Planar graphs are 9/2-colorable

Daniel W. Cranston
Virginia Commonwealth University dcranston@vcu.edu
Joint with Landon Rabern
Slides available on my webpage
Connections in Discrete Math
Simon Fraser
16 June 2015

The 5 Color Theorem

The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3 n-6$ edges.

The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3 n-6$ edges.
Cor: K_{5} is non-planar. (Since $3(5)-6=9<10=\binom{5}{2}$.)

The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3 n-6$ edges.
Cor: K_{5} is non-planar. (Since $3(5)-6=9<10=\binom{5}{2}$.)
Thm: Every planar graph G is 5-colorable.

The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3 n-6$ edges.
Cor: K_{5} is non-planar. (Since $3(5)-6=9<10=\binom{5}{2}$.)
Thm: Every planar graph G is 5-colorable. Pf: Add edges to get a triangulation.

The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3 n-6$ edges.
Cor: K_{5} is non-planar. (Since $3(5)-6=9<10=\binom{5}{2}$.)
Thm: Every planar graph G is 5-colorable. Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v)=2|E|=2(3 n-6)<6 n$.

The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3 n-6$ edges.
Cor: K_{5} is non-planar. (Since $3(5)-6=9<10=\binom{5}{2}$.)
Thm: Every planar graph G is 5-colorable. Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v)=2|E|=2(3 n-6)<6 n$.
So some vertex v is a 5^{-}-vertex.

The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3 n-6$ edges.
Cor: K_{5} is non-planar. (Since $3(5)-6=9<10=\binom{5}{2}$.)
Thm: Every planar graph G is 5-colorable. Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v)=2|E|=2(3 n-6)<6 n$.
So some vertex v is a 5^{-}-vertex. When v is
 a 4^{-}-vertex, we 5 -color $G-v$ by induction, then color v.

The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3 n-6$ edges.
Cor: K_{5} is non-planar. (Since $3(5)-6=9<10=\binom{5}{2}$.)
Thm: Every planar graph G is 5-colorable. Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v)=2|E|=2(3 n-6)<6 n$.
So some vertex v is a 5^{-}-vertex. When v is
 a 4^{-}-vertex, we 5 -color $G-v$ by induction, then color v. Now, since K_{5} is non-planar, v has non-adjacent neighbors w_{1} and w_{2}.

The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3 n-6$ edges.
Cor: K_{5} is non-planar. (Since $3(5)-6=9<10=\binom{5}{2}$.)
Thm: Every planar graph G is 5-colorable. Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v)=2|E|=2(3 n-6)<6 n$.
So some vertex v is a 5^{-}-vertex. When v is a 4^{-}-vertex, we 5 -color $G-v$ by induction, then color v. Now, since K_{5} is non-planar, v has non-adjacent neighbors w_{1} and w_{2}. Contract $v w_{1}$ and $v w_{2}$;

The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3 n-6$ edges.
Cor: K_{5} is non-planar. (Since $3(5)-6=9<10=\binom{5}{2}$.)
Thm: Every planar graph G is 5-colorable. Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v)=2|E|=2(3 n-6)<6 n$.
So some vertex v is a 5^{-}-vertex. When v is a 4^{-}-vertex, we 5 -color $G-v$ by induction, then color v. Now, since K_{5} is non-planar, v has non-adjacent neighbors w_{1} and w_{2}. Contract $v w_{1}$ and $v w_{2} ; 5$-color by induction.

The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3 n-6$ edges.
Cor: K_{5} is non-planar. (Since $3(5)-6=9<10=\binom{5}{2}$.)
Thm: Every planar graph G is 5-colorable. Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v)=2|E|=2(3 n-6)<6 n$.
So some vertex v is a 5^{-}-vertex. When v is a 4^{-}-vertex, we 5 -color $G-v$ by induction, then color v. Now, since K_{5} is non-planar, v has non-adjacent neighbors w_{1} and w_{2}. Contract $v w_{1}$ and $v w_{2}$; 5-color by induction. This gives 5-coloring of $G-v$.

