List-coloring the Square of a Subcubic Graph

Daniel Cranston and Seog-Jin Kim

dcransto@dimacs.rutgers.edu

DIMACS, Rutgers University and Bell Labs
Def. list assignment: $L(v)$ is the set of colors available at vertex v.
Def. list assignment: $L(v)$ is the set of colors available at vertex v

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list
Def. list assignment: $L(v)$ is the set of colors available at vertex v

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. k-choosable: there exists an L-coloring whenever all $|L(v)| \geq k$
Def. list assignment: $L(v)$ is the set of colors available at vertex v

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. k-choosable: there exists an L-coloring whenever all $|L(v)| \geq k$

Def. $\chi_l(G)$: minimum k such that G is k-choosable
Def. list assignment: $L(v)$ is the set of colors available at vertex v

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. k-choosable: there exists an L-coloring whenever all $|L(v)| \geq k$

Def. $\chi_l(G)$: minimum k such that G is k-choosable
Def. list assignment: $L(v)$ is the set of colors available at vertex v

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. k-choosable: there exists an L-coloring whenever all $|L(v)| \geq k$

Def. $\chi_l(G)$: minimum k such that G is k-choosable
Def. list assignment: $L(v)$ is the set of colors available at vertex v

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. k-choosable: there exists an L-coloring whenever all $|L(v)| \geq k$

Def. $\chi_l(G)$: minimum k such that G is k-choosable
Def. list assignment: $L(v)$ is the set of colors available at vertex v

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. k-choosable: there exists an L-coloring whenever all $|L(v)| \geq k$

Def. $\chi_l(G)$: minimum k such that G is k-choosable
Def. list assignment: $L(v)$ is the set of colors available at vertex v

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. k-choosable: there exists an L-coloring whenever all $|L(v)| \geq k$

Def. $\chi_l(G)$: minimum k such that G is k-choosable
Def. list assignment: $L(v)$ is the set of colors available at vertex v

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. k-choosable: there exists an L-coloring whenever all $|L(v)| \geq k$

Def. $\chi_l(G)$: minimum k such that G is k-choosable
Def. list assignment: \(L(v) \) is the set of colors available at vertex \(v \)

Def. \(L \)-coloring: proper coloring where each vertex gets a color from its assigned list

Def. \(k \)-choosable: there exists an \(L \)-coloring whenever all \(|L(v)| \geq k \)

Def. \(\chi_l(G) \): minimum \(k \) such that \(G \) is \(k \)-choosable
Def. list assignment: $L(v)$ is the set of colors available at vertex v

Def. L-coloring: proper coloring where each vertex gets a color from its assigned list

Def. k-choosable: there exists an L-coloring whenever all $|L(v)| \geq k$

Def. $\chi_l(G)$: minimum k such that G is k-choosable

Def. G^2 (square of G): formed from G by adding edges between vertices at distance 2.
Thm. [Thomassen '08?] \(\chi(G^2) \leq 7 \) if \(G \) is planar and \(\Delta(G) = 3 \).
Results: Old and New

Thm. [Thomassen ’08?] \(\chi(G^2) \leq 7 \) if \(G \) is planar and \(\Delta(G) = 3 \).

Conj. [Kostochka & Woodall ’01] \(\chi_l(G^2) = \chi(G^2) \) for all \(G \).
Results: Old and New

Thm. [Thomassen ’08?] $\chi(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.

Conj. [Kostochka & Woodall ’01] $\chi_l(G^2) = \chi(G^2)$ for all G.

Cor. $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.
Results: Old and New

Thm. [Thomassen ’08?] $\chi(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.

Conj. [Kostochka & Woodall ’01] $\chi_l(G^2) = \chi(G^2)$ for all G.

Cor. $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.

Thm. If $\Delta(G) = 3$ and G is Petersen-free, then $\chi_l(G^2) \leq 8$.
Results: Old and New

Thm. [Thomassen ’08?] $\chi(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.

