Planar graphs are 9/2-colorable

Daniel W. Cranston Virginia Commonwealth University dcranston@vcu.edu

Joint with Landon Rabern Slides available on my webpage

Connections in Discrete Math Simon Fraser 16 June 2015

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable.

Pf: Add edges to get a triangulation.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable. **Pf:** Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n.$

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable. **Pf:** Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n-6) < 6n$. So some vertex *v* is a 5⁻-vertex.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable. **Pf:** Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n$. So some vertex *v* is a 5⁻-vertex. When *v* is a 4⁻-vertex, we 5-color *G* - *v* by induction, then color *v*.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = {5 \choose 2}$.)

Thm: Every planar graph *G* is 5-colorable. **Pf:** Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n$. So some vertex *v* is a 5⁻-vertex. When *v* is a 4⁻-vertex, we 5-color *G* - *v* by induction, then color *v*. Now, since K_5 is non-planar, *v* has non-adjacent neighbors w_1 and w_2 .

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = {5 \choose 2}$.)

Thm: Every planar graph *G* is 5-colorable. **Pf:** Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n$. So some vertex *v* is a 5⁻-vertex. When *v* is a 4⁻-vertex, we 5-color *G* - *v* by induction, then color *v*. Now, since *K*₅ is non-planar, *v* has non-adjacent neighbors *w*₁ and *w*₂. Contract *vw*₁ and *vw*₂;

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable. **Pf:** Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n$. So some vertex *v* is a 5⁻-vertex. When *v* is a 4⁻-vertex, we 5-color *G* - *v* by induction, then color *v*. Now, since *K*₅ is non-planar, *v* has non-adjacent neighbors *w*₁ and *w*₂. Contract *vw*₁ and *vw*₂; 5-color by induction.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = \binom{5}{2}$.)

Thm: Every planar graph *G* is 5-colorable. **Pf:** Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n$. So some vertex *v* is a 5⁻-vertex. When *v* is a 4⁻-vertex, we 5-color *G* - *v* by induction, then color *v*. Now, since K_5 is non-planar, *v* has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ; 5-color by induction. This gives 5-coloring of G - v.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = {5 \choose 2}$.)

Thm: Every planar graph *G* is 5-colorable. **Pf:** Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n$. So some vertex *v* is a 5⁻-vertex. When *v* is a 4⁻-vertex, we 5-color *G* - *v* by induction, then color *v*. Now, since *K*₅ is non-planar, *v* has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ; 5-color by induction. This gives 5-coloring of *G* - *v*. Now extend to *v*, since w_1 and w_2 have same color.

Fact 1: Every *n*-vertex triangulation has 3n - 6 edges. **Cor:** K_5 is non-planar. (Since $3(5) - 6 = 9 < 10 = {5 \choose 2}$.)

Thm: Every planar graph *G* is 5-colorable. **Pf:** Add edges to get a triangulation. Now $\sum_{v \in V} d(v) = 2|E| = 2(3n - 6) < 6n$. So some vertex *v* is a 5⁻-vertex. When *v* is a 4⁻-vertex, we 5-color *G* - *v* by induction, then color *v*. Now, since *K*₅ is non-planar, *v* has non-adjacent neighbors w_1 and w_2 . Contract vw_1 and vw_2 ; 5-color by induction. This gives 5-coloring of *G* - *v*. Now extend to *v*, since w_1 and w_2 have same color.

4CT is hard and 5CT is easy. What's in between?

Two-fold coloring: color vertex "half red and half blue"

- Two-fold coloring: color vertex "half red and half blue"
 - ▶ 5CT implies that 10 colors suffice

- Two-fold coloring: color vertex "half red and half blue"
 - ▶ 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice

- Two-fold coloring: color vertex "half red and half blue"
 - ▶ 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{t:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{t:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{t:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

Want $f: V(G) \rightarrow V(K_{t:k})$ where $f(u)f(v) \in E(K_{t:k})$ if $uv \in E(G)$.

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{t:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

Want $f: V(G) \rightarrow V(K_{t:k})$ where $f(u)f(v) \in E(K_{t:k})$ if $uv \in E(G)$.

We'll show that planar graphs have a map to $K_{9:2}$.

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"
 - 5CT implies that 10 colors suffice
 - 4CT implies that 8 colors suffice
 - $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{t:k}$ has as vertices the *k*-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

Want $f: V(G) \rightarrow V(K_{t:k})$ where $f(u)f(v) \in E(K_{t:k})$ if $uv \in E(G)$.

We'll show that planar graphs have a map to $K_{9:2}$. *G* is *t*-colorable iff *G* has homomorphism to K_t .