The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3 n-6$ edges.
Cor: K_{5} is non-planar. (Since $3(5)-6=9<10=\binom{5}{2}$.)
Thm: Every planar graph G is 5-colorable. Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v)=2|E|=2(3 n-6)<6 n$.
So some vertex v is a 5^{-}-vertex. When v is a 4^{-}-vertex, we 5 -color $G-v$ by induction, then color v. Now, since K_{5} is non-planar, v has non-adjacent neighbors w_{1} and w_{2}. Contract $v w_{1}$ and $v w_{2} ; 5$-color by induction. This gives 5 -coloring of $G-v$. Now extend to v, since w_{1} and w_{2} have same color.

The 5 Color Theorem

Fact 1: Every n-vertex triangulation has $3 n-6$ edges.
Cor: K_{5} is non-planar. (Since $3(5)-6=9<10=\binom{5}{2}$.)
Thm: Every planar graph G is 5-colorable. Pf: Add edges to get a triangulation. Now $\sum_{v \in V} d(v)=2|E|=2(3 n-6)<6 n$.
So some vertex v is a 5^{-}-vertex. When v is a 4^{-}-vertex, we 5 -color $G-v$ by induction, then color v. Now, since K_{5} is non-planar, v has non-adjacent neighbors w_{1} and w_{2}. Contract $v w_{1}$ and $v w_{2} ; 5$-color by induction. This gives 5 -coloring of $G-v$. Now extend to v, since w_{1} and w_{2} have same color.

Between 4 Color Theorem and 5 Color Theorem

Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What's in between?

Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"

Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"
- 5CT implies that 10 colors suffice

Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"
- 5CT implies that 10 colors suffice
- 4CT implies that 8 colors suffice

Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"
- 5CT implies that 10 colors suffice
- 4CT implies that 8 colors suffice
- ${ }_{2}^{2}$ CT will show that 9 colors suffice.

Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"
- 5CT implies that 10 colors suffice
- 4CT implies that 8 colors suffice
- $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{t: k}$ has as vertices the k-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"
- 5CT implies that 10 colors suffice
- 4CT implies that 8 colors suffice
- ${ }_{2}^{2} \mathrm{CT}$ will show that 9 colors suffice.

Def: The Kneser graph $K_{t: k}$ has as vertices the k-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"
- 5CT implies that 10 colors suffice
- 4CT implies that 8 colors suffice
- ${ }_{2}^{2} \mathrm{CT}$ will show that 9 colors suffice.

Def: The Kneser graph $K_{t: k}$ has as vertices the k-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

> Want $f: V(G) \rightarrow V\left(K_{t: k}\right)$ where $f(u) f(v) \in E\left(K_{t: k}\right)$ if $u v \in E(G)$.

Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"
- 5CT implies that 10 colors suffice
- 4CT implies that 8 colors suffice
- ${ }_{2}^{2} \mathrm{CT}$ will show that 9 colors suffice.

Def: The Kneser graph $K_{t: k}$ has as vertices the k-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

$$
\begin{aligned}
& \text { Want } f: V(G) \rightarrow V\left(K_{t: k}\right) \text { where } \\
& f(u) f(v) \in E\left(K_{t: k}\right) \text { if } u v \in E(G) .
\end{aligned}
$$

We'll show that planar graphs have a map to $K_{9: 2}$.

Between 4 Color Theorem and 5 Color Theorem

4CT is hard and 5CT is easy. What's in between?

- Two-fold coloring: color vertex "half red and half blue"
- 5CT implies that 10 colors suffice
- 4CT implies that 8 colors suffice
- $\frac{9}{2}$ CT will show that 9 colors suffice.

Def: The Kneser graph $K_{t: k}$ has as vertices the k-element subsets of $\{1, \ldots, t\}$. Vertices are adjacent whenever their sets are disjoint.

Want $f: V(G) \rightarrow V\left(K_{t: k}\right)$ where $f(u) f(v) \in E\left(K_{t: k}\right)$ if $u v \in E(G)$.

We'll show that planar graphs have a map to $K_{9: 2}$.
G is t-colorable iff G has homomorphism to K_{t}.

9/2-coloring planar graphs

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$.

