Spies and Revolutionaries

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Cliff Smyth and Douglas West
24th Cumberland Conference
13 May 2011
Setup: r revolutionaries play against s spies on a graph G. Each rev. moves to a vertex, then each spy moves to a vertex.
Introduction

Setup: \(r \) revolutionaries play against \(s \) spies on a graph \(G \). Each rev. moves to a vertex, then each spy moves to a vertex.

Goal: Rev’s want to get \(m \) rev’s at a common vertex, with no spy.
Introduction

Setup: r revolutionaries play against s spies on a graph G. Each rev. moves to a vertex, then each spy moves to a vertex.

Goal: Rev’s want to get m rev’s at a common vertex, with no spy.

Each turn: Each rev. moves/stays, then each spy moves/stays.
Introduction

Setup: r revolutionaries play against s spies on a graph G. Each rev. moves to a vertex, then each spy moves to a vertex.

Goal: Rev’s want to get m rev’s at a common vertex, with no spy.

Each turn: Each rev. moves/stays, then each spy moves/stays.

Obs 1: If $s \geq |V(G)|$, then the spies win.
Introduction

Setup: \(r \) revolutionaries play against \(s \) spies on a graph \(G \). Each rev. moves to a vertex, then each spy moves to a vertex.

Goal: Rev’s want to get \(m \) rev’s at a common vertex, with no spy.

Each turn: Each rev. moves/stays, then each spy moves/stays.

Obs 1: If \(s \geq |V(G)| \), then the spies win.
Introduction

Setup: \(r \) revolutionaries play against \(s \) spies on a graph \(G \). Each rev. moves to a vertex, then each spy moves to a vertex.

Goal: Rev’s want to get \(m \) rev’s at a common vertex, with no spy.

Each turn: Each rev. moves/stays, then each spy moves/stays.

Obs 1: If \(s \geq |V(G)| \), then the spies win.

![Diagram of a graph with revolutionaries (red) and spies (green) with labels showing the setup and observations.](image-url)
Introduction

Setup: \(r \) revolutionaries play against \(s \) spies on a graph \(G \). Each rev. moves to a vertex, then each spy moves to a vertex.

Goal: Rev’s want to get \(m \) rev’s at a common vertex, with no spy.

Each turn: Each rev. moves/stays, then each spy moves/stays.

Obs 1: If \(s \geq |V(G)| \), then the spies win.

Obs 2: If \(s < |V(G)| \) and \(\lfloor r/m \rfloor > s \), then rev’s win.
Setup: r revolutionaries play against s spies on a graph G. Each rev. moves to a vertex, then each spy moves to a vertex.

Goal: Rev’s want to get m rev’s at a common vertex, with no spy.

Each turn: Each rev. moves/stays, then each spy moves/stays.

Obs 1: If $s \geq |V(G)|$, then the spies win.

Obs 2: If $s < |V(G)|$ and $\lfloor r/m \rfloor > s$, then rev’s win.

Ex: Say $m = 2$, $r = 8$, and $s = 3$.
Introduction

Setup: \(r \) revolutionaries play against \(s \) spies on a graph \(G \). Each rev. moves to a vertex, then each spy moves to a vertex.

Goal: Rev’s want to get \(m \) rev’s at a common vertex, with no spy.

Each turn: Each rev. moves/stays, then each spy moves/stays.

Obs 1: If \(s \geq |V(G)| \), then the spies win.

Obs 2: If \(s < |V(G)| \) and \(\lfloor r/m \rfloor > s \), then rev’s win.

Ex: Say \(m = 2, r = 8, \) and \(s = 3 \).
So we assume \(\lfloor r/m \rfloor \leq s < |V(G)| \).
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly.

Pf: One spy follows each mth rev. When rev's move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3, r = 13, s = 4$.

Ex: C_5 is not spy-friendly. Consider $m = 2, r = 3, s = 1$.

Lemma: For $k \geq 4$, C_k is not spy-friendly. . . but it's very close.
Spy-friendly Graphs

Def: A graph G is **spy-friendly** if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly.

Pf: One spy follows each mth rev. When rev’s move, spies repeat.
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly.

