude

information, meaning that they both have the same number of non-zero entries within

the tensors. However,
(
H ⊕ S

)
encodes slightly more information due to the structure

itself which is derived due to the knowledge of the transmission schedule shared

between the TXs and RX.

7.4 Motivation

In our initial efforts to motivate the multi-TX based proposed solution, we begin

by presenting our experiment results for a human activity detection and localization

scenario. We train a Dense Neural Network (DNN) machine learning classifier model

MTX-m per TX-m with one input dense layer, two hidden dense layers and one dense

output layer. We apply L2 kernel regularization across each dense layer and apply a

dropout layer between each dense layer to prevent the model from overfitting. Finally,

we use Stochastic Gradient Descent (SGD) to optimize the loss function

L(x, y) = − 1

|x|

|x|∑
i=1

|C|∑
c=1

yi,c logMTX-m(xi,c), (7.5)

where MTX-m(xi,c) is the model prediction for input CSI xi,c and yi,c is the true

class for the i-th CSI measurement. We apply a preprocessing step to transform the

raw CSI through Principal Component Analysis (PCA), which is shown to be one of

the most effective preprocessing methods for increasing prediction accuracy in WiFi

sensing scenarios [233].

We begin by showing how the accuracy of a WiFi sensing system is affected by

the different physical positions of the five TXs relative to the RX as well as relative

to the actions being performed. To this end, we train an ML model on training data

captured by each TX and then evaluate the models on the testing data from the

164

TX-A TX-B TX-C TX-D TX-E
0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

84.6%

66.8%

78.2%

64.5%
70.1%

Fig. 41. Accuracy with ML models developed by CSI data coming from each TX.

same TX. The accuracy for the models trained at each TX is shown in Fig. 41. We

can see that TX-A achieves the highest accuracy at 84.59% and TX-D achieves the

lowest accuracy at 64.47%. This demonstrates that the accuracy possible from each

TX varies due to the unique physical positions of the TXs within the environment.

The confusion matrices in Fig. 42 show which classes of actions are accurately

predicted and which classes are commonly predicted incorrectly per TX. From this,

we can see that each TX is better at distinguishing different sets of activities due to

the spatially distributed nature of the TXs in the environment as well as the unique

physical locations where each physical activity is performed. For example, TX-A

achieves high classification accuracy on classes sit, stand, closet, TX-C achieves high

classification accuracy on classes door, sit, stand and TX-B, TX-D, TX-E can each

distinguish the closet action with high accuracy. This means that each of the TXs

has unique strengths as well as unique weaknesses in our experiment scenario. In

the next section, we will evaluate how we can leverage these differences due to TX

positioning against a malicious eavesdropper.

165

Door Sit Stand Closet Empty

Predicted Action

D
o
o
r

S
it

S
ta

n
d

C
lo

s
e
t

E
m

p
ty

T
ru

e
 A

c
ti
o

n

0%

3%

0%

31%

0%

0%

0%

0%

3%

0%

1%

1%

18%

2%

0%

13%

0%

0%

3%

2%

79%

98%

94%

97%

56%

(a) TX-A

Door Sit Stand Closet Empty

Predicted Action

D
o
o
r

S
it

S
ta

n
d

C
lo

s
e
t

E
m

p
ty

T
ru

e
 A

c
ti
o

n

47%

31%

0%

0%

10%

14%

0%

0%

30%

14%

0%

0%

28%

19%

0%

2%

0%

6%

0%

13%

0%

32%

69%

85%

100%

(b) TX-B

Door Sit Stand Closet Empty

Predicted Action

D
o
o
r

S
it

S
ta

n
d

C
lo

s
e
t

E
m

p
ty

T
ru

e
 A

c
ti
o

n

0%

1%

0%

0%

0%

8%

2%

0%

0%

0%

0%

0%

0%

0%

32%

33%

0%

3%

0%

0%

100%

60%

97%

99%

65%

(c) TX-C

Door Sit Stand Closet Empty

Predicted Action

D
o
o
r

S
it

S
ta

n
d

C
lo

s
e
t

E
m

p
ty

T
ru

e
 A

c
ti
o

n

0%

2%

0%

0%

1%

7%

0%

0%

0%

0%

0%

0%

39%

16%

0%

0%

0%

8%

16%

0%

74%

82%

100%

93%

60%

(d) TX-D

Door Sit Stand Closet Empty

Predicted Action

D
o
o
r

S
it

S
ta

n
d

C
lo

s
e
t

E
m

p
ty

T
ru

e
 A

c
ti
o

n

0%

31%

0%

38%

24%

14%

0%

14%

0%

0%

0%

0%

0%

0%

1%

0%

0%

27%

0%

0%

48%

76%

73%

54%

100%

(e) TX-E

Fig. 42. Confusion matrix for each model in Fig. 41.

7.5 Evaluation

We demonstrated how CSI captured from a single TX can be used to predict

the localized physical activity of humans in an environment. However, achieving

high accuracy in the previous scenario not only means that legitimate RXs can sense

actions being performed, but it also means that malicious eavesdroppers can also

covertly perform surveillance on the human target by sniffing these same signals.

To obfuscate the physical actions being performed in the environment, we allow

the TXs to transmit one at a time on a random schedule every 50ms as illustrated

in Fig. 43. This random schedule is emulated during our evaluations using the data

collected and described in the previous section, but in a real-world deployment, we

can assume that each TX adheres to the random schedule.

166

Fig. 43. Multiple TX antennas are used to transmit the WiFi signals at different

times based on a predefined schedule known by a legitimate RX device, which then

can filter the necessary CSI data for use in the prediction model, while eavesdropper

uses all CSI and obtains inaccurate results.

We study two scenarios: (i) a naive attacker that is not aware of the multiple TX

antennas thus uses a sensing model trained with CSI data from one TX, and (ii) a

more intelligent and advanced attacker which trains a sensing model using CSI from

multiple TXs which are generated based on the scheduler. In the latter, however,

we still assume that the attacker does not know which packet comes from which TX

device.

Note that it is not trivial for an advanced attacker to generate a pretrained

environment independent model using CSI data from multiple TX locations (as done

in the single source with a single antenna scenario [196, 148, 191]). This is because

different spatial distribution of TX devices with respect to a receiver device can

generate different results. However, to explore the extent to which an attacker can

achieve sensing, we assume that the attacker is able to acquire CSI data from the

same spatial distribution of TX devices as in the environment of interest along with

the corresponding labels for each activity.

167

TX-A TX-B TX-C TX-D TX-E
0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

48.5%

30.1%

40.8%

25.0%
16.5%

Fig. 44. Accuracy of eavesdropper’s model trained on a single TX CSI data and used

in obfuscated CSI data from all 5 TXs on a random schedule.

7.5.1 Naive Attacker

We begin by evaluating the naive attacker which considers that there is only one

TX in the environment communicating with an RX device to generate the necessary

signaling for WiFi sensing. As such, the model that is trained by this naive attacker

will likely be confused by the CSI data coming from multiple TX antennas located in

unique physical positions.

In Fig. 44, we can see the accuracy of the eavesdropper model when trained on

CSI from a single TX and then applied to our obfuscation scenario where 5 TXs trans-

mit on a random schedule. Since the eavesdropper does not know the random order

of the transmitting devices, the eavesdropper must assume the use of all incoming

CSI frames. We can see that the accuracy for each of the TX models has decreased

significantly by as much as 53.5% for TX-E and a decrease of accuracy more than

35% for all other TXs (compared to the results in Fig. 41). Overall, this suggests that

increasing the number of TXs even beyond five will allow for an ever lower accuracy

for the naive attacker.

Fig. 45 shows the confusion matrix for each of the eavesdropper models in this

168

Door Sit Stand Closet Empty

Predicted Action

D
o
o
r

S
it

S
ta

n
d

C
lo

s
e
t

E
m

p
ty

T
ru

e
 A

c
ti
o

n

30%

27%

3%

5%

0%

2%

13%

4%

8%

27%

6%

22%

3%

6%

11%

3%

6%

2%

11%

2%

67%

68%

52%

65%

57%

(a) TX-A

Door Sit Stand Closet Empty

Predicted Action

D
o
o
r

S
it

S
ta

n
d

C
lo

s
e
t

E
m

p
ty

T
ru

e
 A

c
ti
o

n

4%

7%

26%

4%

31%

4%

0%

2%

11%

21%

1%

41%

39%

0%

0%

0%

28%

0%

0%

0%

19%

72%

63%

74%

53%

(b) TX-B

Door Sit Stand Closet Empty

Predicted Action

D
o
o
r

S
it

S
ta

n
d

C
lo

s
e
t

E
m

p
ty

T
ru

e
 A

c
ti
o

n

30%

0%

11%

3%

13%

33%

4%

5%

0%

0%

37%

31%

0%

0%

1%

9%

23%

0%

29%

0%

29%

75%

57%

57%

54%

(c) TX-C

Door Sit Stand Closet Empty

Predicted Action

D
o
o
r

S
it

S
ta

n
d

C
lo

s
e
t

E
m

p
ty

T
ru

e
 A

c
ti
o

n

10%

18%

36%

23%

2%

0%

15%

19%

1%

0%

0%

29%

0%

0%

42%

43%

0%

5%

2%

0%

24%

16%

70%

58%

86%

(d) TX-D

Door Sit Stand Closet Empty

Predicted Action

D
o
o
r

S
it

S
ta

n
d

C
lo

s
e
t

E
m

p
ty

T
ru

e
 A

c
ti
o

n

6%

18%

22%

0%

24%

0%

33%

0%

0%

25%

0%

0%

0%

0%

0%

0%

0%

31%

0%

0%

50%

69%

51%

99%

71%

(e) TX-E

Fig. 45. Confusion matrix for each model in Fig. 44.

same scenario. These figures show that our random scheduling method causes the

eavesdropper model to randomly and incorrectly guess the current action being per-

formed in the environment. Unlike Fig. 42 where each TX was able to achieve greater

than 80% accuracy for more than one class, with our random scheduling method,

the eavesdropper is unable to predict any of the individual classes with an accuracy

greater than 80% for any of the TX models. The class that is most accurately pre-

dicted for the eavesdropper would be the door class using the model trained at TX-C.

However, because the remaining predictions are so poor, it is not reasonable for an

eavesdropper to believe that these predictions are correct. For example, while door is

correctly predicted 75% of the time, empty is incorrectly predicted to be the door class

57% of the time and similarly, sit is incorrectly predicted to be the door class 30% of

169

2 3 4 5

Number of TXs

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

63.2%
55.7%

51.9%
47.1%

Fig. 46. Accuracy of an eavesdropper with different number of TXs communicating

on a random schedule. Red dashed line shows the accuracy if random scheduling was

not used.

the time. Thus, because the accuracy is so poor for most of the action classes, any

accurately predicted class cannot be distinguished from incorrectly predicted classes

by the eavesdropper, thus rendering the predictions useless.