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$. Pf:

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$. Pf: Induction on n, like 5CT. If we can't do induction, then G :

1. has minimum degree 5

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$. Pf: Induction on n, like 5CT. If we can't do induction, then G :

1. has minimum degree 5
2. has no separating triangle

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$. Pf: Induction on n, like 5CT. If we can't do induction, then G :

1. has minimum degree 5
2. has no separating triangle
3. can't have "too many 6^{-}-vertices near each other"

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$.
Pf: Induction on n, like 5CT. If we can't do induction, then G :

1. has minimum degree 5
2. has no separating triangle
3. can't have "too many 6^{-}-vertices near each other"

- has no 5 -vertex with a 5 -nbr and a non-adjacent 6^{-}-nbr

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$. Pf: Induction on n, like 5CT. If we can't do induction, then G :

1. has minimum degree 5
2. has no separating triangle
3. can't have "too many 6^{-}-vertices near each other"

- has no 5 -vertex with a 5 -nbr and a non-adjacent 6^{-}-nbr
- has no 6 -vertex with two non-adjacent 6^{-}-nbrs

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$. Pf: Induction on n, like 5CT. If we can't do induction, then G :

1. has minimum degree 5
2. has no separating triangle
3. can't have "too many 6^{-}-vertices near each other"

- has no 5 -vertex with a 5 -nbr and a non-adjacent 6^{-}-nbr
- has no 6 -vertex with two non-adjacent 6^{-}-nbrs
- has no 7 -vertex with a 5 -nbr and two non-adjacent 6^{-}-nbrs

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$. Pf: Induction on n, like 5CT. If we can't do induction, then G :

1. has minimum degree 5
2. has no separating triangle
3. can't have "too many 6^{-}-vertices near each other"

- has no 5 -vertex with a 5 -nbr and a non-adjacent 6^{-}-nbr
- has no 6 -vertex with two non-adjacent 6^{-}-nbrs
- has no 7 -vertex with a 5 -nbr and two non-adjacent 6^{-}-nbrs
if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$.
Pf: Induction on n, like 5CT. If we can't do induction, then G :

1. has minimum degree 5
2. has no separating triangle
3. can't have "too many 6^{-}-vertices near each other"

- has no 5-vertex with a 5-nbr and a non-adjacent 6^{-}-nbr
- has no 6-vertex with two non-adjacent 6^{-}-nbrs
- has no 7-vertex with a 5-nbr and two non-adjacent 6^{-}-nbrs
if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G
Use discharging method to contradict (1), (2), or (3).

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$.
Pf: Induction on n, like 5CT. If we can't do induction, then G :

1. has minimum degree 5
2. has no separating triangle
3. can't have "too many 6^{-}-vertices near each other"

- has no 5-vertex with a 5-nbr and a non-adjacent 6^{-}-nbr
- has no 6-vertex with two non-adjacent 6^{-}-nbrs
- has no 7-vertex with a 5-nbr and two non-adjacent 6^{-}-nbrs
if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G
Use discharging method to contradict (1), (2), or (3).
- each v gets $c h(v)=d(v)-6$, so $\sum_{v \in V} c h(v)=-12$

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$.
Pf: Induction on n, like 5CT. If we can't do induction, then G :

1. has minimum degree 5
2. has no separating triangle
3. can't have "too many 6^{-}-vertices near each other"

- has no 5 -vertex with a 5 -nbr and a non-adjacent 6^{-}-nbr
- has no 6 -vertex with two non-adjacent 6^{-}-nbrs
- has no 7 -vertex with a 5 -nbr and two non-adjacent 6^{-}-nbrs
if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G
Use discharging method to contradict (1), (2), or (3).
- each v gets $c h(v)=d(v)-6$, so $\sum_{v \in V} c h(v)=-12$
- redistribute charge, so every vertex finishes nonnegative

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$.
Pf: Induction on n, like 5CT. If we can't do induction, then G :

1. has minimum degree 5
2. has no separating triangle
3. can't have "too many 6^{-}-vertices near each other"