Conj. [Kostochka & Woodall ’01] $\chi_l(G^2) = \chi(G^2)$ for all G.

Cor. $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.

Thm. If $\Delta(G) = 3$ and G is Petersen-free, then $\chi_l(G^2) \leq 8$.

A diagram is shown, which appears to be a graph representing a specific structure or concept related to the theorem and conjecture discussed.
Results: Old and New

Thm. [Thomassen ’08?] \(\chi(G^2) \leq 7 \) if \(G \) is planar and \(\Delta(G) = 3 \).

Conj. [Kostochka & Woodall ’01] \(\chi_l(G^2) = \chi(G^2) \) for all \(G \).

Cor. \(\chi_l(G^2) \leq 7 \) if \(G \) is planar and \(\Delta(G) = 3 \).

Thm. If \(\Delta(G) = 3 \) and \(G \) is Petersen-free, then \(\chi_l(G^2) \leq 8 \).
Results: Old and New

Thm. [Thomassen ’08?] $\chi(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.

** Conj.** [Kostochka & Woodall ’01] $\chi_l(G^2) = \chi(G^2)$ for all G.

Cor. $\chi_l(G^2) \leq 7$ if G is planar and $\Delta(G) = 3$.

Thm. If $\Delta(G) = 3$ and G is Petersen-free, then $\chi_l(G^2) \leq 8$.

Thm. If $\Delta(G) = 3$, G is planar, and girth ≥ 7, then $\chi_l(G^2) \leq 7$.

![Diagram](image-url)
Results: Old and New

Thm. [Thomassen ’08?] \(\chi(G^2) \leq 7 \) if \(G \) is planar and \(\Delta(G) = 3 \).

Conj. [Kostochka & Woodall ’01] \(\chi_l(G^2) = \chi(G^2) \) for all \(G \).

Cor. \(\chi_l(G^2) \leq 7 \) if \(G \) is planar and \(\Delta(G) = 3 \).

Thm. If \(\Delta(G) = 3 \) and \(G \) is Petersen-free, then \(\chi_l(G^2) \leq 8 \).

Thm. If \(\Delta(G) = 3 \), \(G \) is planar, and girth \(\geq 7 \), then \(\chi_l(G^2) \leq 7 \).

Thm. If \(\Delta(G) = 3 \), \(G \) is planar, and girth \(\geq 9 \), then \(\chi_l(G^2) \leq 6 \).
An Easy Lemma

Lem. For any edge uv in G, we have $\chi_l(G^2 \setminus \{u, v\}) \leq 8$.
An Easy Lemma

Lem. For any edge uv in G, we have $\chi_l(G^2 \setminus \{u, v\}) \leq 8$.

Pf. Color the vertices greedily in order of decreasing distance from edge uv.
An Easy Lemma

Lem. For any edge uv in G, we have $\chi_l(G^2 \setminus \{u, v\}) \leq 8$.

Pf. Color the vertices greedily in order of decreasing distance from edge uv.
An Easy Lemma

Lem. For any edge uv in G, we have $\chi_l(G^2 \setminus \{u, v\}) \leq 8$.

Pf. Color the vertices greedily in order of decreasing distance from edge uv.

![Diagram](image)
The Main Lemma

Def. $\text{ex}(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2)$
The Main Lemma

Def. \(\text{ex}(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2) \)
\[\text{ex}(v) \geq 1 + 8 - 9 = 0 \]
The Main Lemma

Def. $\text{ex}(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2)$

\[
\text{ex}(v) \geq 1 + 8 - 9 = 0
\]

Lem. Suppose that G has a partial coloring from its lists. Let H be the subgraph induced by uncolored vertices. Suppose that H is connected. If H contains adjacent vertices u and v such that $\text{ex}(u) \geq 1$ and $\text{ex}(v) \geq 2$, then we can complete the coloring.
The Main Lemma

Def. $\text{ex}(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2)$

$\text{ex}(v) \geq 1 + 8 - 9 = 0$

Lem. Suppose that G has a partial coloring from its lists. Let H be the subgraph induced by uncolored vertices. Suppose that H is connected. If H contains adjacent vertices u and v such that $\text{ex}(u) \geq 1$ and $\text{ex}(v) \geq 2$, then we can complete the coloring.