Another fascinating observation is that the TX-E model incorrectly predicts sit,

stand, closet classes most often to be the door class, yet the door action is rarely

ever predicted correctly. This suggests that our method can be used to deceive the

eavesdropper such that the eavesdropper will have a high propensity for predicting one

given class while also concealing the action when it actually occurs in the environment.

Now that we have evaluated the eavesdropper model when 5 TXs are used in

our random schedule, we next look at the accuracy of our system when different

numbers of TXs are used during evaluation. In Fig. 46, we evaluate the accuracy

for a model trained at TX-A and then evaluate when multiple TXs are used in the

random schedule including TX-A and some number of other TXs. The red dashed

line shows the accuracy (84.59%) of the model when the random schedule was not

applied. We can see that the accuracy decreases as more TXs are added to our

170

random schedule, however, even when the number of TXs is 2 (i.e., TX-A and one

other TX), the accuracy is 63.2% which is far lower than the 84.59% that could be

achieved without the random schedule.

7.5.2 Advanced Attacker

In the previous scenario, we assumed that the eavesdropper naively trains a

model using CSI collected from a single TX and then applies this model in a ran-

domly scheduled multi-TX setting. However, a more advanced eavesdropper may

train their model using CSI collected from all TXs as they actively communicate

in the environment. As such, in this section, we begin by evaluating the advanced

attacker in a random station schedule scenario. After this, our goal is to identify

a transmission schedule which reduces the ability of the eavesdropper to perform

sensing.

7.5.2.1 Random Schedule

In order to test the accuracy of models generated by Eve using the multi-TX

data, we initially consider a random schedule of TXs in the system. Eve trains a

model based on the data from all TXs using this random schedule, then the model

is also used for predictions again using the CSI data from all TXs involved. In

Table 27, we review two forms of random TX scheduling, namely: periodic and non-

periodic. In the periodic case, we create a pseudo-random schedule of size w which

is repeated across the entire dataset. For the non-periodic case, we create a pseudo-

random schedule across all timesteps within our dataset without actively ensuring

periodicity. From this, we can observe that the periodic case allows Eve to achieve an

accuracy of +29.62% greater than the non-periodic case. This demonstrates that any

repeating patterns in the transmission schedule will actually improve the accuracy

171

Table 27. Eavesdropper accuracy with periodic and non-periodic random schedulers

(N = 50 each).

Type Avg. Accuracy (Std. Dev.)

Non-Periodic 56.58% (±9.90%)

Periodic 86.20% (±1.75%)

of Eve compared to a single-TX system (i.e., 86.20% is greater than all accuracy

values in Fig. 41). This also demonstrates that an advanced attacker can achieve

greater prediction accuracy (i.e., 56.58%) compared to a naive attacker (i.e., 48.5%

with TX-A in Fig. 44) but still less accuracy than if only a single TX was used in the

environment (i.e., 64.5% worst-case with TX-D in Fig. 41).

7.5.2.2 Probabilistic Schedule

In our previous experiments, we observed that each TX can achieve different

levels of accuracy. For example, TX-A achieves the greatest accuracy in Fig. 41 at

84.6% while TX-D only achieves the lowest accuracy of 64.5%. We propose that we

can leverage this knowledge to determine a schedule by setting pseudo-random prob-

abilities uniquely per-station. Since different environments will have different TXs

which achieve the best and worst sensing accuracy values, thus, we propose a learn-

ing approach to determine these pseudo-random per-station probabilities. Specifically,

TPE determines optimal hyperparameter values for the probability for each station.

Towards this, when selecting the per-station probabilities, we define 0 ≤ m ≤
100
|TX| , the minimum probability that all TXs are selected. In our experiments, since we

have 5 TXs, the maximum value for m is 20%. The order in which hyperparameters

are selected is important to ensure that the entire search space is explored by TPE.

172

0 50 100

Probability (%)

40

50

60

70

80

90

E
v
e
.
A

c
c
u
ra

c
y
 (

%
)

(a) TX-A

0 50 100

Probability (%)

40

50

60

70

80

90

E
v
e
.
A

c
c
u
ra

c
y
 (

%
)

(b) TX-B

0 50 100

Probability (%)

40

50

60

70

80

90

E
v
e
.
A

c
c
u
ra

c
y
 (

%
)

(c) TX-C

0 50 100

Probability (%)

40

50

60

70

80

90

E
v
e
.
A

c
c
u
ra

c
y
 (

%
)

(d) TX-D

0 50 100

Probability (%)

40

50

60

70

80

90

E
v
e
.
A

c
c
u
ra

c
y
 (

%
)

(e) TX-E

Fig. 47. Eavesdropper accuracy for different per-station probabilities when using TPE

(N = 100, minimum per-station probability: 5%).

We find that if we use TPE to select a station probability in order for TX-A, TX-B,

. . . , TX-E, then TX-E will inevitably result in only very low probability values being

explored due to it being the last selected probability value. As such, we instead select

the probabilities of each TX in a random order for each TPE trial, thus allowing the

full search space to be explored.

In Fig. 47, we illustrate the results of TPE when N = 100 TPE trials are per-

formed and the minimum per-station probability m = 5%. In this figure, we can

see that as the probability for TX-A increases, the eavesdropper accuracy increases

as well, thus TPE is able to recognize that low-values are more useful for our ex-

periment environment. TX-C shows a similar upward trend while TX-B, TX-D, and

TX-E show a negative trend as probability increases for each station. This is under-

173

0 5 10 15 20

Min. Probability (%)

40

50

60

70

80

E
v
e

.
A

c
c
u

ra
c
y
 (

%
)

Fig. 48. Effect of minimum per-station probability on eavesdropper accuracy (N =

100 each).

standable considering that these TXs achieve the lowest accuracy values in Fig. 41

when evaluated on their own. While high probability values for TX-E appear to

achieve the lowest accuracy for Eve, the achievable accuracy distribution range is

wide, demonstrating that high probability values for TX-E do not always translate

to the same low accuracy for Eve. This may be due to other TXs like TX-A or TX-C

being selected along with TX-E in those trials.

Next we consider how applying different minimum probability values for m affects

accuracy of Eve. By applying a minimum probability for all TXs, we can ensure that

we leverage all of the available hardware which is deployed in the environment. Since

our experimental design uses five TXs, when m = 20, each TX is selected equally by

S, however, with m = 0, it is possible that some TXs are unused for communication

and sensing. In Fig. 48, we show the mean and standard deviation of N = 100 TPE

trials when m ∈ {0, 5, 10, 15, 20}. The average accuracy of Eve decreases slightly as

m decreases from 62.38% when m = 20 down to 59.02% when m = 0. However, the

standard deviation increases from 2.43% when m = 20 up to 13.33% when m = 0.

This is because with low values of m, there are more possibilities for better Eve

accuracy as well as lower Eve accuracy values. This demonstrates that allowing some

174

Table 28. Average accuracy (N = 25 each) for different per-station probabilities.

Station Probabilities Eavesdropper Accuracy Allowed-RX

TX-A, B, C, D, E TPE Avg. (N = 25) Avg. Accuracy (N = 25)

4%, 34%, 23%, 39%, 0% 40.26% 40.60% 86.12%

6%, 29%, 25%, 36%, 4% 40.06% 40.94% 87.61%

6%, 26%, 21%, 40%, 7% 39.89% 40.85% 88.19%

stations to be selected with a minimum probability m < 100%
|TX| ensures that we can

further decrease the achievable accuracy of even an advanced attacker.

The three best performing station probability values found through TPE are

shown in Table 28 along with the accuracy achieved during TPE optimization. We

can see that TX-D is given the highest probability values. This is a reasonable choice

considering that TX-D achieves the lowest accuracy (i.e., in Fig. 41) when evaluated

alone. When TPE is used to optimize the per-station probability values, only a single

training repetition is performed. As such, it is possible that the accuracy achieved is

artificially low. To ensure that the accuracy values found through TPE are legitimate,

we repeat the experiment with the same per-station probability hyperparameter val-

ues over N = 25 repetitions and calculate the average and the difference from the TPE

accuracy. We can see that for most of the best-selected per-station probabilities, the

TPE accuracy and the average after 25 repetitions is within 1%. This demonstrates

that the per-station probabilities selected by TPE are generalizable and not due to

random chance. From this, we can observe that by using unique selection probabili-

ties for each TX allows us to reduce the expected accuracy of the eavesdropper from

56.58% (i.e., non-periodic in Table 27) down to approximately 40% accuracy.

Now that we have demonstrated that these per-station probability values can

175

successfully decrease the accuracy of the advanced attacker, next we look at how

these random station probabilities affect any legitimate WiFi sensing RX device. A

legitimate RX knows the exact random schedule of the TXs while the eavesdropper

does not and as such, our allowed TX can actually leverage the CSI coming from

more than one TX when making predictions. In Table 28, we identified the station

probabilities which achieve lowest accuracy for Eve through TPE. Using these same

station probabilities, we trained an allowed RX model by replacing eq. (7.4) with

eq. (7.2). By doing this, we encode some additional structure in the CSI tensor

without including any additional CSI amplitude data. Through this, we find that all

station probabilities achieve between 86.12% and 88.19% accuracy for the allowed RX.

In fact, these accuracy values are similar and even greater than the best single TX in

Fig. 41 (i.e., TX-A with 84.6% accuracy). As such, we can say that while applying the

pseudo-random schedule reduces the effectiveness of disallowed eavesdropper devices

in performing sensing, the same system does not affect and may even improve the

performance of allowed sensing device. Note that these accuracy values for Eve are

based on the assumption that the eavesdropper can obtain training CSI data from the

TX devices in the environment, which could be challenging. Any missing information

during such training process (e.g., wrong labels, missing CSI from some time frames

or from some TXs temporarily) will potentially lower the accuracy even further.

7.6 Discussion

7.6.1 Effect on Communication

WiFi sensing combines RF sensing into preexisting pervasive communications

systems (i.e., WiFi). As such, it is important that a scheme which decreases the

sensing ability of a system does not also decrease the communication ability of the

176

system. For example, a signal jammer may be an efficient method for adding random

signal noise into WiFi sensing measurements, however it also hinders the ability for

legitimate WiFi devices to communicate while jamming is in progress. Our proposed

method achieves the following regarding both sensing and communication:

1. Sensing is still possible and even improved for legitimate RXs through the use

of multiple TXs.

2. Sensing is falsified and obscured for illegitimate eavesdropper RXs.

3. Communication packets are captured like normal for legitimate RXs.

4. Communication packets are captured like normal for eavesdropper RXs.

Notice, that our method does not worry about the content of the communication and

even allows both legitimate and eavesdropper RXs to still capture the packet data. If

the data in the packets must be hidden from eavesdroppers, then the data can easily

be encrypted before transmission, however this is unrelated to the privacy concerns

discussed in this chapter.