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3$, $r = 13$, $s = 4$.

![Diagram of a path graph with vertices connected by edges]
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly.

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3$, $r = 13$, $s = 4$.

```
  r r r  r r r  r  r r r  r  r r r  r
  ⬛ ⬛ ⬛  ⬛ ⬛ ⬛  ⬛  ⬛ ⬛ ⬛  ⬛ ⬛ ⬛
```
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly.

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3$, $r = 13$, $s = 4$.

![Diagram of a path graph with nodes labeled and arrows indicating movement. The diagram shows a sequence of moves where spies follow the mth rev.]
Spy-friendly Graphs

Def: A graph G is **spy-friendly** if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly.

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3, r = 13, s = 4$.

Ex: C_5 is not spy-friendly. Consider $m = 2, r = 3, s = 1$.

Lemma: For $k \geq 4$, C_k is not spy-friendly. . . but it’s very close.
Spy-friendly Graphs

Def: A graph G is **spy-friendly** if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly.

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3$, $r = 13$, $s = 4$.

```
r r  r  r r r  r  r  r r  r r
s  s  s
```
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly.

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3$, $r = 13$, $s = 4$.

\[\begin{array}{cccccccc}
 r & r & r & r & r & r & r & r \\
 s & s & s & s & s & s & s & s \\
\end{array} \]

Ex: C_5 is not spy-friendly. Consider $m = 2$, $r = 3$, $s = 1$.

Lemma: For $k \geq 4$, C_k is not spy-friendly. . . but it’s very close.
Spy-friendly Graphs

Def: A graph \(G \) is spy-friendly if the spies win on \(G \) for all integers \(m, r, s \) such that \(\lfloor r/m \rfloor \leq s \).

Thm 1: All paths are spy-friendly.

Pf: One spy follows each \(m \)th rev. When rev’s move, spies repeat.

Ex: \(P_9 \) is spy-friendly. Consider \(m = 3, r = 13, s = 4 \).

\[
r \rightarrow r \quad r \leftarrow r \rightarrow r \quad r \leftarrow r \rightarrow r \leftarrow r
\]
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\left\lfloor \frac{r}{m} \right\rfloor \leq s$.

Thm 1: All paths are spy-friendly.

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3, r = 13, s = 4$.

![Diagram of a path graph P_9 with nodes labeled and arrows indicating the movement of spies. The spies win for the given values of m, r, and s.](image-url)
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly.

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3$, $r = 13$, $s = 4$.

Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly.
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3, r = 13, s = 4$.

[Diagram of a path graph with nodes and edges labeled to illustrate the spy-friendly property]
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly.

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3$, $r = 13$, $s = 4$.

Ex: C_5 is not spy-friendly.

Consider $m = 2$, $r = 3$, $s = 1$.

Lemma: For $k \geq 4$, C_k is not spy-friendly. . . but it's very close.
Spy-friendly Graphs

Def: A graph G is **spy-friendly** if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly.

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3$, $r = 13$, $s = 4$.

```
  r  r  r  r  r  r  r  r
  s  s  s  s  s  s  s  s
```
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3$, $r = 13$, $s = 4$.

![Graph Diagram]
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3$, $r = 13$, $s = 4$.

Ex: C_5 is not spy-friendly.
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3, r = 13, s = 4$.

Ex: C_5 is not spy-friendly. Consider $m = 2, r = 3, s = 1$.
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3, r = 13, s = 4$.

Ex: C_5 is not spy-friendly. Consider $m = 2, r = 3, s = 1$.
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3$, $r = 13$, $s = 4$.

Ex: C_5 is not spy-friendly. Consider $m = 2$, $r = 3$, $s = 1$.
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3, r = 13, s = 4$.

Ex: C_5 is not spy-friendly.
Consider $m = 2, r = 3, s = 1$.
Spy-friendly Graphs

Def: A graph G is **spy-friendly** if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3, r = 13, s = 4$.

Ex: C_5 is not spy-friendly. Consider $m = 2, r = 3, s = 1$.
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)

Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3$, $r = 13$, $s = 4$.