Pf. Color greedily toward uv.
The Main Lemma

Def. \(\text{ex}(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2) \)
\[\text{ex}(v) \geq 1 + 8 - 9 = 0 \]

Lem. Suppose that \(G \) has a partial coloring from its lists. Let \(H \) be the subgraph induced by uncolored vertices. Suppose that \(H \) is connected. If \(H \) contains adjacent vertices \(u \) and \(v \) such that \(\text{ex}(u) \geq 1 \) and \(\text{ex}(v) \geq 2 \), then we can complete the coloring.

Pf. Color greedily toward \(uv \).

Cor. If \(G \) is Petersen-free and \(\delta(G) < 3 \), then \(\chi_l(G^2) \leq 8 \).
The Main Lemma

Def. \(ex(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2) \)

\[ex(v) \geq 1 + 8 - 9 = 0 \]

Lem. Suppose that \(G \) has a partial coloring from its lists. Let \(H \) be the subgraph induced by uncolored vertices. Suppose that \(H \) is connected. If \(H \) contains adjacent vertices \(u \) and \(v \) such that \(ex(u) \geq 1 \) and \(ex(v) \geq 2 \), then we can complete the coloring.

Pf. Color greedily toward \(uv \).

Cor. If \(G \) is Petersen-free and \(\delta(G) < 3 \), then \(\chi_l(G^2) \leq 8 \).
The Main Lemma

Def. \(\text{ex}(v) = 1 + (\# \text{ colors free at } v) - (\# \text{ uncolored nbrs in } G^2) \)

\[\text{ex}(v) \geq 1 + 8 - 9 = 0 \]

Lem. Suppose that \(G \) has a partial coloring from its lists. Let \(H \) be the subgraph induced by uncolored vertices. Suppose that \(H \) is connected. If \(H \) contains adjacent vertices \(u \) and \(v \) such that \(\text{ex}(u) \geq 1 \) and \(\text{ex}(v) \geq 2 \), then we can complete the coloring.

Pf. Color greedily toward \(uv \).

Cor. If \(G \) is Petersen-free and \(\delta(G) < 3 \), then \(\chi_l(G^2) \leq 8 \).

Cor. If \(G \) is Petersen-free and \(\text{girth}(G) = 3 \), then \(\chi_l(G^2) \leq 8 \).
Girth 4 to 6

Lemma. If G is Petersen-free and $\text{girth}(G)=4$, then $\chi_l(G^2) \leq 8$.
Girth 4 to 6

Lem. If G is Petersen-free and $\text{girth}(G)=4$, then $\chi_l(G^2) \leq 8$.

Pf. Easy application of main lemma.
Girth 4 to 6

Lem. If G is Petersen-free and $\text{girth}(G)=4$, then $\chi_l(G^2) \leq 8$.

Pf. Easy application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G)=5$, then $\chi_l(G^2) \leq 8$.
Girth 4 to 6

Lem. If G is Petersen-free and $\text{girth}(G)=4$, then $\chi_l(G^2) \leq 8$.

Pf. Easy application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G)=5$, then $\chi_l(G^2) \leq 8$.

Pf. Harder application of main lemma.
Girth 4 to 6

Lem. If G is Petersen-free and $\text{girth}(G) = 4$, then $\chi_l(G^2) \leq 8$.

Pf. Easy application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G) = 5$, then $\chi_l(G^2) \leq 8$.

Pf. Harder application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G) = 6$, then $\chi_l(G^2) \leq 8$.

