Bootstrap Percolation Thresholds in Plane Tilings using Regular Polygons

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Neal Bushaw
Slides available on my webpage

VCU Discrete Math
21 February 2018
Two Simple Examples

Bootstrap Percolation:
Some faces start infected.
Infected faces stay infected.
Uninfected faces with at least two infected neighbors become infected.
Does the whole graph become infected?
Ex:
Two Simple Examples

Bootstrap Percolation: Some faces start infected.
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected.
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected.
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:

[Grid diagram with some faces marked with an 'x']
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:

```
   X
  X X
 X X X
X X X
   X
```
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:

```
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
```
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:

![Bootstrap Percolation Example](image)
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:

```
×××
×××
×××
×××
×××
×××
×××
×××
```

	
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:

```
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |     |     |     |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |     |     |     |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |     |     |     |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |     |     |     |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |     |     |     |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |     |     |     |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |     |     |     |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |     |     |     |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |     |     |     |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |     |     |     |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
```
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:

```
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
```


Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:

![Bootstrap Percolation Example](image)
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:

```
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
```


Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:

![Bootstrap Percolation Example](image)
Two Simple Examples

Bootstrap Percolation: Some faces start infected. Infected faces stay infected. Uninfected faces with at least two infected neighbors become infected. *Does the whole graph become infected?*

Ex:

Yes. No.
The \(k \)-bootstrap Model

1. The initially infected faces are picked randomly.
2. Number of infected neighbors needed to infect a healthy face is \(k \).
3. We mainly consider infinite graphs.

\[\text{The \(k \)-bootstrap Model:} \] Fix a plane graph \(G \), a \(p \)-random set \(I \) of initially infected faces, and an integer \(k \).

If a healthy face, \(f \), has at least \(k \) infected neighbors, then \(f \) becomes infected.

\[\text{The percolation threshold of} \ G \ \text{is the largest} \ k \ \text{such that} \ G \ \text{eventually becomes completely infected with prob} \ \geq \ \frac{1}{2} \ \text{(since} \ I \ \text{is random).} \]

Warmup: In the 1-bootstrap model if \(I \neq \emptyset \), then \(I \) percolates.

Pf: Say that \(f_0 \in I \).

By induction, we show that each face within distance \(t \) of \(f_0 \) becomes infected (for all \(t \)).

So \(I \) percolates.
The \textit{k}-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly.
The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is infected with prob. p, independently. This is a p-random set.
The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is infected with prob. p, independently. This is a p-random set.
2. Number of infected nbrs needed to infect a healthy face is k.

Warmup: In the 1-bootstrap model if $I \neq \emptyset$, then I percolates.

Pf: Say that $f_0 \in I$. By induction, we show that each face within distance t of f_0 becomes infected (for all t). So I percolates.
The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is infected with prob. p, independently. This is a p-random set.
2. Number of infected nbrs needed to infect a healthy face is k.
3. We mainly consider infinite graphs.
The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is infected with prob. p, independently. This is a p-random set.
2. Number of infected nbrs needed to infect a healthy face is k.
3. We mainly consider infinite graphs.

The k-bootstrap Model: Fix a plane graph G, a p-random set I of initially infected faces, and an integer k.
The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is infected with prob. p, independently. This is a p-random set.
2. Number of infected nbrs needed to infect a healthy face is k.
3. We mainly consider infinite graphs.

The k-bootstrap Model: Fix a plane graph G, a p-random set I of initially infected faces, and an integer k. If a healthy face, f, has at least k infected neighbors, then f becomes infected.
The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is infected with prob. p, independently. This is a p-random set.
2. Number of infected nbrs needed to infect a healthy face is k.
3. We mainly consider infinite graphs.

The k-bootstrap Model: \ Fix a plane graph G, a p-random set I of initially infected faces, and an integer k. If a healthy face, f, has at least k infected neighbors, then f becomes infected. The percolation threshold of G is the largest k such that G eventually becomes completely infected with prob $\geq \frac{1}{2}$ (since I is random).
The k-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is infected with prob. p, independently. This is a p-random set.
2. Number of infected nbrs needed to infect a healthy face is k.
3. We mainly consider infinite graphs.