7.6.2 Generalizability to New Environments

In this chapter, we demonstrated that we can confuse an eavesdropper device by

transmitting over multiple TX antennas following a pseudo-random schedule rather

than transmitting over just a single TX antenna. Due to the placement of these TX

antennas and the physical locations of the activities being sensed, we showed that

different TX antennas are better for recognizing different sets of activities. As such,

the best per-station probabilities selected in this experimental environment will not

necessarily be applicable to new environments, which may also have more or fewer

TX antennas in the setup. As such, the proposed system is structured such that:

177

1. Per-station probabilities are learned through the TPE using real-world CSI

data collected in the environment. Thus, the probability values can be selected

automatically for each new environment.

2. The allowed RX (i.e., eq. (7.2)) and disallowed RX (i.e., eq. (7.4)) are designed

as differentiable functions which allows for a machine learning model-based

optimization of station probabilities. Thus, more complex station scheduling

can be performed in new environments.

Furthermore, towards machine learning model-based station scheduling, we showed

in Chapter 4 that even low level WiFi sensing devices such as the ESP32 used in this

study can leverage machine learning models directly on-board. This means that such

a system is possible even with low cost equipment, thus improving the scalability of

such a system.

7.6.3 Future Work

In this chapter, we evaluated the effect of five TX antennas that are positioned

at a constant distance apart, however different distributions of TX antennas will

have different effects within each unique environment. As such, more work can be

done in understanding how different TX antenna positions and different number of

antennas affect the proposed system. Furthermore, because each environment has

unique activities to be obfuscated, it may be possible to automatically determine

optimal placement of these TX antennas through metrics such as the sensing-signal-

to-noise-ratio (SSNR) [234] or through wireless sensing signal simulators [235].

In our experiments, the eavesdropper uses CSI exclusively to recognize and lo-

calize the activities performed. However, metrics such as the received signal strength

indicator (RSSI), angle of arrival (AoA), or other signal metrics may also be available

for the eavesdropper and may reveal the physical locations of the TXs [236]. While

178

this chapter focuses directly on obfuscating physical activities, additional work into

obfuscating antenna locations (e.g., [237]) will directly benefit our proposed system.

7.7 Chapter Contributions and Summary

In this chapter, we proposed a defense mechanism against adversarial WiFi sens-

ing through the use of multiple spatially distributed TX antennas connected to the

same source device. These antennas are utilized to transmit data based on a pseudo-

random schedule which is known to legitimate RX devices but hidden from eaves-

droppers. Legitimate RX devices can filter the received data per TX device based on

the schedule used and use a specific ML model for predictions, while the eavesdrop-

per uses the CSI data from all TX devices and uses them as input into its prediction

model. Through various experiments, we showed that accuracy of the eavesdropper

model is much lower than the accuracy of the legitimate RX model thanks to the

obfuscation generated through the spatially distributed TX antennas. The accuracy

of the eavesdropper also reduces as the number of TX devices increases. Additionally,

we demonstrated that setting a per-station probability for our pseudo-random sched-

uler allows for a further decrease in the accuracy of an eavesdropper. We proposed

a Tree-structured Parzen Estimator (TPE) approach to identify optimal per-station

probability values which ensure that the system can be automatically adaptable in

new environments. Finally, we also showed that accuracy for legitimate WiFi sensing

RX devices can even be improved through the use of CSI from multiple TXs. As

such, the proposed system is able to allow legitimate sensing to occur while reducing

the feasibility of illegitimate eavesdropper-based sensing from occurring.

179

CHAPTER 8

CONCLUDING REMARKS

In this dissertation, we considered the use of WiFi sensing at the edge, where wireless

WiFi signals captured throughout our everyday environments can be used to sense

and track physical attributes of the environment such as the human movements and

activities. This work emphasized the use of edge based microcontrollers (i.e., the

ESP32 MCU) which allows WiFi sensing from much smaller devices than were possible

using previously available tools. Thus, throughout the research work discussed in

this dissertation, we moved forward towards more realistic and scalable WiFi sensing

systems.

The novelty of WiFi sensing on edge devices produces new unseen challenges

which are identified, anticipated, and solved through the course of this dissertation

work. Namely, throughout this work, we discuss the introduction of a tool developed

to ease the use and understanding of WiFi sensing on edge devices. Furthermore,

we evaluate signal preprocessing steps as well as techniques for achieving machine

learning directly on-board very low-resource edge devices. From here, we look for-

ward towards the ability to allow for machine learning personalization on-board edge

devices and demonstrate methods like federated learning which can be leveraged to

increase the accuracy of WiFi sensing models in a collaborative model, thus allow-

ing for a reduced reliance on central computation resources as well as reducing the

amount of training data required for deploying new WiFi sensing systems into real-

world environments. Beyond the edge, the work in this dissertation anticipates the

broader impacts of the use of WiFi sensing to identify negative aspects such as adver-

180

sarial surveillance. Finally, to defend against adversarial eavesdropping WiFi sensing

nodes, we proposed an anti-eavesdropper method which prevents accurate sensing for

eavesdropper devices while still allowing and even improving the sensing accuracy of

approved WiFi sensing nodes in our system.

Overall, the goal of this dissertation is to further improve understanding of WiFi

sensing and to introduce and emphasize the need for designing learning algorithms

which will be reasonably deployed in edge scenarios. Pushing towards these ideals

will ensure the feasibility of WiFi sensing as a viable sensing modality as well as allow

for better user privacy by retaining personally identifiable sensing and recognition at

the edge rather than at central computation and storage data centers.

8.1 Contributions

Throughout this dissertation, we made the following contributions:

1. Designed an ESP32-CSI-Tool which enables CSI collection from low-powered

ESP32-MCU edge devices. By collecting CSI, this allows WiFi sensing to be

performed on much lower-cost edge devices, thus allowing for real-world and

scalable systems compared to previous CSI collection tools.

2. Produced a thorough survey of WiFi sensing research literature to identify signal

processing techniques and machine learning techniques typically used for WiFi

sensing. We then evaluate these techniques for:

(a) Feasibility when performed on low-power edge devices like the ESP32-

MCU.

(b) Accuracy across different WiFi sensing tasks including small-scale hand

gesture recognition, medium-scale human activity recognition, and large-

scale human activity and localization.

181

(c) Other system properties such as computation time on-board an ESP32-

MCU, inference rates for signal processing techniques and machine learn-

ing, and energy consumption.

3. Proposed the WiFederated framework, which introduces federated learning for

the first time for WiFi sensing tasks. WiFederated allows multiple edge devices

to collaboratively train machine learning models by sharing knowledge in the

form of model weights rather than sharing raw CSI data. Through this, we can

ensure raw data remains private, and also reduces the amount of communication

required.

4. Proposed client selection methods for WiFederated which selects subsets of

candidate devices to collaboratively train the federated model. Through this

method, we can increase the accuracy of the model by only allowing quality

devices to update the federated model.

5. Introduced the concept of continuous annotation which can leverage external

sensors to provide accurate annotations for training federated models.

6. Demonstrated one adversarial use of WiFi sensing where an adversary can per-

form crowdcounting and human direction tracking through-wall in NLOS sce-

narios.

7. Proposed an anti-eavesdropper defense mechanism which prevents eavesdropper

WiFi sensing devices from performing surveillance while still allowing and even

improving the accuracy of allowed devices to perform WiFi sensing in a target

area.

182

8.2 Future Work

Throughout this work, emphasis is placed on the use of WiFi signals as the source

for achieving wireless sensing due to the high availability of WiFi signals continuously

throughout our daily lives. However, many of the opportunities identified in this dis-

sertation may similarly be applied to other wireless sensing modalities such as UWB

which is increasingly present in areas such as smartphones [238] and automobiles [239],

or mmWave which has a similar interest from smartphone manufacturers [4].

As edge devices continue to improve in computation ability and as energy require-

ments decrease, efforts towards achieving higher complexity edge machine learning

will increase. This offers a number of important opportunities to not only push wire-

less sensing techniques further but also move other areas forward such as improved

voice assistants [240], improved health and wellness tracking [241], and more. To

allow these areas to prosper, further work is needed in improving model training ef-

ficiency, decreasing the amount of data required compared to current state-of-the-art

data-intensive deep learning models, and finally, allowing for models to be trained

and personalized per user or per location to allow for better specialized models rather

than focusing on generalized models which fail for important everyday tasks.

183

REFERENCES

[1] Youwei Zeng et al. “FarSense: Pushing the Range Limit of WiFi-based Respi-

ration Sensing with CSI Ratio of Two Antennas”. In: Proceedings of the ACM

on Interactive, Mobile, Wearable and Ubiquitous Technologies (2019).

[2] Khe Chai Sim, Petr Zadrazil, and Françoise Beaufays. “An Investigation Into

On-device Personalization of End-to-end Automatic Speech Recognition Mod-

els”. In: arXiv preprint arXiv:1909.06678 (2019).

[3] Andrew Hard et al. “Federated Learning for Mobile Keyboard Prediction”.

In: arXiv preprint arXiv:1811.03604 (2018).

[4] Google LLC. Technology: Soli. url: https://atap.google.com/soli/

technology/.

[5] Linksys Aware Homepage. url: https://www.linksys.com/us/linksys-

aware/.

[6] Emerald Innovations Homepage. url: https://emeraldinno.com/.

[7] Origin Wireless Homepage. url: https://originwirelessai.com/.

[8] Google LLC. Google Cloud Edge TPU. url: https://cloud.google.com/

edge-tpu.

[9] Canaan Inc. Kendryte K210. url: https://canaan.io/product/kendryteai.

[10] Sipeed. Maixduino Documentation. url: https://maixduino.sipeed.com/

en/.

[11] Peizheng Li et al. “Deep Transfer Learning for WiFi Localization”. In: Pro-

ceedings of the Radar Conference. 2021.

184

https://atap.google.com/soli/technology/
https://atap.google.com/soli/technology/
https://www.linksys.com/us/linksys-aware/
https://www.linksys.com/us/linksys-aware/
https://emeraldinno.com/
https://originwirelessai.com/
https://cloud.google.com/edge-tpu
https://cloud.google.com/edge-tpu
https://canaan.io/product/kendryteai
https://maixduino.sipeed.com/en/
https://maixduino.sipeed.com/en/

[12] Rui Zhou et al. “Adaptive Device-Free Localization in Dynamic Environments

Through Adaptive Neural Networks”. In: Sensors Journal (2020).

[13] Sheng Tan and Jie Yang. “Multi-User Activity Recognition and Tracking

Using Commodity WiFi”. In: arXiv preprint arXiv:2106.00865 (2021).

[14] Cong Shi et al. “WiFi-Enabled User Authentication through Deep Learning

in Daily Activities”. In: Transactions on Internet of Things (2021).

[15] Yanchao Zhao et al. “Device-Free Secure Interaction with Hand Gestures in

WiFi-enabled IoT Environment”. In: Internet of Things Journal (2020).

