Euler’s Pentagonal Number Theorem

Dan Cranston

February 22, 2012
Introduction
Introduction

Triangular Numbers: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Introduction

Triangular Numbers: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

Square Numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...
Introduction

Triangular Numbers: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

![Triangular Numbers Diagram]

Square Numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...

![Square Numbers Diagram]

Pentagonal Numbers: 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ...

![Pentagonal Numbers Diagram]
The kth pentagonal number, $P(k)$, is the kth partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

$$P(k) = k \sum_{n=1}^{k} (3n - 2) = k \sum_{n=1}^{k} 3n - k \sum_{n=1}^{k} 1 = 3\left(\frac{k(k+1)}{2}\right) - k\left(\frac{k}{2}\right) = \frac{3k^2 - k^2}{2} = \frac{k(k+1)}{2}.$$

$P(8) = 92$, $P(500) = 374, 750$, etc., and $P(0) = 0$.

Extend domain, so $P(-8) = 100$, $P(-500) = 375, 250$, etc.

$\{P(0), P(1), P(-1), P(2), P(-2), \ldots\} = \{0, 1, 2, 5, 7, \ldots\}$ is an increasing sequence.
The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.
Generalized Pentagonal Numbers

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

$$P(k) = \sum_{n=1}^{k} (3n - 2)$$
Generalized Pentagonal Numbers

The \(k^{\text{th}}\) pentagonal number, \(P(k)\), is the \(k^{\text{th}}\) partial sum of the arithmetic sequence \(a_n = 1 + 3(n - 1) = 3n - 2\).

\[
P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} n - 2 \sum_{n=1}^{k} 1
\]
Generalized Pentagonal Numbers

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

$$P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} n - 2 \sum_{n=1}^{k} 1 = 3 \left(\frac{k(k + 1)}{2} \right) - 2k$$

$P(8) = 92$, $P(500) = 374, 750$, etc.

$P(0) = 0$.

Extend domain, so $P(-8) = 100$, $P(-500) = 375, 250$, etc.

$\{P(0), P(1), P(-1), P(2), P(-2), \ldots \} = \{0, 1, 2, 5, 7, \ldots \}$ is an increasing sequence.
Generalized Pentagonal Numbers

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

$$P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} n - 2 \sum_{n=1}^{k} 1 = 3 \left(\frac{k(k+1)}{2} \right) - 2k = \frac{3k^2 - k}{2}$$
Generalized Pentagonal Numbers

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

\[
P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} n - 2 \sum_{n=1}^{k} 1 = 3 \left(\frac{k(k+1)}{2} \right) - 2k = \frac{3k^2 - k}{2}
\]

\blacktriangleright $P(8) = 92$, $P(500) = 374,750$, etc.
Generalized Pentagonal Numbers

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

$$P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} n - 2 \sum_{n=1}^{k} 1 = 3 \left(\frac{k(k + 1)}{2} \right) - 2k = \frac{3k^2 - k}{2}$$

- $P(8) = 92$, $P(500) = 374,750$, etc. and $P(0) = 0$.
Generalized Pentagonal Numbers

The k^{th} pentagonal number, $P(k)$, is the k^{th} partial sum of the arithmetic sequence $a_n = 1 + 3(n - 1) = 3n - 2$.

\[P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} n - 2 \sum_{n=1}^{k} 1 = 3 \left(\frac{k(k + 1)}{2} \right) - 2k = \frac{3k^2 - k}{2} \]

- $P(8) = 92$, $P(500) = 374,750$, etc. and $P(0) = 0$.
- Extend domain, so $P(-8) = 100$, $P(-500) = 375,250$, etc.
Generalized Pentagonal Numbers

\[
P(k) = \sum_{n=1}^{k} (3n-2) = 3 \sum_{n=1}^{k} (n-2) \sum_{n=1}^{k} 1 = 3 \left(\frac{k(k+1)}{2} \right) - 2k = \frac{3k^2 - k}{2}
\]

\begin{itemize}
 \item \(P(8) = 92, \ P(500) = 374,750, \) etc. and \(P(0) = 0. \)
 \item Extend domain, so \(P(-8) = 100, \ P(-500) = 375,250, \) etc.
 \item \(\{P(0), P(1), P(-1), P(2), P(-2), \ldots \} = \{0, 1, 2, 5, 7, \ldots \} \) is an increasing sequence.
\end{itemize}
Partition Numbers

A partition of a positive integer n is a way of expressing n as a sum of positive integers.

