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The 5 Color Theorem

Fact 1: Every n-vertex triangulation has 3n − 6 edges.
Cor: K5 is non-planar. (Since 3(5)− 6 = 9 < 10 =

(5
2

)
.)

Thm: Every planar graph G is 5-colorable.

w1 w2

−
→
−
→
←
−

w1/w2

Pf: Add edges to get a triangulation. Now∑
v∈V d(v) = 2|E | = 2(3n − 6) < 6n.

So some vertex v is a 5−-vertex. When v is
a 4−-vertex, we 5-color G − v by induction,
then color v . Now, since K5 is non-planar,
v has non-adjacent neighbors w1 and w2.
Contract vw1 and vw2; 5-color by induction.
This gives 5-coloring of G − v . Now extend
to v , since w1 and w2 have same color. �
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Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What’s in between?
I Two-fold coloring: color vertex “half red and half blue”

I 5CT implies that 10 colors suffice
I 4CT implies that 8 colors suffice
I 9

2CT will show that 9 colors suffice.

Def: The Kneser graph Kt:k has as
vertices the k-element subsets of
{1, . . . , t}. Vertices are adjacent
whenever their sets are disjoint. 2 5

2 4 1 4

1 3

3 5
3 4

1 5 2 3

4 5

1 2

Want f : V (G )→ V (Kt:k) where
f (u)f (v) ∈ E (Kt:k) if uv ∈ E (G ).

We’ll show that planar graphs have a map to K9:2.
G is t-colorable iff G has homomorphism to Kt .
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9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.

Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf:

Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr

I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs

I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0,

Contradiction!



9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to K9:2.
Pf: Induction on n, like 5CT. If we can’t do induction, then G :

1. has minimum degree 5

2. has no separating triangle

3. can’t have “too many 6−-vertices near each other”

I has no 5-vertex with a 5-nbr and a non-adjacent 6−-nbr
I has no 6-vertex with two non-adjacent 6−-nbrs
I has no 7-vertex with a 5-nbr and two non-adjacent 6−-nbrs

if so, then contract some non-adjacent pairs of nbrs;
color smaller graph by induction, then extend to G

Use discharging method to contradict (1), (2), or (3).

I each v gets ch(v) = d(v)− 6, so
∑

v∈V ch(v) = −12

I redistribute charge, so every vertex finishes nonnegative

I Now −12 =
∑

v∈V ch(v) =
∑

v∈V ch∗(v) ≥ 0, Contradiction!



Too many 6−-vertices near each other

Key Fact: Denote the center vertex of by v and the other

vertices by u1, u2, u3. If v has 5 allowable colors and each ui has
3 allowable colors, then we can color each vertex with 2 colors,
such that no color appears on both ends of an edge.

Pf: Give v a color available for at most one ui , say u1. 2(5) > 3(3)
Now give v another color not available for u1. Now color each ui .
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Discharging

Each v gets ch(v) = d(v)− 6. Now 5-vertices need 1 from nbrs.

Def: Hv is subgraph induced by 6−-nbrs of v .

If dHv (w) = 0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v .
A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in Hv .

v

6 5

67+

6
6

7+

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-nbr and

charge 1
4 to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge 1
4 to each remaining 5-nbr.

(R3) Each 7+-vertex gives charge 1
4 to each 6-nbr.

(R4) Each 6-vertex gives charge 1
2 to each 5-nbr.

Now show that ch∗(v) ≥ 0 for all v .



Discharging

Each v gets ch(v) = d(v)− 6.

Now 5-vertices need 1 from nbrs.

Def: Hv is subgraph induced by 6−-nbrs of v .

If dHv (w) = 0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v .
A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in Hv .

v

6 5

67+

6
6

7+

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-nbr and

charge 1
4 to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge 1
4 to each remaining 5-nbr.

(R3) Each 7+-vertex gives charge 1
4 to each 6-nbr.

(R4) Each 6-vertex gives charge 1
2 to each 5-nbr.

Now show that ch∗(v) ≥ 0 for all v .



Discharging

Each v gets ch(v) = d(v)− 6. Now 5-vertices need 1 from nbrs.

Def: Hv is subgraph induced by 6−-nbrs of v .

If dHv (w) = 0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v .
A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in Hv .

v

6 5

67+

6
6

7+

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-nbr and

charge 1
4 to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge 1
4 to each remaining 5-nbr.

(R3) Each 7+-vertex gives charge 1
4 to each 6-nbr.

(R4) Each 6-vertex gives charge 1
2 to each 5-nbr.

Now show that ch∗(v) ≥ 0 for all v .



Discharging

Each v gets ch(v) = d(v)− 6. Now 5-vertices need 1 from nbrs.

Def: Hv is subgraph induced by 6−-nbrs of v .

If dHv (w) = 0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v .
A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in Hv .

v

6 5

67+

6
6

7+

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-nbr and

charge 1
4 to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge 1
4 to each remaining 5-nbr.

(R3) Each 7+-vertex gives charge 1
4 to each 6-nbr.

(R4) Each 6-vertex gives charge 1
2 to each 5-nbr.

Now show that ch∗(v) ≥ 0 for all v .



Discharging

Each v gets ch(v) = d(v)− 6. Now 5-vertices need 1 from nbrs.

Def: Hv is subgraph induced by 6−-nbrs of v .

If dHv (w) = 0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v .
A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in Hv .

v

6 5

67+

6
6

7+

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-nbr and

charge 1
4 to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge 1
4 to each remaining 5-nbr.