[16] Qirong Bu et al. “TransferSense: towards environment independent and one-

shot wifi sensing”. In: Personal and Ubiquitous Computing (2021).

[17] Itsuki Shirakami and Takashi Sato. “Heart Rate Variability Extraction using

Commodity Wi-Fi Devices via Time Domain Signal Processing”. In: EMBS

International Conference on Biomedical and Health Informatics. IEEE. 2021.

[18] Wei Liu et al. “Wi-PSG: Detecting Rhythmic Movement Disorder Using

COTS WiFi”. In: Internet of Things Journal (2020).

[19] Xi Chen et al. “PHCount: Passive Human Number Counting Using WiFi”.

In: International Conference in Communications, Signal Processing, and Sys-

tems. Springer. 2020.

[20] Roshan Sandaruwan et al. “Device-free Pedestrian Count Estimation Using

Wi-Fi Channel State Information”. In: International Intelligent Transporta-

tion Systems Conference (ITSC). IEEE, Sept. 2021.

[21] Feng Zhang et al. “WiDetect: Robust Motion Detection with a Statistical

Electromagnetic Model”. In: Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies (2019).

185

[22] Fu Xiao et al. “Invisible Cloak Fails: CSI-based Passive Human Detection”.

In: Proceedings of the Workshop on Context Sensing and Activity Recognition.

ACM, Nov. 2015.

[23] Steven M. Hernandez and Eyuphan Bulut. “TrinaryMC: Monte Carlo based

anchorless relative positioning for indoor positioning”. In: Proceedings of the

Consumer Communications & Networking Conference (CCNC). 2020.

[24] Steven M. Hernandez and Eyuphan Bulut. “Using perceived direction infor-

mation for anchorless relative indoor localization”. In: Journal of Network

and Computer Applications (2020).

[25] Ninad Jadhav et al. “WSR: A WiFi Sensor for Collaborative Robotics”. In:

arXiv preprint arXiv:2012.04174 (2020).

[26] Bohong Xiang et al. “UAV Assisted Localization Scheme of WSNs Using

RSSI and CSI Information”. In: Proceedings of the International Conference

on Computer and Communications. IEEE. 2020.

[27] Jian-guo Jiang et al. “CS-Dict: Accurate Indoor Localization with CSI Se-

lective Amplitude and Phase Based Regularized Dictionary Learning”. In:

International Conference on Algorithms and Architectures for Parallel Pro-

cessing. Springer. 2020.

[28] Rui Zhou et al. “Device-free Localization Based on CSI Fingerprints and

Deep Neural Networks”. In: Proceedings of the International Conference on

Sensing, Communication, and Networking. IEEE. 2018.

[29] Liuyi Yang, Tomio Kamada, and Chikara Ohta. “Indoor localization based

on CSI in dynamic environments through domain adaptation”. In: Commu-

nications Express (2021).

186

[30] Zhang Yong, Wu Cheng Bin, and Yang Chen. “A Low-overhead Indoor Po-

sitioning System Using CSI Fingerprint Based on Transfer Learning”. In:

Sensors Journal (2021).

[31] Neena Damodaran et al. “Device free human activity and fall recognition using

WiFi channel state information (CSI)”. In: CCF Transactions on Pervasive

Computing and Interaction (2020).

[32] Jinyang Huang et al. “Towards Anti-interference WiFi-based Activity Recog-

nition System Using Interference-Independent Phase Component”. In: Con-

ference on Computer Communications. IEEE. 2020.

[33] Jianfei Yang et al. “Device-Free Occupant Activity Sensing Using WiFi-

Enabled IoT Devices for Smart Homes”. In: Internet of Things Journal (2018).

[34] Md Tamzeed Islam and Shahriar Nirjon. “Wi-Fringe: Leveraging Text Seman-

tics in WiFi CSI-Based Device-Free Named Gesture Recognition”. In: Pro-

ceedings of the International Conference on Distributed Computing in Sensor

Systems. IEEE. 2020.

[35] Daqing Zhang et al. “Anti-Fall: A Non-intrusive and Real-Time Fall Detector

Leveraging CSI from Commodity WiFi Devices”. In: International Conference

on Smart Homes and Health Telematics. Springer. 2015.

[36] Yichao Zhou et al. “Human fall recognition based on WiFi CSI with dynamic

subcarrier extraction of interference index”. In: Journal of Physics: Confer-

ence Series. IOP Publishing. 2021.

[37] Steven M. Hernandez et al. “Wi-PT: Wireless Sensing based Low-cost Phys-

ical Rehabilitation Tracking”. In: Proceedings of IEEE International Confer-

ence on E-health Networking, Application & Services (HealthCom). 2022.

187

[38] Hong Cai et al. “Teaching RF to Sense without RF Training Measurements”.

In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies (2020).

[39] Jinyang Huang et al. “WiLay: A Two-Layer Human Localization and Activity

Recognition System Using WiFi”. In: Proceedings of the Vehicular Technology

Conference. IEEE. 2021.

[40] Sheng Tan and Jie Yang. “WiFinger: Leveraging Commodity WiFi for Fine-

grained Finger Gesture Recognition”. In: Proceedings of the ACM Interna-

tional Symposium on Mobile Ad Hoc Networking and Computing. 2016.

[41] Muneeba Raja, Viviane Ghaderi, and Stephan Sigg. “WiBot! In-Vehicle Be-

haviour and Gesture Recognition Using Wireless Network Edge”. In: Pro-

ceedings of the International Conference on Distributed Computing Systems.

IEEE. 2018.

[42] Hong Li et al. “WiFinger: Talk to Your Smart Devices with Finger-grained

Gesture”. In: Proceedings of the International Joint Conference on Pervasive

and Ubiquitous Computing. ACM, 2016.

[43] Yong Zhang, Kangle Xu, and Yujie Wang. “WiNum: A WIFI Finger Ges-

ture Recognition System Based on CSI”. In: Proceedings of the International

Conference on Information Technology: IoT and Smart City. 2019.

[44] Zhanjun Hao et al. “Wi-SL: Contactless Fine-Grained Gesture Recognition

Uses Channel State Information”. In: Sensors (2020).

[45] Chi Lin et al. “WiWrite: An Accurate Device-Free Handwriting Recognition

System with COTS WiFi”. In: Proceedings of the International Conference

on Distributed Computing Systems. IEEE. 2020.

188

[46] Ruiyang Gao et al. “Towards Position-Independent Sensing for Gesture Recog-

nition with Wi-Fi”. In: Proceedings of the ACM on Interactive, Mobile, Wear-

able and Ubiquitous Technologies (2021).

[47] Kamran Ali et al. “Keystroke Recognition Using WiFi Signals”. In: Proceed-

ings of the International Conference on Mobile Computing and Networking.

2015.

[48] Xingfa Shen et al. “WiPass: 1D-CNN-based smartphone keystroke recognition

Using WiFi signals”. In: Pervasive and Mobile Computing (2021).

[49] Jialai Liu et al. “An Efficient CSI-Based Pedestrian Monitoring Approach

via Single Pair of WiFi Transceivers”. In: International Conference on Neural

Computing for Advanced Applications. Springer. 2021.

[50] Xingang Wang, Yufei Wang, and Dong Wang. “A Real-time CSI-based Pas-

sive Intrusion Detection Method”. In: International Conference on Parallel

& Distributed Processing with Applications, Big Data & Cloud Computing,

Sustainable Computing & Communications, Social Computing & Networking.

IEEE. 2020.

[51] Jikun Guo and Huihui Li. “RSWI: a rescue system with WiFi sensing and

image recognition”. In: Proceedings of the Turing Celebration Conference-

China. ACM, 2019.

[52] Belal Korany and Yasamin Mostofi. “Counting a Stationary Crowd Using Off-

the-Shelf WiFi”. In: Proceedings of the International Conference on Mobile

Systems, Applications, and Services. 2021.

189

[53] Daniel Konings and Fakhrul Alam. “LifeCount: A Device-free CSI-based Hu-

man Counting Solution for Emergency Building Evacuations”. In: Sensors

Applications Symposium. IEEE. 2020.

[54] Steven M. Hernandez and Eyuphan Bulut. “Adversarial Occupancy Monitor-

ing using One-Sided Through-Wall WiFi Sensing”. In: International Confer-

ence on Communications. IEEE. 2021.

[55] Youwei Zeng et al. “FullBreathe: Full Human Respiration Detection Exploit-

ing Complementarity of CSI Phase and Amplitude of WiFi Signals”. In: Pro-

ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Tech-

nologies (2018).

[56] Youwei Zeng et al. “MultiSense: Enabling Multi-person Respiration Sensing

with Commodity WiFi”. In: Proceedings of ACM Interactive Mobile Wearable

Ubiquitous Technologies (2020).

[57] Jinyi Liu et al. “WiPhone: Smartphone-based Respiration Monitoring Using

Ambient Reflected WiFi Signals”. In: Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies (2021).

[58] Belal Korany and Yasamin Mostofi. “Nocturnal Seizure Detection Using Off-

the-Shelf WiFi”. In: arXiv preprint arXiv:2103.13556 (2021).

[59] Xuyu Wang, Chao Yang, and Shiwen Mao. “PhaseBeat: Exploiting CSI Phase

Data for Vital Sign Monitoring with Commodity WiFi Devices”. In: Pro-

ceedings of the International Conference on Distributed Computing Systems.

IEEE. 2017.

190

[60] Yu Gu et al. “EmoSense: Data-Driven Emotion Sensing via Off-the-Shelf WiFi

Devices”. In: International Conference on Communications (ICC). IEEE.

2018.

[61] Zhenzhe Lin et al. “WiEat: Fine-grained Device-free Eating Monitoring Lever-

aging Wi-Fi Signals”. In: Proceedings of the International Conference on Com-

puter Communications and Networks. IEEE. 2020.

[62] Sheng Tan and Jie Yang. “Object Sensing for Fruit Ripeness Detection Using

WiFi Signals”. In: arXiv preprint arXiv:2106.00860 (2021).

[63] Weidong Yang et al. “Wi-Wheat: Contact-Free Wheat Moisture Detection

with Commodity WiFi”. In: International Conference on Communications.

IEEE. 2018.

[64] Steven M. Hernandez, Deniz Erdag, and Eyuphan Bulut. “Towards Dense

and Scalable Soil Sensing Through Low-Cost WiFi Sensing Networks”. In:

Proceedings of the Conference on Local Computer Networks (LCN). IEEE.

2021.

[65] Yili Ren et al. “Liquid Level Sensing Using Commodity WiFi in a Smart Home

Environment”. In: Proceedings of the ACM on Interactive, Mobile, Wearable

and Ubiquitous Technologies (2020).

[66] Hang Song et al. “WiEps: Measurement of Dielectric Property With Commod-

ity WiFi Device—An Application to Ethanol/Water Mixture”. In: Internet

of Things Journal (2020).