- has no 5 -vertex with a 5 -nbr and a non-adjacent 6^{-}-nbr
- has no 6 -vertex with two non-adjacent 6^{-}-nbrs
- has no 7 -vertex with a 5 -nbr and two non-adjacent 6^{-}-nbrs
if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G
Use discharging method to contradict (1), (2), or (3).
- each v gets $c h(v)=d(v)-6$, so $\sum_{v \in V} c h(v)=-12$
- redistribute charge, so every vertex finishes nonnegative
- Now -12 $=\sum_{v \in V} c h(v)=\sum_{v \in V} c h^{*}(v) \geq 0$,

9/2-coloring planar graphs

Thm: Every planar graph has a homomorphism to $K_{9: 2}$.
Pf: Induction on n, like 5CT. If we can't do induction, then G :

1. has minimum degree 5
2. has no separating triangle
3. can't have "too many 6^{-}-vertices near each other"

- has no 5 -vertex with a 5 -nbr and a non-adjacent 6^{-}-nbr
- has no 6 -vertex with two non-adjacent 6^{-}-nbrs
- has no 7 -vertex with a 5 -nbr and two non-adjacent 6^{-}-nbrs
if so, then contract some non-adjacent pairs of nbrs; color smaller graph by induction, then extend to G
Use discharging method to contradict (1), (2), or (3).
- each v gets $\operatorname{ch}(v)=d(v)-6$, so $\sum_{v \in V} c h(v)=-12$
- redistribute charge, so every vertex finishes nonnegative
- Now $-12=\sum_{v \in V} c h(v)=\sum_{v \in V} c h^{*}(v) \geq 0$, Contradiction!

Too many 6^{-}-vertices near each other

Too many 6^{-}-vertices near each other

 Key Fact: Denote the center vertex of $<$ by v and the other vertices by u_{1}, u_{2}, u_{3}.
Too many 6^{-}-vertices near each other

Key Fact: Denote the center vertex of \ll by v and the other vertices by u_{1}, u_{2}, u_{3}. If v has 5 allowable colors and each u_{i} has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.

Too many 6^{-}-vertices near each other

Key Fact: Denote the center vertex of \ll by v and the other vertices by u_{1}, u_{2}, u_{3}. If v has 5 allowable colors and each u_{i} has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.
Pf: Give v a color available for at most one u_{i}, say u_{1}.

Too many 6^{-}-vertices near each other

Key Fact: Denote the center vertex of $<$ by v and the other vertices by u_{1}, u_{2}, u_{3}. If v has 5 allowable colors and each u_{i} has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.
Pf: Give v a color available for at most one u_{i}, say u_{1}. 2(5) > 3(3)

Too many 6^{-}-vertices near each other

Key Fact: Denote the center vertex of \ll by v and the other vertices by u_{1}, u_{2}, u_{3}. If v has 5 allowable colors and each u_{i} has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.
Pf: Give v a color available for at most one u_{i}, say u_{1}. 2(5) $>3(3)$ Now give v another color not available for u_{1}.

Too many 6^{-}-vertices near each other

Key Fact: Denote the center vertex of \ll by v and the other vertices by u_{1}, u_{2}, u_{3}. If v has 5 allowable colors and each u_{i} has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.
Pf: Give v a color available for at most one u_{i}, say u_{1}. 2(5) $>3(3)$ Now give v another color not available for u_{1}. Now color each u_{i}.

Too many 6^{-}-vertices near each other

Key Fact: Denote the center vertex of \ll by v and the other vertices by u_{1}, u_{2}, u_{3}. If v has 5 allowable colors and each u_{i} has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.
Pf: Give v a color available for at most one u_{i}, say u_{1}. 2(5) $>3(3)$ Now give v another color not available for u_{1}. Now color each u_{i}.

Too many 6^{-}-vertices near each other

Key Fact: Denote the center vertex of \ll by v and the other vertices by u_{1}, u_{2}, u_{3}. If v has 5 allowable colors and each u_{i} has 3 allowable colors, then we can color each vertex with 2 colors, such that no color appears on both ends of an edge.
Pf: Give v a color available for at most one u_{i}, say u_{1}. 2(5) $>3(3)$ Now give v another color not available for u_{1}. Now color each u_{i}.

Discharging

Discharging

Each v gets $c h(v)=d(v)-6$.

Discharging

Each v gets $c h(v)=d(v)-6$. Now 5-vertices need 1 from nbrs.