The k-bootstrap Model: Fix a plane graph G, a p-random set \mathcal{I} of initially infected faces, and an integer k. If a healthy face, f, has at least k infected neighbors, then f becomes infected. The percolation threshold of G is the largest k such that G eventually becomes completely infected with prob $\geq \frac{1}{2}$ (since \mathcal{I} is random).

Warmup: In the 1-bootstrap model if $\mathcal{I} \neq \emptyset$, then \mathcal{I} percolates.
The \emph{k-bootstrap Model}

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is infected with prob. p, independently. This is a \emph{p-random set}.
2. Number of infected nbrs needed to infect a healthy face is k.
3. We mainly consider \emph{infinite} graphs.

The k-bootstrap Model: Fix a plane graph G, a \emph{p-random set} \mathcal{I} of initially infected faces, and an integer k. If a healthy face, f, has at least k infected neighbors, then f becomes infected. The \emph{percolation threshold} of G is the largest k such that G eventually becomes completely infected with prob $\geq \frac{1}{2}$ (since \mathcal{I} is random).

Warmup: In the 1-bootstrap model if $\mathcal{I} \neq \emptyset$, then \mathcal{I} percolates.

Pf: Say that $f_0 \in \mathcal{I}$.
The \(k \)-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is infected with prob. \(p \), independently. This is a \(p \)-random set.
2. Number of infected nbrs needed to infect a healthy face is \(k \).
3. We mainly consider \textit{infinite} graphs.

The \(k \)-bootstrap Model: Fix a plane graph \(G \), a \(p \)-random set \(\mathcal{I} \) of initially infected faces, and an integer \(k \). If a healthy face, \(f \), has at least \(k \) infected neighbors, then \(f \) becomes infected. The \textbf{percolation threshold} of \(G \) is the largest \(k \) such that \(G \) eventually becomes completely infected with prob \(\geq \frac{1}{2} \) (since \(\mathcal{I} \) is random).

\textbf{Warmup:} In the 1-bootstraper model if \(\mathcal{I} \neq \emptyset \), then \(\mathcal{I} \) percolates.

\textbf{Pf:} Say that \(f_0 \in \mathcal{I} \). By induction, we show that each face within distance \(t \) of \(f_0 \) becomes infected (for all \(t \)).
The \(k \)-bootstrap Model

We make a few key changes to our game.

1. The initially infected faces are picked randomly. Each face is infected with prob. \(p \), independently. This is a \(p \)-random set.
2. Number of infected nbrs needed to infect a healthy face is \(k \).
3. We mainly consider \textit{infinite} graphs.

\textbf{The \(k \)-bootstrap Model: } Fix a plane graph \(G \), a \(p \)-random set \(I \) of initially infected faces, and an integer \(k \). If a healthy face, \(f \), has at least \(k \) infected neighbors, then \(f \) becomes infected. The \textbf{percolation threshold} of \(G \) is the largest \(k \) such that \(G \) eventually becomes completely infected with prob \(\geq \frac{1}{2} \) (since \(I \) is random).

\textbf{Warmup: } In the 1-bootstrap model if \(I \neq \emptyset \), then \(I \) percolates.

\textbf{Pf: } Say that \(f_0 \in I \). By induction, we show that each face within distance \(t \) of \(f_0 \) becomes infected (for all \(t \)). So \(I \) percolates.
The Triangular Lattice

Lemma 2: Let G be the triangular lattice and I be a p-random set, with $p < 1$. In the 2-bootstrap model, I percolates with prob. 0.

Corollary: The triangular lattice has percolation threshold 1, whenever $0 < p < 1$.
Lem 1: Let G be the triangular lattice and I be a p-random set, with $0 < p$. In the 1-bootstrap model, I percolates with prob. 1.
Lem 1: Let G be the triangular lattice and \mathcal{I} be a p-random set, with $0 < p$. In the 1-bootstrap model, \mathcal{I} percolates with prob. 1.

Pf: By the warmup, we must show that $\Pr[\mathcal{I} \neq \emptyset] = 1.$
Lem 1: Let G be the triangular lattice and I be a p-random set, with $0 < p$. In the 1-bootstrap model, I percolates with prob. 1.