[67] Sirui Jian, Shigemi Ishida, and Yutaka Arakawa. “Initial Attempt on Wi-

Fi CSI Based Vibration Sensing for Factory Equipment Fault Detection”.

191

In: Adjunct Proceedings of the 2021 International Conference on Distributed

Computing and Networking. 2021.

[68] Feng Zhang et al. “WiSpeed: A Statistical Electromagnetic Approach for

Device-Free Indoor Speed Estimation”. In: Internet of Things Journal (2018).

[69] Ramjee Prasad. OFDM for Wireless Communications Systems. Artech House,

2004.

[70] Yushi Shen and Ed Martinez. “Channel Estimation in OFDM Systems”. In:

Freescale semiconductor application note (2006).

[71] Kamran Ali et al. “On Goodness of WiFi based Monitoring of Vital Signs in

the Wild”. In: arXiv preprint arXiv:2003.09386 (2020).

[72] Zhe Chen et al. “RF-Based Human Activity Recognition Using Signal Adapted

Convolutional Neural Network”. In: IEEE Transactions on Mobile Computing

(2021).

[73] Marwan Yusuf et al. “Human Sensing in Reverberant Environments: RF-

Based Occupancy and Fall Detection in Ships”. In: IEEE Transactions on

Vehicular Technology (May 2021).

[74] Mohammud J. Bocus, Kevin Chetty, and Robert J. Piechocki. “UWB and

WiFi Systems as Passive Opportunistic Activity Sensing Radars”. In: Pro-

ceedings of the Radar Conference. IEEE, May 2021.

[75] Jaime Lien et al. “Soli: Ubiquitous Gesture Sensing with Millimeter Wave

Radar”. In: ACM Transactions on Graphics (TOG) (2016).

[76] Ozturk, Muhammed Zahid and Wu, Chenshu and Wang, Beibei and Liu,

KJ. “RadioMic: Sound Sensing via mmWave Signals”. In: arXiv preprint

arXiv:2108.03164 (2021).

192

[77] Jie Wang et al. “Device-Free Human Gesture Recognition With Generative

Adversarial Networks”. In: IEEE Internet of Things Journal (Aug. 2020).

[78] Stephan Sigg, Ulf Blanke, and Gerhard Troster. “The telepathic phone: Fric-

tionless activity recognition from WiFi-RSSI”. In: International Conference

on Pervasive Computing and Communications (PerCom). IEEE, Mar. 2014.

[79] Saandeep Depatla and Yasamin Mostofi. “Passive Crowd Speed Estimation

and Head Counting Using WiFi”. In: International Conference on Sensing,

Communication, and Networking (SECON). IEEE, June 2018.

[80] Taiyu Zhu et al. “IoMT-Enabled Real-time Blood Glucose Prediction with

Deep Learning and Edge Computing”. In: Internet of Things Journal (2022).

[81] A. Navaas Roshan et al. “Adaptive Traffic Control With TinyML”. In: In-

ternational Conference on Wireless Communications, Signal Processing and

Networking (WiSPNET). IEEE, Mar. 2021.

[82] Wamiq Raza et al. “Energy-Efficient Inference on the Edge Exploiting TinyML

Capabilities for UAVs”. In: Drones (Oct. 2021).

[83] Haoyu Ren, Darko Anicic, and Thomas A Runkler. “TinyOL: TinyML with

Online-Learning on Microcontrollers”. In: International Joint Conference on

Neural Networks (IJCNN). IEEE. 2021.

[84] Kavya Kopparapu and Eric Lin. “TinyFedTL: Federated Transfer Learning

on Tiny Devices”. In: arXiv preprint arXiv:2110.01107 (2021).

[85] Han Cai et al. “TinyTL: Reduce Activations, Not Trainable Parameters for

Efficient On-Device Learning”. In: arXiv preprint arXiv:2007.11622 (2020).

193

[86] Ju Wang et al. “LiFS: low human-effort, device-free localization with fine-

grained subcarrier information”. In: Proceedings of the International Confer-

ence on Mobile Computing and Networking. ACM. 2016.

[87] Yanzi Zhu et al. “Adversarial WiFi Sensing”. In: arXiv preprint arXiv:1810.10109

(2018).

[88] Claude Elwood Shannon. “Communication in the Presence of Noise”. In: Pro-

ceedings of the IRE (1949).

[89] Jiang Xiao, Huichuwu Li, and Hai Jin. “Transtrack: Online meta-transfer

learning and Otsu segmentation enabled wireless gesture tracking”. In: Pat-

tern Recognition (2022).

[90] Gongzhui Zhang et al. “Gait Cycle Detection Using Commercial WiFi De-

vice”. In: International Conference in Communications, Signal Processing,

and Systems. Springer. 2020.

[91] Hua Kang, Qian Zhang, and Qianyi Huang. “Context-Aware Wireless Based

Cross Domain Gesture Recognition”. In: Internet of Things Journal (2021).

[92] Lingchao Guo et al. “Emergency Semantic Feature Vector Extraction From

WiFi Signals for In-Home Monitoring of Elderly”. In: Journal of Selected

Topics in Signal Processing (2021).

[93] Hongbo Jiang et al. “Smart home based on WiFi sensing: A survey”. In: IEEE

Access (2018).

[94] Yongsen Ma, Gang Zhou, and Shuangquan Wang. “WiFi Sensing with Chan-

nel State Information: A Survey”. In: Computing Surveys (2019).

[95] Jian Liu et al. “Wireless Sensing for Human Activity: A Survey”. In: Com-

munications Surveys & Tutorials (2019).

194

[96] Ying He et al. “WiFi Vision: Sensing, Recognition, and Detection With Com-

modity MIMO-OFDM WiFi”. In: Internet of Things Journal (2020).

[97] Jiao Liu, Guanlong Teng, and Feng Hong. “Human Activity Sensing with

Wireless Signals: A Survey”. In: Sensors (2020).

[98] Chenning Li, Zhichao Cao, and Yunhao Liu. “Deep AI Enabled Ubiquitous

Wireless Sensing: A Survey”. In: Computing Surveys (2021).

[99] Isura Nirmal et al. “Deep Learning for Radio-based Human Sensing: Recent

Advances and Future Directions”. In: Communications Surveys & Tutorials

(2021).

[100] Daniel Halperin et al. “Tool Release: Gathering 802.11n Traces with Channel

State Information”. In: ACM SIGCOMM CCR (Jan. 2011).

[101] Yaxiong Xie, Zhenjiang Li, and Mo Li. “Precise Power Delay Profiling with

Commodity WiFi”. In: Proceedings of the International Conference on Mobile

Computing and Networking. MobiCom ’15. Paris, France: ACM, 2015.

[102] Steven M. Hernandez and Eyuphan Bulut. “Lightweight and Standalone IoT

based WiFi Sensing for Active Repositioning and Mobility”. In: International

Symposium on “A World of Wireless, Mobile and Multimedia Networks”

(WoWMoM). Cork, Ireland, June 2020.

[103] Zimu Zhou et al. “LiFi: Line-Of-Sight Identification with WiFi”. In: Confer-

ence on Computer Communications. IEEE. 2014.

[104] Ramin Ramezani, Yubin Xiao, and Arash Naeim. “Sensing-Fi: Wi-Fi CSI and

Accelerometer Fusion System for Fall Detection”. In: EMBS International

Conference on Biomedical & Health Informatics. IEEE. 2018.

195

[105] Xuyu Wang, Chao Yang, and Shiwen Mao. “On CSI-Based Vital Sign Mon-

itoring Using Commodity WiFi”. In: ACM Transactions on Computing for

Healthcare (2020).

[106] Enjie Ding et al. “A Robust Passive Intrusion Detection System with Com-

modity WiFi Devices”. In: Journal of Sensors (2018).

[107] Lingyan Zhang and Hongyu Wang. “3D-WiFi: 3D Localization With Com-

modity WiFi”. In: IEEE Sensors Journal (July 2019).

[108] Xue Ding et al. “A New Method of Human Gesture Recognition Using Wi-Fi

Signals Based on XGBoost”. In: International Conference on Communications

in China. IEEE. 2020.

[109] Yi Tian Xu et al. “PresSense: Passive Respiration Sensing via Ambient WiFi

Signals in Noisy Environments”. In: International Conference on Intelligent

Robots and Systems. IEEE. 2020.

[110] Jiancun Zuo et al. “A New Method of Posture Recognition Based on WiFi

Signal”. In: Communications Letters (2021).

[111] Qizhen Zhou, Jianchun Xing, and Qiliang Yang. “Device-free occupant activ-

ity recognition in smart offices using intrinsic Wi-Fi components”. In: Building

and Environment (2020).

[112] Lingchao Guo et al. “When Healthcare Meets Off-the-Shelf WiFi: A Non-

Wearable and Low-Costs Approach for In-Home Monitoring”. In: arXiv preprint

arXiv:2009.09715 (2020).

[113] Yanling Hao, Zhiyuan Shi, and Yuanwei Liu. “A Wireless-Vision Dataset for

Privacy Preserving Human Activity Recognition”. In: International Confer-

ence on Multimedia Computing, Networking and Applications. IEEE. 2020.

196

[114] Zhenguo Shi et al. “Towards Environment-independent Human Activity Recog-

nition using Deep Learning and Enhanced CSI”. In: Global Communications

Conference. IEEE. 2020.

[115] Dan Wu et al. “WiDir: Walking Direction Estimation Using Wireless Sig-

nals”. In: Proceedings of the International Joint Conference on Pervasive and

Ubiquitous Computing. UbiComp ’16. Heidelberg, Germany: ACM, 2016.

[116] Mengyuan Li et al. “When CSI Meets Public WiFi: Inferring Your Mobile

Phone Password via WiFi Signals”. In: Proceedings of the SIGSAC Conference

on Computer and Communications Security. 2016.

[117] Lokesh Sharma et al. “High Accuracy WiFi-Based Human Activity Classi-

fication System with Time-Frequency Diagram CNN Method for Different

Places”. In: Sensors (2021).

[118] Heba Abdelnasser, Moustafa Youssef, and Khaled A Harras. “WiGest: A

Ubiquitous WiFi-based Gesture Recognition System”. In: Conference on Com-

puter Communications. IEEE. 2015.

[119] Wei Xi et al. “Device-free Human Activity Recognition using CSI”. In: Pro-

ceedings of the Workshop on Context Sensing and Activity Recognition. 2015.

[120] Xuefeng Liu et al. “Wi-Sleep: Contactless Sleep Monitoring via WiFi Signals”.

In: Real-Time Systems Symposium. IEEE. 2014.

[121] Dehao Jiang, Mingqi Li, and Chunling Xu. “WiGAN: A WiFi Based Gesture

Recognition System with GANs”. In: Sensors (2020).