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:**

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:** Induction on *n*, like 5CT. If we can't do induction, then *G*:

1. has minimum degree 5

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can't do induction, then G:

- 1. has minimum degree 5
- 2. has no separating triangle

Thm: Every planar graph has a homomorphism to $K_{9:2}$. **Pf:** Induction on *n*, like 5CT. If we can't do induction, then *G*:

- 1. has minimum degree 5
- 2. has no separating triangle
- 3. can't have "too many 6⁻-vertices near each other"

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

Pf: Induction on n, like 5CT. If we can't do induction, then G:

- 1. has minimum degree 5
- 2. has no separating triangle
- 3. can't have "too many 6⁻-vertices near each other"
 - \blacktriangleright has no 5-vertex with a 5-nbr and a non-adjacent 6⁻-nbr

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

- **Pf:** Induction on *n*, like 5CT. If we can't do induction, then *G*:
 - 1. has minimum degree 5
 - 2. has no separating triangle
 - 3. can't have "too many 6⁻-vertices near each other"
 - ▶ has no 5-vertex with a 5-nbr and a non-adjacent 6⁻-nbr
 - has no 6-vertex with two non-adjacent 6⁻-nbrs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

- **Pf:** Induction on *n*, like 5CT. If we can't do induction, then *G*:
 - 1. has minimum degree 5
 - 2. has no separating triangle
 - 3. can't have "too many 6⁻-vertices near each other"
 - ▶ has no 5-vertex with a 5-nbr and a non-adjacent 6⁻-nbr
 - has no 6-vertex with two non-adjacent 6⁻-nbrs
 - ▶ has no 7-vertex with a 5-nbr and two non-adjacent 6⁻-nbrs

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

- **Pf:** Induction on *n*, like 5CT. If we can't do induction, then *G*:
 - 1. has minimum degree 5
 - 2. has no separating triangle
 - 3. can't have "too many 6⁻-vertices near each other"
 - ▶ has no 5-vertex with a 5-nbr and a non-adjacent 6⁻-nbr
 - has no 6-vertex with two non-adjacent 6⁻-nbrs
 - ▶ has no 7-vertex with a 5-nbr and two non-adjacent 6⁻-nbrs

if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G
Thm: Every planar graph has a homomorphism to $K_{9:2}$.

- **Pf:** Induction on n, like 5CT. If we can't do induction, then G:
 - 1. has minimum degree 5
 - 2. has no separating triangle
 - 3. can't have "too many 6⁻-vertices near each other"
 - ▶ has no 5-vertex with a 5-nbr and a non-adjacent 6⁻-nbr
 - has no 6-vertex with two non-adjacent 6⁻-nbrs
 - \blacktriangleright has no 7-vertex with a 5-nbr and two non-adjacent 6⁻-nbrs

if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

- **Pf:** Induction on n, like 5CT. If we can't do induction, then G:
 - 1. has minimum degree 5
 - 2. has no separating triangle
 - 3. can't have "too many 6⁻-vertices near each other"
 - has no 5-vertex with a 5-nbr and a non-adjacent 6⁻-nbr
 - has no 6-vertex with two non-adjacent 6⁻-nbrs
 - \blacktriangleright has no 7-vertex with a 5-nbr and two non-adjacent 6^--nbrs

if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

• each v gets
$$ch(v) = d(v) - 6$$
, so $\sum_{v \in V} ch(v) = -12$

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

- **Pf:** Induction on *n*, like 5CT. If we can't do induction, then *G*:
 - 1. has minimum degree 5
 - 2. has no separating triangle
 - 3. can't have "too many 6⁻-vertices near each other"
 - has no 5-vertex with a 5-nbr and a non-adjacent 6⁻-nbr
 - has no 6-vertex with two non-adjacent 6⁻-nbrs
 - \blacktriangleright has no 7-vertex with a 5-nbr and two non-adjacent 6⁻-nbrs

if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

- each v gets ch(v) = d(v) 6, so $\sum_{v \in V} ch(v) = -12$
- redistribute charge, so every vertex finishes nonnegative

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

- **Pf:** Induction on n, like 5CT. If we can't do induction, then G:
 - 1. has minimum degree 5
 - 2. has no separating triangle
 - 3. can't have "too many 6⁻-vertices near each other"
 - has no 5-vertex with a 5-nbr and a non-adjacent 6⁻-nbr
 - has no 6-vertex with two non-adjacent 6⁻-nbrs
 - \blacktriangleright has no 7-vertex with a 5-nbr and two non-adjacent 6^--nbrs

if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

- each v gets ch(v) = d(v) 6, so $\sum_{v \in V} ch(v) = -12$
- redistribute charge, so every vertex finishes nonnegative
- Now $-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \ge 0$,

Thm: Every planar graph has a homomorphism to $K_{9:2}$.

- **Pf:** Induction on n, like 5CT. If we can't do induction, then G:
 - 1. has minimum degree 5
 - 2. has no separating triangle
 - 3. can't have "too many 6⁻-vertices near each other"
 - has no 5-vertex with a 5-nbr and a non-adjacent 6⁻-nbr
 - has no 6-vertex with two non-adjacent 6⁻-nbrs
 - \blacktriangleright has no 7-vertex with a 5-nbr and two non-adjacent 6^--nbrs

if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to ${\cal G}$

Use discharging method to contradict (1), (2), or (3).