Pf: By the warmup, we must show that $\Pr[I \neq \emptyset] = 1$. For $t \geq 0$, let A_t be a set of t faces.

Lem 2: Let G be the triangular lattice and I be a p-random set, with $p < 1$. In the 2-bootstrap model, I percolates with prob. 0.

Cor: The triangular lattice has percolation threshold 1, whenever $0 < p < 1$.
The Triangular Lattice

Lem 1: Let G be the triangular lattice and \mathcal{I} be a p-random set, with $0 < p$. In the 1-bootstrap model, \mathcal{I} percolates with prob. 1.

Pf: By the warmup, we must show that $\Pr[\mathcal{I} \neq \emptyset] = 1$. For $t \geq 0$, let A_t be a set of t faces. Now $\Pr[\mathcal{I} = \emptyset] \leq \Pr[(\mathcal{I} \cap A_t) = \emptyset] = (1 - p)^t$.
The Triangular Lattice

Lem 1: Let G be the triangular lattice and I be a p-random set, with $0 < p$. In the 1-bootstrap model, I percolates with prob. 1.

Pf: By the warmup, we must show that $\Pr[I \neq \emptyset] = 1$. For $t \geq 0$, let A_t be a set of t faces. Now $\Pr[I = \emptyset] \leq \Pr[(I \cap A_t) = \emptyset] = (1 - p)^t$. Given $\epsilon > 0$, we pick t big enough s.t. $(1 - p)^t < \epsilon$.

Lem 2: Let G be the triangular lattice and I be a p-random set, with $p < 1$. In the 2-bootstrap model, I percolates with prob. 0.

Cor: The triangular lattice has percolation threshold 1, whenever $0 < p < 1$.
The Triangular Lattice

Lem 1: Let G be the triangular lattice and \mathcal{I} be a p-random set, with $0 < p$. In the 1-bootstrap model, \mathcal{I} percolates with prob. 1.

Pf: By the warmup, we must show that $\Pr[\mathcal{I} \neq \emptyset] = 1$. For $t \geq 0$, let A_t be a set of t faces. Now $\Pr[\mathcal{I} = \emptyset] \leq \Pr[(\mathcal{I} \cap A_t) = \emptyset] = (1 - p)^t$. Given $\epsilon > 0$, we pick t big enough s.t. $(1 - p)^t < \epsilon$. So $\Pr[\mathcal{I} = \emptyset] < \epsilon$ for all $\epsilon > 0$.

Lem 2: Let G be the triangular lattice and \mathcal{I} be a p-random set, with $p < 1$. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0.

Cor: The triangular lattice has percolation threshold 1, whenever $0 < p < 1$.
Lem 1: Let G be the triangular lattice and \mathcal{I} be a p-random set, with $0 < p$. In the 1-bootstrap model, \mathcal{I} percolates with prob. 1.

Pf: By the warmup, we must show that $\Pr[\mathcal{I} \neq \emptyset] = 1$. For $t \geq 0$, let \mathcal{A}_t be a set of t faces. Now $\Pr[\mathcal{I} = \emptyset] \leq \Pr[(\mathcal{I} \cap \mathcal{A}_t) = \emptyset] = (1 - p)^t$. Given $\epsilon > 0$, we pick t big enough s.t. $(1 - p)^t < \epsilon$. So $\Pr[\mathcal{I} = \emptyset] < \epsilon$ for all $\epsilon > 0$. Thus, $\Pr[\mathcal{I} \neq \emptyset] = 1$. So \mathcal{I} percolates with prob. 1.

Lem 2: Let G be the triangular lattice and \mathcal{I} be a p-random set, with $p < 1$. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0.

Cor: The triangular lattice has percolation threshold 1, whenever $0 < p < 1$.

\[\]
Lem 2: Let G be the triangular lattice and \mathcal{I} be a p-random set, with $p < 1$. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0.
Lem 2: Let G be the triangular lattice and I be a p-random set, with $p < 1$. In the 2-bootstrap model, I percolates with prob. 0.

Pf: Note that if any \blacklozenge has no infected faces, then I will not percolate.