Discharging

Each v gets $c h(v)=d(v)-6$. Now 5-vertices need 1 from nbrs.
Def: H_{v} is subgraph induced by 6^{-}-nbrs of v.

Discharging

Each v gets $c h(v)=d(v)-6$. Now 5-vertices need 1 from nbrs.
Def: H_{v} is subgraph induced by 6^{-}-nbrs of v.

Discharging

Each v gets $c h(v)=d(v)-6$. Now 5-vertices need 1 from nbrs.
Def: H_{v} is subgraph induced by 6^{-}-nbrs of v. If $d_{H_{v}}(w)=0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v.

Discharging

Each v gets $c h(v)=d(v)-6$. Now 5-vertices need 1 from nbrs.
Def: H_{v} is subgraph induced by 6^{-}-nbrs of v. If $d_{H_{v}}(w)=0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v. A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6 -nbrs in H_{v}.

Discharging

Each v gets $c h(v)=d(v)-6$. Now 5-vertices need 1 from nbrs.
Def: H_{v} is subgraph induced by 6^{-}-nbrs of v. If $d_{H_{v}}(w)=0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v. A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6-nbrs in H_{v}.

(R1) Each 8^{+}-vertex gives charge $\frac{1}{2}$ to each isolated $5-\mathrm{nbr}$ and charge $\frac{1}{4}$ to each non-isolated 5-nbr.

Discharging

Each v gets $c h(v)=d(v)-6$. Now 5-vertices need 1 from nbrs.
Def: H_{v} is subgraph induced by 6^{-}-nbrs of v. If $d_{H_{v}}(w)=0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v.
A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6 -nbrs in H_{v}.

(R1) Each 8^{+}-vertex gives charge $\frac{1}{2}$ to each isolated $5-n b r$ and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
(R2) Each 7 -vertex gives charge $\frac{1}{2}$ to each isolated 5 -nbr, charge 0 to each crowded $5-\mathrm{nbr}$ and charge $\frac{1}{4}$ to each remaining 5-nbr.

Discharging

Each v gets $c h(v)=d(v)-6$. Now 5-vertices need 1 from nbrs.
Def: H_{v} is subgraph induced by 6^{-}-nbrs of v. If $d_{H_{v}}(w)=0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v.
A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6 -nbrs in H_{v}.

(R1) Each 8^{+}-vertex gives charge $\frac{1}{2}$ to each isolated $5-\mathrm{nbr}$ and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
(R2) Each 7 -vertex gives charge $\frac{1}{2}$ to each isolated 5 -nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.
(R3) Each 7^{+}-vertex gives charge $\frac{1}{4}$ to each 6 -nbr.

Discharging

Each v gets $c h(v)=d(v)-6$. Now 5-vertices need 1 from nbrs.
Def: H_{v} is subgraph induced by 6^{-}-nbrs of v. If $d_{H_{v}}(w)=0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v.
A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6 -nbrs in H_{v}.

(R1) Each 8^{+}-vertex gives charge $\frac{1}{2}$ to each isolated $5-\mathrm{nbr}$ and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
(R2) Each 7 -vertex gives charge $\frac{1}{2}$ to each isolated 5 -nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.
(R3) Each 7^{+}-vertex gives charge $\frac{1}{4}$ to each 6 -nbr.
(R4) Each 6-vertex gives charge $\frac{1}{2}$ to each 5-nbr.

Discharging

Each v gets $c h(v)=d(v)-6$. Now 5-vertices need 1 from nbrs.
Def: H_{v} is subgraph induced by 6^{-}-nbrs of v. If $d_{H_{v}}(w)=0$, then w is isolated nbr of v; otherwise w is non-isolated nbr of v.
A non-isolated 5-nbr of vertex v is crowded (w.r.t. v) if it has two 6 -nbrs in H_{v}.