[122] Jinyang Huang et al. “WiAnti: an Anti-Interference Activity Recognition Sys-

tem Based on WiFi CSI”. In: International Conference on Internet of Things,

197

Green Computing and Communications, Cyber, Physical and Social Comput-

ing, and Smart Data. IEEE. 2018.

[123] Muhammad Muaaz et al. “Wi-Sense: A passive human activity recognition

system using Wi-Fi and convolutional neural network and its integration in

health information systems”. In: Annals of Telecommunications (2021).

[124] Wei Nie et al. “UAV Detection and Identification Based on WiFi Signal and

RF Fingerprint”. In: Sensors Journal (2021).

[125] Yunhao Bai and Xiaorui Wang. “CARIN: Wireless CSI-based Driver Activity

Recognition under the Interference of Passengers”. In: Proceedings of the ACM

on Interactive, Mobile, Wearable and Ubiquitous Technologies (2020).

[126] Xiangyu Xu et al. “BreathListener: Fine-grained Breathing Monitoring in

Driving Environments Utilizing Acoustic Signals”. In: Proceedings of the In-

ternational Conference on Mobile Systems, Applications, and Services. 2019.

[127] Stéphane Mallat. A Wavelet Tour of Signal Processing. Third. Elsevier, 2009.

[128] Mohan Vishwanath. “The Recursive Pyramid Algorithm for the Discrete

Wavelet Transform”. In: Transactions on Signal Processing (1994).

[129] Abraham Savitzky and Marcel JE Golay. “Smoothing and Differentiation

of Data by Simplified Least Squares Procedures.” In: Analytical chemistry

(1964).

[130] Abdelwahed Khamis et al. “WiRelax: Towards real-time respiratory biofeed-

back during meditation using WiFi”. In: Ad Hoc Networks (2020).

[131] Julius Orion Smith. Introduction to Digital Filters: With Audio Applications.

Julius Smith, 2007.

198

[132] Sheng Tan, Jie Yang, and Yingying Chen. “Enabling Fine-grained Finger Ges-

ture Recognition on Commodity WiFi Devices”. In: Transactions on Mobile

Computing (2020).

[133] Xiang Zhang et al. “Wital: A COTS WiFi Devices Based Vital Signs Mon-

itoring System Using NLOS Sensing Model”. In: Transactions on Human-

Machine Systems (2023).

[134] Wei Zhuang et al. “Develop an Adaptive Real-Time Indoor Intrusion Detec-

tion System Based on Empirical Analysis of OFDM Subcarriers”. In: Sensors

(2021).

[135] Wei Wang et al. “Understanding and Modeling of WiFi Signal Based Hu-

man Activity Recognition”. In: Proceedings of the International Conference

on Mobile Computing and Networking. ACM. 2015.

[136] Jie Zhang et al. “CrossSense: Towards Cross-Site and Large-Scale WiFi Sens-

ing”. In: Proceedings of the International Conference on Mobile Computing

and Networking. ACM. 2018.

[137] Bohan Yu et al. “WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-

Fi Devices”. In: Internet of Things Journal (2021).

[138] Chenshu Wu et al. “GaitWay: Monitoring and Recognizing Gait Speed Through

the Walls”. In: Transactions on Mobile Computing (2020).

[139] Yanan Li et al. “Location-Free CSI Based Activity Recognition With Angle

Difference of Arrival”. In: Wireless Communications and Networking Confer-

ence. IEEE. 2020.

199

[140] Dan Wu et al. “FingerDraw: Sub-wavelength Level Finger Motion Tracking

with WiFi Signals”. In: Proceedings of the ACM on Interactive, Mobile, Wear-

able and Ubiquitous Technologies (2020).

[141] Tao Wang et al. “Wi-Alarm: Low-cost passive intrusion detection using WiFi”.

In: Sensors (2019).

[142] Wenjun Jiang et al. “Towards 3D Human Pose Construction Using WiFi”.

In: Proceedings of the International Conference on Mobile Computing and

Networking. 2020.

[143] Rui Xiao et al. “OneFi: One-Shot Recognition for Unseen Gesture via COTS

WiFi”. In: Proceedings of the ACM Conference on Embedded Networked Sen-

sor Systems. 2021.

[144] Yong Lu, Shaohe Lv, and Xiaodong Wang. “Towards Location Independent

Gesture Recognition with Commodity WiFi Devices”. In: Electronics (2019).

[145] Mohammed Abdulaziz Aide Al-qaness and Fangmin Li. “WiGeR: WiFi-Based

Gesture Recognition System”. In: ISPRS International Journal of Geo-Information

(2016).

[146] Tao Li et al. “A Novel Gesture Recognition System Based on CSI Extracted

from a Smartphone with Nexmon Firmware”. In: Sensors (2021).

[147] Fang-Yu Chu et al. “WiFi CSI-Based Device-free Multi-room Presence Detec-

tion using Conditional Recurrent Network”. In: Proceedings of the Vehicular

Technology Conference. IEEE. 2021.

[148] Yongsen Ma et al. “Location-and Person-Independent Activity Recognition

with WiFi, Deep Neural Networks, and Reinforcement Learning”. In: Trans-

actions on Internet of Things (2021).

200

[149] Xinbin Shen et al. “WiAgent: Link Selection for CSI-Based Activity Recogni-

tion in Densely Deployed Wi-Fi Environments”. In: Wireless Communications

and Networking Conference. IEEE. 2021.

[150] Ye Sun et al. “Enabling Lightweight Device-Free Wireless Sensing with Net-

work Pruning and Quantization”. In: Sensors Journal (2021).

[151] Rajalakshmi Nandakumar, Bryce Kellogg, and Shyamnath Gollakota. “Wi-Fi

Gesture Recognition on Existing Devices”. In: arXiv preprint arXiv:1411.5394

(2014).

[152] Jijun Zhao et al. “R-DEHM: CSI-Based Robust Duration Estimation of Hu-

man Motion with WiFi”. In: Sensors (2019).

[153] Zhenguo Shi et al. “WiFi-Based Activity Recognition using Activity Filter

and Enhanced Correlation with Deep Learning”. In: International Conference

on Communications Workshops. IEEE. 2020.

[154] Yan Wang et al. “E-eyes: Device-free Location-oriented Activity Identification

Using Fine-grained WiFi Signatures”. In: Proceedings of the International

Conference on Mobile Computing and Networking. 2014.

[155] Pierre-Emmanuel Novac et al. “Quantization and Deployment of Deep Neural

Networks on Microcontrollers”. In: Sensors (2021).

[156] Forrest N Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and 0.5 MB model size”. In: arXiv preprint arXiv:1602.07360

(2016).

[157] Andrew G Howard et al. “MobileNets: Efficient Convolutional Neural Net-

works for Mobile Vision Applications”. In: arXiv preprint arXiv:1704.04861

(2017).

201

[158] Mingxing Tan and Quoc Le. “EfficientNet: Rethinking Model Scaling for Con-

volutional Neural Networks”. In: International Conference on Machine Learn-

ing. PMLR. 2019.

[159] Song Han et al. “Learning both Weights and Connections for Efficient Neural

Networks”. In: arXiv preprint arXiv:1506.02626 (2015).

[160] Ze Yang et al. “Model compression with two-stage multi-teacher knowledge

distillation for web question answering system”. In: Proceedings of the Inter-

national Conference on Web Search and Data Mining. 2020.

[161] Steven M. Hernandez et al. “Sharing Low Rank Conformer Weights for Tiny

Always-On Ambient Speech Recognition Models”. In: Proceedings of the In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).

Rhodes, Greece, June 2023.

[162] Itay Hubara et al. “Binarized Neural Networks”. In: Advances in neural in-

formation processing systems (2016).

[163] Zhuang Liu et al. “Rethinking the Value of Network Pruning”. In: arXiv

preprint arXiv:1810.05270 (2018).

[164] Lennart Heim et al. “Measuring what Really Matters: Optimizing Neural

Networks for TinyML”. In: arXiv preprint arXiv:2104.10645 (2021).

[165] Edgar Liberis, Lukasz Dudziak, and Nicholas D Lane. “µNAS: Constrained

Neural Architecture Search for Microcontrollers”. In: Proceedings of the Work-

shop on Machine Learning and Systems. 2021.

[166] Chenshu Wu and KJ Ray Liu. “Accurate Stride Length Estimation via Fused

Radio and Inertial Sensing”. In: Proceedings of the World Forum on Internet

of Things. IEEE. 2020.

202

[167] Omotayo Oshiga et al. “Human Detection For Crowd Count Estimation Using

CSI of WiFi Signals”. In: International Conference on Electronics, Computer

and Computation (ICECCO). IEEE, Dec. 2019.

[168] Alessandro Polo et al. “Real-Time CSI-Based Wireless Gesture Recognition

for Human-Machine Interaction”. In: International Conference on Modern

Circuits and Systems Technologies (MOCAST). IEEE, July 2021.

[169] Shuo Li et al. “WiFi-based Device-free Vehicle Speed Measurement Using Fast

Phase Correction MUSIC Algorithm”. In: International Conferences on Inter-

net of Things (iThings), Green Computing and Communications (GreenCom),

Cyber, Physical and Social Computing (CPSCom), Smart Data (SmartData),

and Congress on Cybermatics (Cybermatics). IEEE, Nov. 2020.

[170] Hua Xue et al. “Push the Limit of Multipath Profiling Using Commodity

WiFi Devices With Limited Bandwidth”. In: IEEE Transactions on Vehicular

Technology (Apr. 2020).

[171] Simon Tewes and Aydin Sezgin. “WS-WiFi: Wired Synchronization for CSI

Extraction on COTS-WiFi-Transceivers”. In: IEEE Internet of Things Jour-

nal (June 2021).

[172] Francisco Tirado-Andrés and Alvaro Araujo. “Performance of clock sources

and their influence on time synchronization in wireless sensor networks”. In:

International Journal of Distributed Sensor Networks (2019).

[173] Wenda Li et al. “On CSI and Passive Wi-Fi Radar for Opportunistic Physical

Activity Recognition”. In: IEEE Transactions on Wireless Communications

(Jan. 2022).

203

[174] Elahe Soltanaghaei et al. “Robust and practical WiFi human sensing using on-

device learning with a domain adaptive model”. In: Proceedings of the ACM

International Conference on Systems for Energy-Efficient Buildings, Cities,

and Transportation. 2020.

[175] Sorachi Kato et al. “CSI2Image: Image Reconstruction From Channel State

Information Using Generative Adversarial Networks”. In: IEEE Access (2021).

[176] Bo Wu et al. “Device-Free Human Activity Recognition With Identity-Based

Transfer Mechanism”. In: Wireless Communications and Networking Confer-

ence (WCNC). IEEE, Mar. 2021.

[177] Dongheng Zhang, Xiong Li, and Yan Chen. “Pushing the Limit of Phase Offset

for Contactless Sensing Using Commodity Wifi”. In: International Conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE, June 2021.