Cor: The triangular lattice has percolation threshold 1, whenever $0 < p < 1$.
Lem 2: Let G be the triangular lattice and I be a p-random set, with $p < 1$. In the 2-bootstrap model, I percolates with prob. 0.

Pf: Note that if any \Box has no infected faces, then I will not percolate. Let B_1, B_2, \ldots denote face disjoint copies of \Box.

Cor: The triangular lattice has percolation threshold 1, whenever $0 < p < 1$.
Lem 2: Let G be the triangular lattice and \mathcal{I} be a p-random set, with $p < 1$. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0.

Pf: Note that if any \bigotimes has no infected faces, then \mathcal{I} will not percolate. Let B_1, B_2, \ldots denote face disjoint copies of \bigotimes. Let E_j be the event that each of B_1, \ldots, B_j has at least one infected face.
Lem 2: Let G be the triangular lattice and \mathcal{I} be a p-random set, with $p < 1$. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0.

Pf: Note that if any \bigotimes has no infected faces, then \mathcal{I} will not percolate. Let B_1, B_2, \ldots denote face disjoint copies of \bigotimes. Let E_j be the event that each of B_1, \ldots, B_j has at least one infected face. Now $\Pr[\mathcal{I} \text{ percolates}] \leq \Pr[E_j] = (1 - (1 - p)^6)^j$.

Cor: The triangular lattice has percolation threshold 1, whenever $0 < p < 1$.
Lem 2: Let G be the triangular lattice and I be a p-random set, with $p < 1$. In the 2-bootstrap model, I percolates with prob. 0.

Pf: Note that if any $\-boxes$ has no infected faces, then I will not percolate. Let B_1, B_2, \ldots denote face disjoint copies of \box. Let E_j be the event that each of B_1, \ldots, B_j has at least one infected face. Now $\Pr[I \text{ percolates}] \leq \Pr[E_j] = (1 - (1 - p)^6)^j$. Given any $\epsilon > 0$, j big enough s.t. $(1 - (1 - p)^6)^j < \epsilon$.
The Triangular Lattice

Lem 2: Let G be the triangular lattice and \mathcal{I} be a p-random set, with $p < 1$. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0.

Pf: Note that if any \bigotimes has no infected faces, then \mathcal{I} will not percolate. Let B_1, B_2, \ldots denote face disjoint copies of \bigotimes. Let E_j be the event that each of B_1, \ldots, B_j has at least one infected face. Now $\Pr[\mathcal{I} \text{ percolates}] \leq \Pr[E_j] = (1 - (1 - p)^6)^j$. Given any $\epsilon > 0$, j big enough s.t. $(1 - (1 - p)^6)^j < \epsilon$. So $\Pr[\mathcal{I} \text{ percolates}] = 0$. ■
The Triangular Lattice

Lem 1: Let G be the triangular lattice and \mathcal{I} be a p-random set, with $0 < p$. In the 1-bootstrap model, \mathcal{I} percolates with prob. 1.

Lem 2: Let G be the triangular lattice and \mathcal{I} be a p-random set, with $p < 1$. In the 2-bootstrap model, \mathcal{I} percolates with prob. 0.

Cor: The triangular lattice has percolation threshold 1, whenever $0 < p < 1$.
The Hex Lattice
The Hex Lattice

Lem 3: Fix $p < 1$. For the hex lattice, in the 4-bootstrap model, a p-random set I percolates with prob. 0.

Pf: Same as Lem 2, but with \bigcirc in place of \bigotimes. ■
Lem 4: Fix \(p > 0 \). For the hex lattice, in the 3-bootstrap model, a \(p \)-random set \(I \) percolates with prob. \(> 0 \).
The Hex Lattice

Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
The Hex Lattice

Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
The Hex Lattice

Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
The Hex Lattice

\textbf{Lem 4:} Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set \mathcal{I} percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.

The Hex Lattice
The Hex Lattice

\textbf{Lem 4:} Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set \mathcal{I} percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
The Hex Lattice

Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set \mathcal{I} percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set \mathcal{I} percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
The Hex Lattice

Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set \mathcal{I} percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.

The Hex Lattice
The Hex Lattice

Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
The Hex Lattice

Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set \mathcal{I} percolates with prob. > 0.
Lemma 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set \mathcal{I} percolates with prob. > 0.
The Hex Lattice

Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
The Hex Lattice

Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.
Lemma 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.