Ex: C_5 is not spy-friendly. Consider $m = 2$, $r = 3$, $s = 1$.

Lemma:
For $k \geq 4$, C_k is not spy-friendly.
Spy-friendly Graphs

Def: A graph G is spy-friendly if the spies win on G for all integers m, r, s such that $\lfloor r/m \rfloor \leq s$.

Thm 1: All paths are spy-friendly. (True for trees, too.)
Pf: One spy follows each mth rev. When rev’s move, spies repeat.

Ex: P_9 is spy-friendly. Consider $m = 3, r = 13, s = 4$.

Ex: C_5 is not spy-friendly. Consider $m = 2, r = 3, s = 1$.

Lemma: For $k \geq 4$, C_k is not spy-friendly.

... but it’s very close.
Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\left\lceil \frac{r}{m} \right\rceil \leq s$.

Thm 3: All cycles are nearly spy-friendly.

Pf. idea: Same as for paths; one spy follows each mth rev.

Ex: Consider C_8, when $m = 2$, $r = 8$, and $s = 4$.

Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r/m \rceil \leq s$.

Thm 3: All cycles are nearly spy-friendly.
Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r/m \rceil \leq s$.

Thm 3: All cycles are nearly spy-friendly.

Pf. idea: Same as for paths; one spy follows each mth rev.
Nearly Spy-friendly Graphs

Def: A graph G is **nearly spy-friendly** if the spies win on G for all integers m, r, s such that $\lceil r/m \rceil \leq s$.

Thm 3: All cycles are nearly spy-friendly.

Pf. idea: Same as for paths; one spy follows each mth rev.

Ex: Consider C_8, when $m = 2$, $r = 8$, and $s = 4$.
Nearly Spy-friendly Graphs

Def: A graph G is **nearly spy-friendly** if the spies win on G for all integers m, r, s such that $\lceil r/m \rceil \leq s$.

Thm 3: All cycles are nearly spy-friendly.

Pf. idea: Same as for paths; one spy follows each mth rev.

Ex: Consider C_8, when $m = 2$, $r = 8$, and $s = 4$.
Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r/m \rceil \leq s$.

Thm 3: All cycles are nearly spy-friendly.

Pf. idea: Same as for paths; one spy follows each mth rev.

Ex: Consider C_8, when $m = 2$, $r = 8$, and $s = 4$.
Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r/m \rceil \leq s$.

Thm 3: All cycles are nearly spy-friendly.

Pf. idea: Same as for paths; one spy follows each mth rev.

Ex: Consider C_8, when $m = 2$, $r = 8$, and $s = 4$.
Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r/m \rceil \leq s$.

Thm 3: All cycles are nearly spy-friendly.

Pf. idea: Same as for paths; one spy follows each mth rev.

Ex: Consider C_8, when $m = 2, r = 8,$ and $s = 4.$
Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r/m \rceil \leq s$.

Thm 3: All cycles are nearly spy-friendly.

Pf. idea: Same as for paths; one spy follows each mth rev.

Ex: Consider C_8, when $m = 2, r = 8$, and $s = 4$. We can renumber the rev’s so they always stay in order.
 Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\left\lceil \frac{r}{m} \right\rceil \leq s$.

Thm 3: All cycles are nearly spy-friendly.

Pf. idea: Same as for paths; one spy follows each mth rev.

Ex: Consider C_8, when $m = 2$, $r = 8$, and $s = 4$. We can renumber the rev’s so they always stay in order.
Nearly Spy-friendly Graphs

Def: A graph G is nearly spy-friendly if the spies win on G for all integers m, r, s such that $\lceil r/m \rceil \leq s$.

Thm 3: All cycles are nearly spy-friendly.

Pf. idea: Same as for paths; one spy follows each mth rev.

Ex: Consider C_8, when $m = 2$, $r = 8$, and $s = 4$. We can renumber the rev’s so they always stay in order.
Playing on the Sun

Def: A sun is a cycle with paths hanging off some vertices.
Playing on the Sun

Def: A sun is a cycle with paths hanging off some vertices.