$3 = 2 + 1 = 1 + 1 + 1$, so $p(3) = 3$.

$4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1$, so $p(4) = 5$.

$5 = 4 + 1 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 3 + 2 = 1 + 1 + 1 + 1 + 1$, so $p(5) = 7$.

$6 = 5 + 1 = 4 + 1 + 1 = 4 + 2 = 3 + 1 + 1 + 1 = 3 + 3 = 3 + 2 + 1 = 2 + 1 + 1 + 1 + 1 = 2 + 2 + 2 = 2 + 2 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1$, so $p(6) = 11$.

Each summand in a certain partition is called a part. So 3 has 1 part, $2 + 1$ has 2 parts, and $1 + 1 + 1$ has 3 parts.
A partition of a positive integer n is a way of expressing n as a sum of positive integers. Let $p(n)$ denote the number of partitions of n.

- $3 = 2+1 = 1+1+1$, so $p(3) = 3$.
- $4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1$, so $p(4) = 5$.
- $5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1$, so $p(5) = 7$.
- $6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = 2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1$, so $p(6) = 11$.

Each summand in a certain partition is called a part.
Partition Numbers

A partition of a positive integer n is a way of expressing n as a sum of positive integers. Let $p(n)$ denote the number of partitions of n.

- $3 = 2+1 = 1+1+1$, so $p(3) = 3$.
- $4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1$, so $p(4) = 5$.
- $5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1$, so $p(5) = 7$.
- $6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = 2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1$, so $p(6) = 11$.
Partition Numbers

A partition of a positive integer n is a way of expressing n as a sum of positive integers. Let $p(n)$ denote the number of partitions of n.

- $3 = 2 + 1 = 1 + 1 + 1$, so $p(3) = 3$.

- $4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1$, so $p(4) = 5$.

- $5 = 4 + 1 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 3 + 2 = 1 + 1 + 1 + 1 + 1$, so $p(5) = 7$.

- $6 = 5 + 1 = 4 + 1 + 1 = 4 + 2 = 3 + 1 + 1 + 1 = 3 + 3 = 3 + 2 + 1 = 2 + 1 + 1 + 1 + 1 = 2 + 2 + 2 = 2 + 2 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1$, so $p(6) = 11$.

Each summand in a certain partition is called a part. So 3 has 1 part, 2 + 1 has 2 parts, and 1 + 1 + 1 has 3 parts.
A partition of a positive integer \(n \) is a way of expressing \(n \) as a sum of positive integers. Let \(p(n) \) denote the number of partitions of \(n \).

- \(3 = 2 + 1 = 1 + 1 + 1 \), so \(p(3) = 3 \).
- \(4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 \),
Partition Numbers

A partition of a positive integer \(n \) is a way of expressing \(n \) as a sum of positive integers. Let \(p(n) \) denote the number of partitions of \(n \).

- \(3 = 2 + 1 = 1 + 1 + 1 \), so \(p(3) = 3 \).
- \(4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 \), so \(p(4) = 5 \).
A partition of a positive integer n is a way of expressing n as a sum of positive integers. Let $p(n)$ denote the number of partitions of n.

- $3 = 2+1 = 1+1+1$, so $p(3) = 3$.
- $4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1$, so $p(4) = 5$.
- $5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1$,
A partition of a positive integer n is a way of expressing n as a sum of positive integers. Let $p(n)$ denote the number of partitions of n.

- $3 = 2+1 = 1+1+1$, so $p(3) = 3$.
- $4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1$, so $p(4) = 5$.
- $5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1$, so $p(5) = 7$.
A partition of a positive integer n is a way of expressing n as a sum of positive integers. Let $p(n)$ denote the number of partitions of n.