Proof: Now $\Pr[\text{side with } t \text{ hexes is bad}] = (1 - p)^t > 0$, so $\Pr[\text{ring with } t \text{ hexes per side is bad}] \leq 6(1 - p)^t$. Sum for all rings: $S = \sum_{t=1}^{\infty} 6(1 - p)^t p < 1$ for big j. $\Pr[I \text{ percolates}] \geq (1 - S) \Pr[\text{all small rings good}] > 0$.
The Hex Lattice

Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.

Pf: Now $\Pr[\text{side with } t \text{ hexes is bad}] = (1 - p)^t > 0$,
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set I percolates with prob. > 0.

Pf: Now $\Pr[\text{side with } t \text{ hexes is bad}] = (1 - p)^t > 0$, so $\Pr[\text{ring with } t \text{ hexes per side is bad}] \leq 6(1 - p)^t$.
Lem 4: Fix \(p > 0 \). For the hex lattice, in the 3-bootstrap model, a \(p \)-random set \(\mathcal{I} \) percolates with prob. \(> 0 \).

Pf: Now \(\Pr[\text{side with } t \text{ hexes is bad}] = (1 - p)^t > 0 \),
so \(\Pr[\text{ring with } t \text{ hexes per side is bad}] \leq 6(1 - p)^t \).
Sum for all rings: \(S = \sum_{t=j}^{\infty} 6(1 - p)^t = \frac{6(1-p)^j}{p} < 1 \) for big \(j \).
Lem 4: Fix $p > 0$. For the hex lattice, in the 3-bootstrap model, a p-random set \mathcal{I} percolates with prob. > 0.

Pf: Now $\Pr[\text{side with } t \text{ hexes is bad}] = (1 - p)^t > 0$,
so $\Pr[\text{ring with } t \text{ hexes per side is bad}] \leq 6(1 - p)^t$.

Sum for all rings: $S = \sum_{t=j}^{\infty} 6(1 - p)^t = \frac{6(1-p)^j}{p} < 1$ for big j.

$\Pr[\mathcal{I} \text{ percolates}] \geq (1 - S) \Pr[\text{all small rings good}] > 0$. ■
0–1 Laws

Goal: For hex lattice, in 3-bootstrap model, want to show that p-random set percolates with prob. 1.
Goal: For hex lattice, in 3-bootstrap model, want to show that p-random set percolates with prob. 1. Try to copy proof for triangular lattice, repeating Lem 4 proof infinitely often.
0–1 Laws

Goal: For hex lattice, in 3-bootstrap model, want to show that \(p \)-random set percolates with prob. 1. Try to copy proof for triangular lattice, repeating Lem 4 proof infinitely often.

Problem: Events “all big rings are good” will never be independent.
Goal: For hex lattice, in 3-bootstrap model, want to show that p-random set percolates with prob. 1. Try to copy proof for triangular lattice, repeating Lem 4 proof infinitely often.

Problem: Events “all big rings are good” will never be independent. But can get arbitrarily close...
0–1 Laws

Goal: For hex lattice, in 3-bootstrap model, want to show that p-random set percolates with prob. 1. Try to copy proof for triangular lattice, repeating Lem 4 proof infinitely often.

Problem: Events “all big rings are good” will never be independent. But can get arbitrarily close.

Solution: 0–1 Law If an event E is translation invariant, then $\Pr(E) = 0$ or $\Pr(E) = 1$.

Theorem 5: For the hex lattice, in the 3-bootstrap model, a p-random set percolates with prob. 1.

Corollary 6: The hex lattice has threshold 3.
0–1 Laws

Goal: For hex lattice, in 3-bootstrap model, want to show that p-random set percolates with prob. 1. Try to copy proof for triangular lattice, repeating Lem 4 proof infinitely often.

Problem: Events “all big rings are good” will never be independent. But can get arbitrarily close. . .

Solution: 0–1 Law If an event E is translation invariant, then $\Pr(E) = 0$ or $\Pr(E) = 1$.