- each v gets ch(v) = d(v) 6, so $\sum_{v \in V} ch(v) = -12$
- redistribute charge, so every vertex finishes nonnegative

▶ Now $-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \ge 0$, Contradiction!

Too many 6^- -vertices near each other

Key Fact: Denote the center vertex of \checkmark by *v* and the other vertices by u_1, u_2, u_3 .

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 .

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3)

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3) Now give v another color not available for u_1 .

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3) Now give v another color not available for u_1 . Now color each u_i .

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3) Now give v another color not available for u_1 . Now color each u_i .

Key Fact: Denote the center vertex of \checkmark by v and the other vertices by u_1, u_2, u_3 . If v has 5 allowable colors and each u_i has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one u_i , say u_1 . 2(5) > 3(3) Now give v another color not available for u_1 . Now color each u_i .

Each v gets ch(v) = d(v) - 6.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v. A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_v .

(R1) Each 8⁺-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

- (R1) Each 8⁺-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
- (R2) Each 7-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

- (R1) Each 8⁺-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
- (R2) Each 7-vertex gives charge ¹/₂ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge ¹/₄ to each remaining 5-nbr.
 (R3) Each 7⁺-vertex gives charge ¹/₄ to each 6-nbr.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

- (R1) Each 8⁺-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
- (R2) Each 7-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.
- (R3) Each 7⁺-vertex gives charge $\frac{1}{4}$ to each 6-nbr.
- (R4) Each 6-vertex gives charge $\frac{1}{2}$ to each 5-nbr.

Each v gets ch(v) = d(v) - 6. Now 5-vertices need 1 from nbrs.

Def: H_v is subgraph induced by 6⁻-nbrs of v. If $d_{H_v}(w) = 0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v. A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_v .

- (R1) Each 8⁺-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
- (R2) Each 7-vertex gives charge $\frac{1}{2}$ to each isolated 5-nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.
- (R3) Each 7⁺-vertex gives charge $\frac{1}{4}$ to each 6-nbr.
- (R4) Each 6-vertex gives charge $\frac{1}{2}$ to each 5-nbr.

Now show that $ch^*(v) \ge 0$ for all v.

Coloring planar graphs

- Coloring planar graphs
 - ► 5CT is easy, 4CT is hard

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - induction on n, like 5CT; multiple possible induction steps

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible
- Induction step is possible unless G has
- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - induction on n, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible
- Induction step is possible unless G has
 - ▶ no 4⁻-vertex, no separating 3-cycle

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - induction on n, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible
- Induction step is possible unless G has
 - ▶ no 4⁻-vertex, no separating 3-cycle
 - ▶ few 6⁻-verts near each other; Key Fact for coloring ◄

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible
- Induction step is possible unless G has
 - ▶ no 4⁻-vertex, no separating 3-cycle
 - ▶ few 6⁻-verts near each other; Key Fact for coloring ●
- 4

Discharging Phase

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible
- Induction step is possible unless G has
 - ▶ no 4⁻-vertex, no separating 3-cycle
 - ▶ few 6⁻-verts near each other; Key Fact for coloring ●
- 4

- Discharging Phase
 - gives ch(v) = d(v) 6, so $\sum_{v \in V} ch(v) = -12$

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible
- Induction step is possible unless G has
 - ▶ no 4⁻-vertex, no separating 3-cycle
 - ▶ few 6⁻-verts near each other; Key Fact for coloring ●
- 4

- Discharging Phase
 - gives ch(v) = d(v) 6, so $\sum_{v \in V} ch(v) = -12$
 - redistribute charge, so $ch^*(v) \ge 0$

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible
- Induction step is possible unless G has
 - ▶ no 4⁻-vertex, no separating 3-cycle
 - ▶ few 6⁻-verts near each other; Key Fact for coloring ●
- 4

- Discharging Phase
 - gives ch(v) = d(v) 6, so $\sum_{v \in V} ch(v) = -12$
 - redistribute charge, so $ch^*(v) \ge 0$
 - so $-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \ge 0$,

- Coloring planar graphs
 - ▶ 5CT is easy, 4CT is hard; What's in between?
 - Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$ -colorable (homomorphism to $K_{9:2}$)
 - ▶ induction on *n*, like 5CT; multiple possible induction steps
 - discharging proves that induction is always possible
- Induction step is possible unless G has
 - ▶ no 4⁻-vertex, no separating 3-cycle
 - ▶ few 6⁻-verts near each other; Key Fact for coloring <</p>
- 4

- Discharging Phase
 - gives ch(v) = d(v) 6, so $\sum_{v \in V} ch(v) = -12$
 - redistribute charge, so $ch^*(v) \ge 0$
 - so $-12 = \sum_{v \in V} ch(v) = \sum_{v \in V} ch^*(v) \ge 0$, Contradiction!