(R1) Each 8^{+}-vertex gives charge $\frac{1}{2}$ to each isolated $5-\mathrm{nbr}$ and charge $\frac{1}{4}$ to each non-isolated 5-nbr.
(R2) Each 7 -vertex gives charge $\frac{1}{2}$ to each isolated 5 -nbr, charge 0 to each crowded 5-nbr and charge $\frac{1}{4}$ to each remaining 5-nbr.
(R3) Each 7^{+}-vertex gives charge $\frac{1}{4}$ to each 6 -nbr.
(R4) Each 6-vertex gives charge $\frac{1}{2}$ to each 5-nbr.
Now show that $c h^{*}(v) \geq 0$ for all v.

Summary

Summary

- Coloring planar graphs

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?
- Two-fold coloring: vertex is half red, half blue

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?
- Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9: 2}$)

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?
- Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9: 2}$)
- induction on n, like 5CT

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?
- Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9: 2}$)
- induction on n, like 5CT; multiple possible induction steps

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?
- Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9: 2}$)
- induction on n, like 5CT; multiple possible induction steps
- discharging proves that induction is always possible

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?
- Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9: 2}$)
- induction on n, like 5CT; multiple possible induction steps
- discharging proves that induction is always possible
- Induction step is possible unless G has

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?
- Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9: 2}$)
- induction on n, like 5CT; multiple possible induction steps
- discharging proves that induction is always possible
- Induction step is possible unless G has
- no 4^{-}-vertex, no separating 3 -cycle

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?
- Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9: 2}$)
- induction on n, like 5CT; multiple possible induction steps
- discharging proves that induction is always possible
- Induction step is possible unless G has
- no 4^{-}-vertex, no separating 3-cycle
- few 6^{-}-verts near each other; Key Fact for coloring

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?
- Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9: 2}$)
- induction on n, like 5CT; multiple possible induction steps
- discharging proves that induction is always possible
- Induction step is possible unless G has
- no 4^{-}-vertex, no separating 3-cycle
- few 6^{-}-verts near each other; Key Fact for coloring

- Discharging Phase

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?
- Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9: 2}$)
- induction on n, like 5CT; multiple possible induction steps
- discharging proves that induction is always possible
- Induction step is possible unless G has
- no 4^{-}-vertex, no separating 3-cycle
- few 6^{-}-verts near each other; Key Fact for coloring

- Discharging Phase
- gives $\operatorname{ch}(v)=d(v)-6$, so $\sum_{v \in V} \operatorname{ch}(v)=-12$

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?
- Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9: 2}$)
- induction on n, like 5CT; multiple possible induction steps
- discharging proves that induction is always possible
- Induction step is possible unless G has
- no 4^{-}-vertex, no separating 3 -cycle
- few 6^{-}-verts near each other; Key Fact for coloring

- Discharging Phase
- gives $\operatorname{ch}(v)=d(v)-6$, so $\sum_{v \in V} \operatorname{ch}(v)=-12$
- redistribute charge, so $c h^{*}(v) \geq 0$

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?
- Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9: 2}$)
- induction on n, like 5CT; multiple possible induction steps
- discharging proves that induction is always possible
- Induction step is possible unless G has
- no 4^{-}-vertex, no separating 3-cycle
- few 6^{-}-verts near each other; Key Fact for coloring

- Discharging Phase
- gives $\operatorname{ch}(v)=d(v)-6$, so $\sum_{v \in V} \operatorname{ch}(v)=-12$
- redistribute charge, so $c h^{*}(v) \geq 0$
- so $-12=\sum_{v \in V} c h(v)=\sum_{v \in V} c h^{*}(v) \geq 0$,

Summary

- Coloring planar graphs
- 5CT is easy, 4CT is hard; What's in between?
- Two-fold coloring: vertex is half red, half blue
- Planar graphs are $\frac{9}{2}$-colorable (homomorphism to $K_{9: 2}$)
- induction on n, like 5CT; multiple possible induction steps
- discharging proves that induction is always possible
- Induction step is possible unless G has
- no 4^{-}-vertex, no separating 3 -cycle
- few 6^{-}-verts near each other; Key Fact for coloring

- Discharging Phase
- gives $\operatorname{ch}(v)=d(v)-6$, so $\sum_{v \in V} \operatorname{ch}(v)=-12$
- redistribute charge, so $c h^{*}(v) \geq 0$
- so $-12=\sum_{v \in V} c h(v)=\sum_{v \in V} c h^{*}(v) \geq 0$, Contradiction!