Thm 4: All suns are nearly spy-friendly. ($\lceil r/m \rceil$ spies can win)

Pf. idea: Use cycle strategy on cycle and path strategy on paths.

Ques: What if rev's move back and forth from the cycle to paths?
Playing on the Sun

Def: A sun is a cycle with paths hanging off some vertices.

Thm 4: All suns are nearly spy-friendly.

\[(\lceil r/m \rceil) \text{ spies can win}\]

Pf. idea: Use cycle strategy on cycle and path strategy on paths.

Ques: What if rev's move back and forth from the cycle to paths?
Def: A sun is a cycle with paths hanging off some vertices.

Thm 4: All suns are nearly spy-friendly. ([⌈r/m⌉] spies can win)
Playing on the Sun

Def: A *sun* is a cycle with paths hanging off some vertices.

Thm 4: All suns are nearly spy-friendly. \(\left(\lceil \frac{r}{m} \rceil \text{ spies can win} \right)

Pf. idea: Use cycle strategy on cycle and path strategy on paths.
Playing on the Sun

Def: A *sun* is a cycle with paths hanging off some vertices.

Thm 4: All suns are nearly spy-friendly. \((\lceil r/m \rceil \text{ spies can win})\)

Pf. idea: Use cycle strategy on cycle and path strategy on paths.

Ques: What if rev’s move back and forth from the cycle to paths?
Def: A sun is a cycle with paths hanging off some vertices.

Thm 4: All suns are nearly spy-friendly. ([r/m] spies can win)
Pf. idea: Use cycle strategy on cycle and path strategy on paths.
Ques: What if rev’s move back and forth from the cycle to paths?
Playing on the Sun (cont’d)

Key Insights (for cycles):
Say the spies have a good position on a cycle.
Key Insights (for cycles):
Say the spies have a good position on a cycle.

$m = 2$, $r = 8$, $s = 4$
Key Insights (for cycles):
Say the spies have a good position on a cycle.

$(m = 2, r = 8, s = 4)$

- If m new rev’s and 1 new spy appear on the same vertex of the cycle, the new position is still good for the spies.
Key Insights (for cycles):
Say the spies have a good position on a cycle.

If \(m \) new rev’s and 1 new spy appear on the same vertex of the cycle, the new position is still good for the spies.
Playing on the Sun (cont’d)

Key Insights (for cycles):
Say the spies have a good position on a cycle.

\[(m = 2, \ r = 8, \ s = 4)\]

- If \(m\) new rev’s and 1 new spy appear on the same vertex of the cycle, the new position is still good for the spies.
- Same is true if \(m\) rev’s and 1 spy disappear.
Key Insights (for cycles):
Say the spies have a good position on a cycle.

\[(m = 2, \quad r = 8, \quad s = 4)\]

- If \(m\) new rev’s and 1 new spy appear on the same vertex of the cycle, the new position is still good for the spies.
- Same is true if \(m\) rev’s and 1 spy disappear.
Playing on the Sun (cont’d)

Key Insights (for paths):
Suppose the spies have a good position on a path.

- If 1 new rev appears on far end, spies are still good unless \(m \mid r \).
- If \(m \mid r \), then spies are good if a new spy appears on the far end along with the new rev.
- We can also reverse these moves, and the spies remain good.
Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_9 with $m = 3$, $r = 13$, $s = 4$.

![Diagram showing a path with dots representing positions for the spies and moves on the path.

- If 1 new rev appears on far end, spies are still good unless $m | r$.
- If $m | r$, then spies are good if a new spy appears on the far end along with the new rev.
- We can also reverse these moves, and the spies remain good.
Playing on the Sun (cont’d)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_9 with $m = 3$, $r = 13$, $s = 4$.

If 1 new rev appears on far end, spies are still good unless $m | r$.
Playing on the Sun (cont’d)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_9 with $m = 3$, $r = 14$, $s = 4$.

If 1 new rev appears on far end, spies are still good unless $m \mid r$.
Playing on the Sun (cont’d)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: \(P_9 \) with \(m = 3, r = 14, s = 4 \).