Girth 4 to 6

Lem. If G is Petersen-free and $\text{girth}(G) = 4$, then $\chi_l(G^2) \leq 8$.

Pf. Easy application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G) = 5$, then $\chi_l(G^2) \leq 8$.

Pf. Harder application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G) = 6$, then $\chi_l(G^2) \leq 8$.

Pf. Color all but a 6-cycle.
Girth 4 to 6

Lemma. If G is Petersen-free and $\operatorname{girth}(G)=4$, then $\chi_l(G^2) \leq 8$.

Proof. Easy application of main lemma.

Lemma. If G is Petersen-free and $\operatorname{girth}(G)=5$, then $\chi_l(G^2) \leq 8$.

Proof. Harder application of main lemma.

Lemma. If G is Petersen-free and $\operatorname{girth}(G)=6$, then $\chi_l(G^2) \leq 8$.

Proof. Color all but a 6-cycle.

\[H = \]
Girth 4 to 6

Lem. If G is Petersen-free and $\text{girth}(G) = 4$, then $\chi_l(G^2) \leq 8$.

Pf. Easy application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G) = 5$, then $\chi_l(G^2) \leq 8$.

Pf. Harder application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G) = 6$, then $\chi_l(G^2) \leq 8$.

Pf. Color all but a 6-cycle.

$H^2 =$
Girth 4 to 6

Lem. If G is Petersen-free and $\text{girth}(G) = 4$, then $\chi_l(G^2) \leq 8$.

Pf. Easy application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G) = 5$, then $\chi_l(G^2) \leq 8$.

Pf. Harder application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G) = 6$, then $\chi_l(G^2) \leq 8$.

Pf. Color all but a 6-cycle.

\[H^2 = \]

\[
\chi_l(H^2) = 3
\]
Girth 4 to 6

Lem. If G is Petersen-free and $\text{girth}(G) = 4$, then $\chi_l(G^2) \leq 8$.
Pf. Easy application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G) = 5$, then $\chi_l(G^2) \leq 8$.
Pf. Harder application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G) = 6$, then $\chi_l(G^2) \leq 8$.
Pf. Color all but a 6-cycle.

$H^2 = \begin{array}{c}
\begin{array}{c}
\text{Cycle + Triangle Thm} \\
[Fleischner, Steibitz '92]
\end{array}
\end{array}$
Girth 4 to 6

Lem. If G is Petersen-free and $\text{girth}(G)=4$, then $\chi_l(G^2) \leq 8$.

Pf. Easy application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G)=5$, then $\chi_l(G^2) \leq 8$.

Pf. Harder application of main lemma.

Lem. If G is Petersen-free and $\text{girth}(G)=6$, then $\chi_l(G^2) \leq 8$.

Pf. Color all but a 6-cycle.

\[
\begin{align*}
\chi_l(H^2) &= 3 \\
\text{Cycle + Triangle Thm} &
\text{[Fleischner, Steibitz '92]} \\
\chi_l(C_{6k}^2) &= 3 \\
&\text{[Juvan, Mohar, Skrekovski '98]}
\end{align*}
\]
Large girth

Obs. If \(\text{girth}(G) \geq 7 \) and \(C \) is a shortest cycle in \(G \), then any two vertices that are each adjacent to the cycle are nonadjacent.
Large girth

Obs. If $\text{girth}(G) \geq 7$ and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.
Large girth

Obs. If \(\text{girth}(G) \geq 7 \) and \(C \) is a shortest cycle in \(G \), then any two vertices that are each adjacent to the cycle are nonadjacent.

Lem. If \(\text{girth}(G) \geq 7 \), then \(\chi_l(G^2) \leq 8 \).
Large girth

Obs. If \(\text{girth}(G) \geq 7 \) and \(C \) is a shortest cycle in \(G \), then any two vertices that are each adjacent to the cycle are nonadjacent.