Thm 5: For the hex lattice, in the 3-bootstrap model, a p-random set percolates with prob. 1.
0–1 Laws

Goal: For hex lattice, in 3-bootstrap model, want to show that p-random set percolates with prob. 1. Try to copy proof for triangular lattice, repeating Lem 4 proof infinitely often.

Problem: Events “all big rings are good” will never be independent. But can get arbitrarily close...

Solution: 0–1 Law If an event E is translation invariant, then $\Pr(E) = 0$ or $\Pr(E) = 1$.

Thm 5: For the hex lattice, in the 3-bootstrap model, a p-random set percolates with prob. 1.

Cor 6: The hex lattice has threshold 3.
Regular Lattices and Beyond

What other graphs to consider?

- Allow more face lengths in the same graph
- All faces are still regular polygons
What other graphs to consider?

- Allow more face lengths in same graph
- All faces are still regular polygons
What other graphs to consider?

- Allow more face lengths in the same graph
- All faces are still regular polygons
What other graphs to consider?

- Allow more face lengths in same graph
- All faces are still regular polygons
What other graphs to consider?

- Allow more face lengths in same graph
- All faces are still regular polygons
Regular Lattices and Beyond

What other graphs to consider?
What other graphs to consider?

- Allow more face lengths in same graph
What other graphs to consider?

- Allow more face lengths in same graph
- All faces are still regular polygons
How Could Vertices Look?
How Could Vertices Look?
Archimedean Lattices

(3.12.12) (4.6.12) (4.8.8) (3.6.3.6)

(3.4.6.4) (3.3.3.3.6) (3.3.4.3.4) (3.3.3.4.4)
Archimedean Lattices

(3.12.12) 3
(4.6.12) 3
(4.8.8) 3
(3.6.3.6) 2

(3.4.6.4) 1
(3.3.3.3.6) 1
(3.3.4.3.4) 1
(3.3.3.4.4) 1
Archimedean Lattices

(3.12.12) 3
(4.6.12) 3
(4.8.8) 3
(3.6.3.6) 2

(3.4.6.4) 1
(3.3.3.3.6) 1
(3.3.4.3.4) 1
(3.3.3.4.4) 1
Archimedean Lattices: Lower Bounds

[Diagram of Archimedean Lattice with labeled points 3, 1, 5, 7 and marked intersections]
Archimedean Lattices: Lower Bounds
Archimedean Lattices: Lower Bounds
Archimedean Lattices: Lower Bounds
Archimedean Lattices: Lower Bounds
More General Tilings

Defn: Let \mathcal{T} be set of all plane tilings such that if $T \in \mathcal{T}$ and T has one copy of some vertex type, then T has infinitely many copies of that type.
More General Tilings

Defn: Let \(\mathcal{T} \) be set of all plane tilings such that if \(T \in \mathcal{T} \) and \(T \) has one copy of some vertex type, then \(T \) has infinitely many copies of that type.

Main Theorem: Every \(T \in \mathcal{T} \) has threshold at most 3.
More General Tilings

Defn: Let \mathcal{T} be set of all plane tilings such that if $T \in \mathcal{T}$ and T has one copy of some vertex type, then T has infinitely many copies of that type.

Main Theorem: Every $T \in \mathcal{T}$ has threshold at most 3. The only tilings in \mathcal{T} with threshold 3 are the Archimedean Lattices (3.12.12), (4.6.12), (4.8.8), and (6.6.6).
More General Tilings

Defn: Let \mathcal{T} be set of all plane tilings such that if $T \in \mathcal{T}$ and T has one copy of some vertex type, then T has infinitely many copies of that type.

Main Theorem: Every $T \in \mathcal{T}$ has threshold at most 3.

The only tilings in \mathcal{T} with threshold 3 are the Archimedean Lattices (3.12.12), (4.6.12), (4.8.8), and (6.6.6).
More General Tilings

Defn: Let \mathcal{T} be set of all plane tilings such that if $T \in \mathcal{T}$ and T has one copy of some vertex type, then T has infinitely many copies of that type.

Main Theorem: Every $T \in \mathcal{T}$ has threshold at most 3. The only tilings in \mathcal{T} with threshold 3 are the Archimedean Lattices (3.12.12), (4.6.12), (4.8.8), and (6.6.6).