[178] Hyuckjin Choi et al. “Wi-CaL: WiFi Sensing and Machine Learning Based

Device-Free Crowd Counting and Localization”. In: IEEE Access (2022).

[179] Marco Cominelli, Francesco Gringoli, and Renato Lo Cigno. “Passive Device-

Free Multi-Point CSI Localization and Its Obfuscation with Randomized Fil-

tering”. In: Mediterranean Communication and Computer Networking Con-

ference (MedComNet). IEEE, June 2021.

[180] Steven M. Hernandez and Eyuphan Bulut. “Scheduled Spatial Sensing against

Adversarial WiFi Sensing”. In: Proceedings of the International Conference on

Pervasive Computing and Communications (PerCom). Atlanta, USA, Mar.

2023.

204

[181] Takuya Akiba et al. “Optuna: A Next-generation Hyperparameter Optimiza-

tion Framework”. In: Proceedings of the SIGKDD International Conference

on Knowledge Discovery & Data Mining. ACM, 2019.

[182] Yiming Wang et al. “From Point to Space: 3D Moving Human Pose Estima-

tion Using Commodity WiFi”. In: Communications Letters (2021).

[183] Steven M. Hernandez and Eyuphan Bulut. “Online Stream Sampling for Low-

Memory On-Device Edge Training for WiFi Sensing”. In: Proceedings of the

ACM Workshop on Wireless Security and Machine Learning. 2022.

[184] Muhammad Sulaiman, Syed Ali Hassan, and Haejoon Jung. “True Detect:

Deep Learning-based Device-Free Activity Recognition using WiFi”. In: Wire-

less Communications and Networking Conference Workshops. IEEE. 2020.

[185] Mohammud J Bocus et al. “Translation Resilient Opportunistic WiFi Sens-

ing”. In: Proceedings of the International Conference on Pattern Recognition.

IEEE. 2021.

[186] Chong Tang et al. “Occupancy Detection and People Counting Using WiFi

Passive Radar”. In: Proceedings of the Radar Conference. IEEE. 2020.

[187] Nastaran Alishahi, Mazdak Nik-Bakht, and Mohamed M Ouf. “A framework

to identify key occupancy indicators for optimizing building operation using

WiFi connection count data”. In: Building and Environment (2021).

[188] Rui Hu et al. “An Unsupervised Behavioral Modeling and Alerting System

Based on Passive Sensing for Elderly Care”. In: Future Internet (2021).

[189] Michel Allegue, N Ghouechian, and N Rozon. “WiFi Motion Intelligence: The

Fundamentals”. In: WiFi Motion Intelligence: The Fundamentals (2020).

205

[190] Sathiya Kumaran Mani et al. “An Architecture for IoT Clock Synchroniza-

tion”. In: Proceedings of the International Conference on the Internet of

Things. 2018.

[191] Steven M. Hernandez and Eyuphan Bulut. “WiFederated: Scalable WiFi Sens-

ing using Edge Based Federated Learning”. In: Internet of Things Journal

(2021).

[192] Shangqing Liu et al. “DeepCount: Crowd Counting with WiFi via Deep Learn-

ing”. In: arXiv preprint arXiv:1903.05316 (2019).

[193] Fangxin Wang et al. “Channel Selective Activity Recognition with WiFi: A

Deep Learning Approach Exploring Wideband Information”. In: IEEE Trans-

actions on Network Science and Engineering (2020).

[194] Fei Wang et al. “Can WiFi Estimate Person Pose?” In: arXiv preprint

arXiv:1904.00277 (2019).

[195] Han Zou et al. “Towards occupant activity driven smart buildings via WiFi-

enabled IoT devices and deep learning”. In: Energy and Buildings (2018).

[196] Wenjun Jiang et al. “Towards Environment Independent Device Free Hu-

man Activity Recognition”. In: Proceedings of the International Conference

on Mobile Computing and Networking. 2018.

[197] Yuanrun Fang et al. “WiTransfer: A Cross-scene Transfer Activity Recog-

nition System Using WiFi”. In: Proceedings of the ACM Turing Celebration

Conference-China. 2020.

[198] Brendan McMahan et al. “Communication-Efficient Learning of Deep Net-

works from Decentralized Data”. In: Artificial Intelligence and Statistics.

PMLR. 2017.

206

[199] Han Zou et al. “WiFi and Vision Multimodal Learning for Accurate and Ro-

bust Device-Free Human Activity Recognition”. In: Conference on Computer

Vision and Pattern Recognition Workshops, CVPR Workshops, Long Beach,

CA, USA, June 16-20. 2019.

[200] Lingchao Guo et al. “From Signal to Image: Capturing Fine-Grained Human

Poses With Commodity Wi-Fi”. In: IEEE Communications Letters (2019).

[201] Fei Wang et al. “Person-in-WiFi: Fine-grained person perception using WiFi”.

In: Proceedings of the International Conference on Computer Vision. 2019.

[202] Sinno Jialin Pan and Qiang Yang. “A Survey on Transfer Learning”. In: IEEE

Transactions on knowledge and data engineering (2009).

[203] Mikhail Yurochkin et al. “Bayesian Nonparametric Federated Learning of

Neural Networks”. In: International Conference on Machine Learning. PMLR.

2019.

[204] Hongyi Wang et al. “Federated Learning with Matched Averaging”. In: In-

ternational Conference on Learning Representations. 2020.

[205] Sheheryar Arshad et al. “Leveraging transfer learning in multiple human ac-

tivity recognition using WiFi signal”. In: Proceedings of the International

Symposium on “A World of Wireless, Mobile and Multimedia Networks”

(WoWMoM). IEEE. 2019.

[206] Yae Jee Cho, Jianyu Wang, and Gauri Joshi. “Client Selection in Federated

Learning: Convergence Analysis and Power-of-Choice Selection Strategies”.

In: arXiv preprint arXiv:2010.01243 (2020).

[207] Sauptik Dhar et al. “On-Device Machine Learning: An Algorithms and Learn-

ing Theory Perspective”. In: arXiv preprint arXiv:1911.00623 (2019).

207

[208] Fan Liang et al. “Toward Edge-Based Deep Learning in Industrial Internet of

Things”. In: IEEE Internet of Things Journal (2020).

[209] Jean-Christophe Bos. MicroMLP. 2018. url: https://github.com/jczic/

MicroMLP.

[210] João Gama et al. “A Survey on Concept Drift Adaptation”. In: ACM com-

puting surveys (CSUR) (2014).

[211] Chenli Wang, Kaleb Pattawi, and Hohyun Lee. “Energy saving impact of

occupancy-driven thermostat for residential buildings”. In: Energy and Build-

ings (2020).

[212] G. Aravamuthan et al. “Physical Intrusion Detection System Using Stereo

Video Analytics”. In: Proceedings of International Conference on Computer

Vision and Image Processing. Singapore: Springer Singapore, 2020.

[213] Zhaoxiang Zhang, Mo Wang, and Xin Geng. “Crowd counting in public video

surveillance by label distribution learning”. In: Neurocomputing (2015).

[214] Saandeep Depatla and Yasamin Mostofi. “Crowd Counting Through Walls

Using WiFi”. In: International Conference on Pervasive Computing and Com-

munications (PerCom). 2018.

[215] Shiwei Fang, Ron Alterovitz, and Shahriar Nirjon. “Non-Line-of-Sight Around

the Corner Human Presence Detection Using Commodity WiFi Devices”.

In: Proceedings of the ACM International Workshop on Device-Free Human

Sensing. ACM. 2019.

[216] Osama Talaat Ibrahim, Walid Gomaa, and Moustafa Youssef. “CrossCount:

A Deep Learning System for Device-Free Human Counting Using WiFi”. In:

IEEE Sensors Journal (2019).

208

https://github.com/jczic/MicroMLP
https://github.com/jczic/MicroMLP

[217] Han Zou et al. “FreeCount: Device-Free Crowd Counting with Commodity

WiFi”. In: Global Communications Conference (GLOBECOM), Singapore,

December 4-8, 2017.

[218] Siwang Zhou et al. “Adversarial WiFi Sensing for Privacy Preservation of

Human Behaviors”. In: IEEE Communications Letters (2019).

[219] Yue Qiao et al. “PhyCloak: Obfuscating Sensing from Communication Sig-

nals”. In: Proceedings of the USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI). 2016.

[220] Marco Cominelli et al. “An Experimental Study of CSI Management to Pre-

serve Location Privacy”. In: Proceedings of the ACM International Workshop

on Wireless Network Testbeds, Experimental Evaluation & Characterization.

WiNTECH’20. New York, NY, USA, Sept. 2020.

[221] Luis Fernando Abanto-Leon et al. “Stay Connected, Leave no Trace: Enhanc-

ing Security and Privacy in WiFi via Obfuscating Radiometric Fingerprints”.

In: Proceedings of the ACM on Measurement and Analysis of Computing Sys-

tems (2020).

[222] Pruthuvi Maheshakya Wijewardena et al. “A Plug-n-Play Game Theoretic

Framework For Defending Against Radio Window Atacks”. In: Proceedings

of the ACM Conference on Security and Privacy in Wireless and Mobile Net-

works (WiSec). 2020.

[223] Marco Cominelli, Francesco Gringoli, and Renato Lo Cigno. “Non Intrusive

Wi-Fi CSI Obfuscation Against Active Localization Attacks”. In: Proceed-

ings of the Conference on Wireless On-demand Network Systems and Services

Conference (WONS). Klosters, Switzerland, Mar. 2021.

209

[224] Marco Cominelli, Francesco Gringoli, and Renato Lo Cigno. “AntiSense: Standard-

compliant CSI obfuscation against unauthorized Wi-Fi sensing”. In: Computer

Communications (2021).

[225] Paul Staat et al. “IRShield: A Countermeasure Against Adversarial Physical-

Layer Wireless Sensing”. In: arXiv preprint arXiv:2112.01967 (2021).

[226] Jie Zhang et al. “Defeat Your Enemy Hiding behind Public WiFi: WiGuard

Can Protect Your Sensitive Information from CSI-Based Attack”. In: Applied

Sciences (2018).

[227] Qubeijian Wang. “A Novel Anti-Eavesdropping Scheme in Wireless Networks:

Fri-UJ”. In: Proceedings of the International Conference on Embedded Wire-

less Systems and Networks. Junction Publishing. 2019.

[228] Yao Yao et al. “Aegis: An Interference-Negligible RF Sensing Shield”. In:

Proceedings of IEEE International Conference on Computer Communications

(INFOCOM). 2018.

[229] Syed Ayaz Mahmud, Neal Patwari, and Sneha K Kasera. “How to Get Away

with MoRTr: MIMO Beam Altering for Radio Window Privacy”. In: Pro-

ceedings of the IEEE International Conference on Mobile Ad Hoc and Smart

Systems (MASS). 2021.