Lem. If \(\text{girth}(G) \geq 7 \), then \(\chi_l(G^2) \leq 8 \).

Pf. Let \(H \) be a shortest cycle and neighbors. Color \(G^2 \setminus V(H) \).
Large girth

Obs. If $\text{girth}(G) \geq 7$ and C is a shortest cycle in G, then any two vertices that are each adjacent to the cycle are nonadjacent.

Lem. If $\text{girth}(G) \geq 7$, then $\chi_l(G^2) \leq 8$.

Pf. Let H be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$. Two cases depending on whether there exist $i \neq j$ s.t. $|i - j| \leq 2$ and $L(u_i) \cap L(u_j) \neq \emptyset$ or there exists i s.t. $L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \not\subseteq L(v_i)$.
Large girth

Obs. If girth\((G) \geq 7 \) and \(C \) is a shortest cycle in \(G \), then any two vertices that are each adjacent to the cycle are nonadjacent.

Lem. If girth\((G) \geq 7 \), then \(\chi_l(G^2) \leq 8 \).

Pf. Let \(H \) be a shortest cycle and neighbors. Color \(G^2 \setminus V(H) \). Two cases depending on whether there exist \(i \neq j \) s.t. \(|i - j| \leq 2 \) and \(L(u_i) \cap L(u_j) \neq \emptyset \) or there exists \(i \) s.t. \(L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \not\subseteq L(v_i) \).

1) Suppose so:
Large girth

Obs. If \(\text{girth}(G) \geq 7 \) and \(C \) is a shortest cycle in \(G \), then any two vertices that are each adjacent to the cycle are nonadjacent.

Lem. If \(\text{girth}(G) \geq 7 \), then \(\chi_l(G^2) \leq 8 \).

Pf. Let \(H \) be a shortest cycle and neighbors. Color \(G^2 \setminus V(H) \). Two cases depending on whether there exist \(i \neq j \) s.t. \(|i - j| \leq 2 \) and \(L(u_i) \cap L(u_j) \neq \emptyset \) or there exists \(i \) s.t. \(L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \not\subseteq L(v_i) \).

1) **Suppose so:** We can color more vertices so that for some \(i \), \(\text{ex}(v_i) \geq 1 \) and \(\text{ex}(v_{i+1}) \geq 2 \). Then use our main lemma.
Large girth

Lem. If girth\((G) \geq 7\), then \(\chi_l(G^2) \leq 8\).

Pf. Let \(H\) be a shortest cycle and neighbors. Color \(G^2 \setminus V(H)\). Two cases depending on whether there exist \(i \neq j\) s.t. \(|i - j| \leq 2\) and \(L(u_i) \cap L(u_j) \neq \emptyset\) or there exists \(i\) s.t. \(L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \not\subseteq L(v_i)\).

1) Suppose so: We can color more vertices so that for some \(i\), \(ex(v_i) \geq 1\) and \(ex(v_{i+1}) \geq 2\). Then use our main lemma.

2) Suppose not:
Lem. If girth(G) \geq 7, then $\chi_l(G^2) \leq 8$.

Pf. Let H be a shortest cycle and neighbors. Color $G^2 \setminus V(H)$. Two cases depending on whether there exist $i \neq j$ s.t. $|i - j| \leq 2$ and $L(u_i) \cap L(u_j) \neq \emptyset$ or there exists i s.t. $L(u_{i-1}) \cup L(u_i) \cup L(u_{i+1}) \not\subseteq L(v_i)$

1) Suppose so: We can color more vertices so that for some i, $\text{ex}(v_i) \geq 1$ and $\text{ex}(v_{i+1}) \geq 2$. Then use our main lemma.

2) Suppose not: Choose $c(u_i)$ arbitrarily from $L(u_i)$. Choose $c(v_i)$ from $L(u_i) - c(u_i)$.
Thank you!

Any Questions?