- $3 = 2+1 = 1+1+1$, so $p(3) = 3$.
- $4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1$, so $p(4) = 5$.
- $5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1$, so $p(5) = 7$.
- $6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = 2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1+1$, so $p(6) = 11$.

Each summand in a certain partition is called a part.

So 3 has 1 part, 2 + 1 has 2 parts, and 1 + 1 + 1 has 3 parts.
Partition Numbers

A partition of a positive integer n is a way of expressing n as a sum of positive integers. Let $p(n)$ denote the number of partitions of n.

$\begin{align*}
\text{3} & = 2+1 = 1+1+1, \text{ so } p(3) = 3. \\
\text{4} & = 3+1 = 2+2 = 2+1+1 = 1+1+1+1, \text{ so } p(4) = 5. \\
\text{5} & = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1, \text{ so } p(5) = 7. \\
\text{6} & = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = 2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1, \\
& \text{ so } p(6) = 11.
\end{align*}$
A partition of a positive integer n is a way of expressing n as a sum of positive integers. Let $p(n)$ denote the number of partitions of n.

- $3 = 2+1 = 1+1+1$, so $p(3) = 3$.
- $4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1$, so $p(4) = 5$.
- $5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1$, so $p(5) = 7$.
- $6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = 2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1$, so $p(6) = 11$.

Each summand in a certain partition is called a part.
A partition of a positive integer \(n \) is a way of expressing \(n \) as a sum of positive integers. Let \(p(n) \) denote the number of partitions of \(n \).

- \(3 = 2+1 = 1+1+1 \), so \(p(3) = 3 \).
- \(4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1 \), so \(p(4) = 5 \).
- \(5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1 \), so \(p(5) = 7 \).
- \(6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = 2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1 \), so \(p(6) = 11 \).

Each summand in a certain partition is called a part. So 3 has 1 part, 2 + 1 has 2 parts, and 1 + 1 + 1 has 3 parts.
Partition Numbers

We identify a partition of n by its Ferrers diagram.
We identify a partition of \(n \) by its Ferrers diagram. A partition with its parts in decreasing size from top to bottom is in standard form.
We identify a partition of n by its Ferrers diagram. A partition with its parts in decreasing size from top to bottom is in standard form.

Three different partitions of 9:

- $5 + 3 + 1$
- $4 + 3 + 2$
- $4 + 3 + 1 + 1$
Special Partition Numbers

\[p_d(n) = \text{number of partitions of } n \text{ into distinct parts} \]
Special Partition Numbers

\[p_d(n) = \text{number of partitions of } n \text{ into distinct parts} \]

- \[n = 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1, \text{ so } p_d(5) = 3. \]
- \[n = 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = 2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1, \text{ so } p_d(6) = 4. \]
Special Partition Numbers

\[p_d(n) = \text{number of partitions of } n \text{ into distinct parts} \]

- \(5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1 \), so \(p_d(5) = 3 \).

- \(6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = 2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1 \), so \(p_d(6) = 4 \).
Special Partition Numbers

\[p_d(n) = \text{number of partitions of } n \text{ into distinct parts} \]

- \(5 = 4 + 1 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 3 + 2 = 1 + 1 + 1 + 1 + 1 \), so \(p_d(5) = 3 \).

- \(6 = 5 + 1 = 4 + 1 + 1 = 4 + 2 = 3 + 1 + 1 + 1 = 3 + 3 = 3 + 2 + 1 = 2 + 1 + 1 + 1 + 1 = 2 + 2 + 2 = 2 + 2 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 \), so \(p_d(6) = 4 \).

\[p_e(n) = \text{number of partitions of } n \text{ into an even number of distinct parts} \]
Special Partition Numbers

\[p_d(n) = \text{number of partitions of } n \text{ into distinct parts} \]

- \(5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1 \), so \(p_d(5) = 3 \).
- \(6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = 2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1 \), so \(p_d(6) = 4 \).