(R3) Each 7+-vertex gives charge 1
4 to each 6-nbr.

(R4) Each 6-vertex gives charge 1
2 to each 5-nbr.

Now show that ch∗(v) ≥ 0 for all v .



Discharging

Each v gets ch(v) = d(v)− 6. Now 5-vertices need 1 from nbrs.

Def: Hv is subgraph induced by 6−-nbrs of v .
If dHv (w) = 0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v .

A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in Hv .

v

6 5

67+

6
6

7+

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-nbr and

charge 1
4 to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge 1
4 to each remaining 5-nbr.

(R3) Each 7+-vertex gives charge 1
4 to each 6-nbr.

(R4) Each 6-vertex gives charge 1
2 to each 5-nbr.

Now show that ch∗(v) ≥ 0 for all v .



Discharging

Each v gets ch(v) = d(v)− 6. Now 5-vertices need 1 from nbrs.

Def: Hv is subgraph induced by 6−-nbrs of v .
If dHv (w) = 0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v .
A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in Hv .

v

6 5

67+

6
6

7+

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-nbr and

charge 1
4 to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge 1
4 to each remaining 5-nbr.

(R3) Each 7+-vertex gives charge 1
4 to each 6-nbr.

(R4) Each 6-vertex gives charge 1
2 to each 5-nbr.

Now show that ch∗(v) ≥ 0 for all v .



Discharging

Each v gets ch(v) = d(v)− 6. Now 5-vertices need 1 from nbrs.

Def: Hv is subgraph induced by 6−-nbrs of v .
If dHv (w) = 0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v .
A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in Hv .

v

6 5

67+

6
6

7+

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-nbr and

charge 1
4 to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge 1
4 to each remaining 5-nbr.

(R3) Each 7+-vertex gives charge 1
4 to each 6-nbr.

(R4) Each 6-vertex gives charge 1
2 to each 5-nbr.

Now show that ch∗(v) ≥ 0 for all v .



Discharging

Each v gets ch(v) = d(v)− 6. Now 5-vertices need 1 from nbrs.

Def: Hv is subgraph induced by 6−-nbrs of v .
If dHv (w) = 0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v .
A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in Hv .

v

6 5

67+

6
6

7+

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-nbr and

charge 1
4 to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge 1
4 to each remaining 5-nbr.

(R3) Each 7+-vertex gives charge 1
4 to each 6-nbr.

(R4) Each 6-vertex gives charge 1
2 to each 5-nbr.

Now show that ch∗(v) ≥ 0 for all v .



Discharging

Each v gets ch(v) = d(v)− 6. Now 5-vertices need 1 from nbrs.

Def: Hv is subgraph induced by 6−-nbrs of v .
If dHv (w) = 0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v .
A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in Hv .

v

6 5

67+

6
6

7+

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-nbr and

charge 1
4 to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge 1
4 to each remaining 5-nbr.

(R3) Each 7+-vertex gives charge 1
4 to each 6-nbr.

(R4) Each 6-vertex gives charge 1
2 to each 5-nbr.

Now show that ch∗(v) ≥ 0 for all v .



Discharging

Each v gets ch(v) = d(v)− 6. Now 5-vertices need 1 from nbrs.

Def: Hv is subgraph induced by 6−-nbrs of v .
If dHv (w) = 0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v .
A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in Hv .

v

6 5

67+

6
6

7+

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-nbr and

charge 1
4 to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge 1
4 to each remaining 5-nbr.

(R3) Each 7+-vertex gives charge 1
4 to each 6-nbr.

(R4) Each 6-vertex gives charge 1
2 to each 5-nbr.

Now show that ch∗(v) ≥ 0 for all v .



Discharging

Each v gets ch(v) = d(v)− 6. Now 5-vertices need 1 from nbrs.

Def: Hv is subgraph induced by 6−-nbrs of v .
If dHv (w) = 0, then w is isolated nbr of v;
otherwise w is non-isolated nbr of v .
A non-isolated 5-nbr of vertex v is crowded
(w.r.t. v) if it has two 6-nbrs in Hv .

v

6 5

67+

6
6

7+

(R1) Each 8+-vertex gives charge 1
2 to each isolated 5-nbr and

charge 1
4 to each non-isolated 5-nbr.

(R2) Each 7-vertex gives charge 1
2 to each isolated 5-nbr, charge 0

to each crowded 5-nbr and charge 1
4 to each remaining 5-nbr.

(R3) Each 7+-vertex gives charge 1
4 to each 6-nbr.

(R4) Each 6-vertex gives charge 1
2 to each 5-nbr.

Now show that ch∗(v) ≥ 0 for all v .



Summary

I Coloring planar graphs
I 5CT is easy, 4CT is hard; What’s in between?
I Two-fold coloring: vertex is half red, half blue

I Planar graphs are 9
2 -colorable (homomorphism to K9:2)

I induction on n, like 5CT; multiple possible induction steps
I discharging proves that induction is always possible

I Induction step is possible unless G has
I no 4−-vertex, no separating 3-cycle

I few 6−-verts near each other; Key Fact for coloring

I Discharging Phase
I gives ch(v) = d(v)− 6, so

∑
v∈V ch(v) = −12

I redistribute charge, so ch∗(v) ≥ 0
I so −12 =

∑
v∈V ch(v) =

∑
v∈V ch∗(v) ≥ 0, Contradiction!
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