[230] Yanzi Zhu et al. “Et Tu Alexa? When Commodity WiFi Devices Turn into

Adversarial Motion Sensors”. In: Proceedings of the Network and Distributed

System Security Symposium, (NDSS), San Diego, California, USA, February

23-26. 2020.

[231] Bo Tan et al. “Exploiting WiFi Channel State Information for Residential

Healthcare Informatics”. In: IEEE Communications Magazine (2018).

210

[232] James Bergstra et al. “Algorithms for Hyper-Parameter Optimization”. In:

Advances in Neural Information Processing Systems (2011).

[233] Steven M. Hernandez and Eyuphan Bulut. “WiFi Sensing on the Edge: Signal

Processing Techniques and Challenges for Real-World Systems”. In: IEEE

Communications Surveys & Tutorials (2022).

[234] Xuanzhi Wang et al. “Placement Matters: Understanding the Effects of Device

Placement for WiFi Sensing”. In: Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies (2022).

[235] Shelly Vishwakarma et al. “SimHumalator: An Open-Source End-to-End Radar

Simulator for Human Activity Recognition”. In: IEEE Aerospace and Elec-

tronic Systems Magazine (2021).

[236] Daniel Konings et al. “Do RSSI values reliably map to RSS in a localization

system?” In: Proceedings of Workshop on Recent Trends in Telecommunica-

tions Research (RTTR). 2017.

[237] Roshan Ayyalasomayajula et al. “Users are Closer than they Appear: Pro-

tecting User Location from WiFi APs”. In: arXiv preprint arXiv:2211.10014

(2022).

[238] Apple Inc. Nearby interactions with U1. url: https://developer.apple.

com/nearby-interaction/.

[239] Bosch GmbH. Perfectly keyless – Precise wireless localization and secure key

management. url: https://www.bosch-mobility-solutions.com/en/

solutions/software-and-services/perfectly-keyless/.

211

https://developer.apple.com/nearby-interaction/
https://developer.apple.com/nearby-interaction/
https://www.bosch-mobility-solutions.com/en/solutions/software-and-services/perfectly-keyless/
https://www.bosch-mobility-solutions.com/en/solutions/software-and-services/perfectly-keyless/

[240] Zhaofeng Wu et al. “Dynamic Sparsity Neural Networks for Automatic Speech

Recognition”. In: nternational Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE. 2021.

[241] Hemantha Krishna Bharadwaj et al. “A Review on the Role of Machine Learn-

ing in Enabling IoT Based Healthcare Applications”. In: IEEE Access (2021).

212

VITA

Steven M. Hernandez received a B.S. degree in Computer Science from Virginia Com-

monwealth University in 2018. He is now completing his Ph.D. in the Computer

Science Department of Virginia Commonwealth University with funding through the

National Science Foundation Graduate Research Fellowship (2018-2023) and the Vir-

ginia Commonwealth University Graduate School Dissertation Assistantship (2023)

under the supervision of Dr. Eyuphan Bulut. During his Ph.D., he had internship

experiences at Facebook in the area of Spatial Computing (2020) and Google in Ambi-

ent Speech Recognition (2022). His research interests include WiFi sensing, TinyML,

edge learning, and federated learning.

Publications

1. S. M. Hernandez, D. Zhao, S. Ding, A. Bruguier, R. Prabhavalkar, T. N.

Sainath, Y. He, and I. McGraw, “Sharing Low Rank Conformer Weights for

Tiny Always-On Ambient Speech Recognition Models,” in Proceedings of the

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Rhodes, Greece, Jun. 2023.

2. S. M. Hernandez and E. Bulut, “Scheduled Spatial Sensing against Adversar-

ial WiFi Sensing,” in Proceedings of the IEEE International Conference on Per-

vasive Computing and Communications (PerCom), Atlanta, USA, Mar. 2023.

3. S. M. Hernandez and E. Bulut, “WiFi Sensing on the Edge: Signal Processing

Techniques and Challenges for Real-World Systems,” in IEEE Communications

Surveys & Tutorials (COMST), Vol. 25, 2023.

4. S. M. Hernandez, M. Touhiduzzaman, P. E. Pidcoe and E. Bulut, “Wi-PT:

213

Wireless Sensing based Low-cost Physical Rehabilitation Tracking,” in Proceed-

ings of the IEEE International Conference on E-health Networking, Application

& Services (HealthCom), Genoa, Italy, Oct. 2022.

5. S. M. Hernandez and E. Bulut, “Online Stream Sampling for Low-Memory

On-Device Edge Training for WiFi Sensing,” in Proceedings of the ACM Con-

ference on Security and Privacy in Wireless and Mobile Networks (WiseML),

Austin, Texas, USA, May 2022.

6. S. M. Hernandez and E. Bulut, “WiFederated: Scalable WiFi Sensing using

Edge Based Federated Learning,” in IEEE Internet of Things Journal (IoTJ),

Vol. 9, 2022.

7. S. M. Hernandez, D. Erdag, and E. Bulut, “Towards Dense and Scalable

Soil Sensing Through Low-Cost WiFi Sensing Networks,” in Proceedings of the

IEEE Conference on Local Computer Networks (LCN), Edmonton, Canada,

Oct. 2021.

8. S. M. Hernandez and E. Bulut, “Adversarial Occupancy Monitoring using

One-Sided Through-Wall WiFi Sensing,” in Proceedings of the IEEE Interna-

tional Conference on Communications: IoT and Sensor Networks Symposium

(ICC), Montreal, Canada, Jun. 2021.

9. S. M. Hernandez and E. Bulut, “Using perceived direction information for

anchorless relative indoor localization,” Elsevier Journal of Network and Com-

puter Applications (JNCA), Vol. 165, 2020.

10. S. M. Hernandez and E. Bulut, “Lightweight and Standalone IoT based WiFi

Sensing for Active Repositioning and Mobility,” in Proceedings of the Interna-

214

tional Symposium on “A World of Wireless, Mobile and Multimedia Networks”

(WoWMoM), Cork, Ireland, Jun. 2020.

11. S. M. Hernandez and E. Bulut, “Performing WiFi Sensing with Off-the-shelf

Smartphones,” in Proceedings of the IEEE International Conference on Perva-

sive Computing and Communications Demos: IEEE International Conference

on Pervasive Computing and Communications Demonstrations (PerCom De-

mos), Austin, Texas, USA, Mar. 2020.

12. S. M. Hernandez and E. Bulut, “TrinaryMC: Monte Carlo Based Anchorless

Relative Positioning for Indoor Positioning,” in Proceedings of the IEEE Con-

sumer Communications & Networking Conference (CCNC), Las Vegas, Nevada,

USA, Jan. 2020.

13. E. Bulut, S. M. Hernandez, A. Dhungana, and B. K. Szymanski, “Is Crowd-

charging Possible?” in Proceedings of the IEEE International Conference on

Computer Communication and Networks (ICCCN), Jul. 2018.

215

	WiFi Sensing at the Edge Towards Scalable On-Device Wireless Sensing Systems
	Downloaded from

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	Benefits of WiFi Sensing
	Benefits of Machine Learning Inference at the Edge
	Benefits of Machine Learning Model Personalization
	Industry Interest
	Dissertation Organization

	 Literature Review
	Applications of WiFi Sensing
	Localization
	Human Activity Recognition
	Gesture Recognition
	Indoor Crowd Counting and Occupancy Detection
	Health Sensing
	Other Novel Use Cases of WiFi Sensing

	Preliminary Theory on Wireless Sensing
	Orthogonal Frequency-Division Multiplexing
	Channel State Information

	Alternative Wireless Sensing Modalities
	Machine Learning at the Edge (TinyML)

	 IoT Edge WiFi Sensing Toolkit (ESP32-CSI-Tool)
	ESP32-CSI-Tool
	Comparison
	Use Cases
	CSI Sampling Rate
	Broader Impact

	 Signal Processing and Machine Learning Techniques and their Challenges in Real-World Edge Systems
	Introduction
	Edge WiFi Sensing Taxonomy
	Signal Processing
	Feature Extraction
	Denoising Filters
	Dimensionality Reduction

	Data Preparation
	Detrending
	Interpolation (of Missing Frames)
	Segmentation
	Feature Scaling

	Prediction Making
	Classification and Machine Learning
	State Validation
	Voting

	Systems and Hardware
	Clock Synchronization
	Data Annotation
	Device-to-Device Communication
	Cyber Physical System Integration

	Evaluation of CSI Processing Techniques
	Experiment Descriptions
	Hyperparameter Optimization
	Independent Evaluation of Each Method
	Dimensionality Reduction
	Interpolation
	Feature Scaling

	Evaluation of Edge-Based WiFi Sensing System
	Effect of Sampling Rates on Accuracy:
	Inference Rate with Signal Processing Techniques
	Inference Rate with On-board Machine Learning
	Energy Consumption

	Lessons Learned
	Selecting Signal Processing Techniques
	Feature Extraction
	Denoising Filters
	Dimensionality Reduction

	Feasibility of WiFi Sensing at the Edge
	Identify ESP32 for Edge WiFi Sensing
	Evaluated ESP32 for different use cases

	New Considerations for Edge WiFi Sensing
	Need for Inference Rate Evaluations
	Need for Lightweight Model Architecture Designs
	Edge Hardware Considerations

	Future Challenges
	Multiple TX/RX Links
	Long-Term Model Adaptation
	Real-Time Segmentation
	Integration with Physical Systems

	Chapter Contributions and Summary

	 Scalable WiFi Sensing using Edge Based Federated Learning
	Introduction
	Preliminaries
	Motivation
	Experimental Setting
	Initial Results

	Federated Learning Framework (WiFederated)
	Evaluation
	Impact of Averaging Interval
	Impact on Unseen Locations
	Impact of the Number of Training Locations
	Comparison with State of the Art Approaches
	Run Time Complexity Comparison
	Impact of Client Selection

	Feasibility of WiFederated at the Client
	Training and Inference at the Edge
	Continuous Annotation

	Chapter Contributions and Summary

	 Adversarial Occupancy Monitoring using One-Sided Through-Wall WiFi Sensing
	Introduction
	Proposed Method
	CSI Pre-Processing
	Standard LOS Through-Wall
	NLOS Through-Wall

	Detection Framework and Evaluation
	Human Presence
	Human Direction

	Chapter Contributions and Summary

	 Spatial Antenna Defense against WiFi Sensing Eavesdroppers
	Introduction
	Preliminaries
	Related Work

	System Model
	Assumptions
	Experiment Setup
	Tree-structured Parzen Estimator (TPE)
	Attack Model
	Defense Model
	Allowed RX Emulation
	Disallowed (Eavesdropper) RX Emulation

	Motivation
	Evaluation
	Naive Attacker
	Advanced Attacker
	Random Schedule
	Probabilistic Schedule

	Discussion
	Effect on Communication
	Generalizability to New Environments
	Future Work

	Chapter Contributions and Summary

	 Concluding Remarks
	Contributions
	Future Work

	References
	Vita