- If 1 new rev appears on far end, spies are still good unless \(m | r \).
- If \(m | r \), then spies are good if a new spy appears on the far end along with the new rev.
Playing on the Sun (cont’d)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_9 with $m = 3$, $r = 15$, $s = 5$.

If 1 new rev appears on far end, spies are still good unless $m | r$.
If $m | r$, then spies are good if a new spy appears on the far end along with the new rev.
Playing on the Sun (cont’d)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_9 with $m = 3$, $r = 15$, $s = 5$.

If 1 new rev appears on far end, spies are still good unless $m | r$.
If $m | r$, then spies are good if a new spy appears on the far end along with the new rev.
We can also reverse these moves, and the spies remain good.
Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: \(P_9 \) with \(m = 3 \), \(r = 14 \), \(s = 4 \).

- If 1 new rev appears on far end, spies are still good unless \(m \mid r \).
- If \(m \mid r \), then spies are good if a new spy appears on the far end along with the new rev.
- We can also reverse these moves, and the spies remain good.
Playing on the Sun (cont’d)

Key Insights (for paths):
Suppose the spies have a good position on a path.

Ex: P_9 with $m = 3$, $r = 13$, $s = 4$.

- If 1 new rev appears on far end, spies are still good unless $m | r$.
- If $m | r$, then spies are good if a new spy appears on the far end along with the new rev.
- We can also reverse these moves, and the spies remain good.
Putting It All Together

Thm 4: All suns are nearly spy-friendly.

\[\left\lceil \frac{r}{m} \right\rceil \text{ spies can win} \]

\[\text{Pf. idea: Use cycle strategy on cycle and path strategy on paths.} \]

\(m = 2, r = 8, s = 4 \)
Putting It All Together

Thm 4: All suns are nearly spy-friendly. ([⌈r/m⌉ spies can win])
Putting It All Together

Thm 4: All suns are nearly spy-friendly. \((\lceil r/m \rceil \text{ spies can win})\)

Pf. idea: Use cycle strategy on cycle and path strategy on paths.
Putting It All Together

Thm 4: All suns are nearly spy-friendly. ([⌈r/m⌉] spies can win)

Pf. idea: Use cycle strategy on cycle and path strategy on paths.

\[
\begin{align*}
(m &= 2, \ r = 8, \ s = 4)
\end{align*}
\]
Putting It All Together

Thm 4: All suns are nearly spy-friendly. \(\lceil \frac{r}{m} \rceil \) spies can win

Pf. idea: Use cycle strategy on cycle and path strategy on paths.

\[(m = 2, \ r = 8, \ s = 4) \]
Putting It All Together

Thm 4: All suns are nearly spy-friendly. \(\left\lceil \frac{r}{m} \right\rceil \) spies can win

Pf. idea: Use cycle strategy on cycle and path strategy on paths.

\[(m = 2, r = 8, s = 4)\]
Putting It All Together

Thm 4: All suns are nearly spy-friendly. \([\lceil r/m \rceil]\) spies can win

Pf. idea: Use cycle strategy on cycle and path strategy on paths.

\[(m = 2, \ r = 8, \ s = 4)\]
Thm 4: All suns are nearly spy-friendly. \(\lceil r/m \rceil \) spies can win.

Pf. idea: Use cycle strategy on cycle and path strategy on paths.

\((m = 2, \ r = 8, \ s = 4) \)
Putting It All Together

Thm 4: All suns are nearly spy-friendly. \([\lceil r/m \rceil\) spies can win\)](\(r/m\) spies can win)

Pf. idea: Use cycle strategy on cycle and path strategy on paths.

\[
\begin{align*}
(\(m = 2, r = 8, s = 4\))
\end{align*}
\]
Putting It All Together

Thm 4: All suns are nearly spy-friendly. \(\lceil r/m \rceil \text{ spies can win} \)

Pf. idea: Use cycle strategy on cycle and path strategy on paths.

\[(m = 2, r = 8, s = 4)\]
Thm 4: All suns are nearly spy-friendly. \((\lceil r/m \rceil \text{ spies can win})\)

Pf. idea: Use cycle strategy on cycle and path strategy on paths.

\[(m = 2, \ r = 8, \ s = 4) \]