\[p_e(n) = \text{number of partitions of } n \text{ into an even number of distinct parts}; \text{ similar for } p_o(n), \text{ so } p_e(n) + p_o(n) = p_d(n) \]
Special Partition Numbers

\[p_d(n) = \text{number of partitions of } n \text{ into distinct parts} \]

\[\begin{align*}
5 &= 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1, \text{ so } p_d(5) = 3. \\
6 &= 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = 2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1, \text{ so } p_d(6) = 4.
\end{align*} \]

\[p_e(n) = \text{number of partitions of } n \text{ into an even number of distinct parts}; \text{ similar for } p_o(n), \text{ so } p_e(n) + p_o(n) = p_d(n) \]

\[\begin{align*}
5 &= 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1, \text{ so } p_e(5) = 2.
\end{align*} \]
Special Partition Numbers

\(p_d(n) = \) number of partitions of \(n \) into distinct parts

\(\because 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1, \text{ so } p_d(5) = 3. \)

\(\therefore 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = 2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1, \text{ so } p_d(6) = 4. \)

\(p_e(n) = \) number of partitions of \(n \) into an even number of distinct parts; similar for \(p_o(n) \), so \(p_e(n) + p_o(n) = p_d(n) \)

\(\therefore 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1, \text{ so } p_e(5) = 2. (p_o(5) = 1) \)
Special Partition Numbers

$p_d(n) = \text{number of partitions of } n \text{ into distinct parts}$

$\text{▶ } 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1, \text{ so } p_d(5) = 3.$

$\text{▶ } 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = 2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1, \text{ so } p_d(6) = 4.$

$p_e(n) = \text{number of partitions of } n \text{ into an even number of distinct parts}; \text{ similar for } p_o(n), \text{ so } p_e(n) + p_o(n) = p_d(n)$

$\text{▶ } 5 = 4+1 = 3+1+1 = 2+2+1 = 2+1+1+1 = 3+2 = 1+1+1+1+1, \text{ so } p_e(5) = 2. \quad (p_o(5) = 1)$

$\text{▶ } 6 = 5+1 = 4+1+1 = 4+2 = 3+1+1+1 = 3+3 = 3+2+1 = 2+1+1+1+1 = 2+2+2 = 2+2+1+1 = 1+1+1+1+1+1, \text{ so } p_e(6) = 2. \quad (p_o(6) = 2)$
Pentagonal Number Theorem

Main Theorem

\[
\prod_{m=1}^{\infty} (1 - x^m) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \ldots
\]
Pentagonal Number Theorem

Main Theorem

\[\prod_{m=1}^{\infty} (1 - x^m) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \ldots \]

\[= x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + x^{P(-2)} - \ldots \]
Pentagonal Number Theorem

Main Theorem

\[\prod_{m=1}^{\infty} (1 - x^m) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \ldots\]

\[= x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + x^{P(-2)} - \ldots\]

Lemma 1

\[\prod_{m=1}^{\infty} (1 - x^m) = 1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n\]
Pentagonal Number Theorem

Main Theorem

\[
\prod_{m=1}^{\infty} (1 - x^m) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \ldots
\]

\[= x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + x^{P(-2)} - \ldots\]

Lemma 1

\[
\prod_{m=1}^{\infty} (1 - x^m) = 1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n
\]

Lemma 2

\[1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \ldots\]
Proof of Lemma 1: The product as a sum

\[\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots \]
Proof of Lemma 1: The product as a sum

\[\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots. \]

- \(x^n \) occurs once for each partition of \(n \) into distinct parts.
Proof of Lemma 1: The product as a sum

\[\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots. \]

- \(x^n \) occurs once for each partition of \(n \) into distinct parts.
- Each partition of \(n \) into an even number of distinct parts contributes \(+1\) to the coefficient of \(x^n \), and each partition of \(n \) into an odd number of distinct parts contributes \(-1\).
Proof of Lemma 1: The product as a sum

\[\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots. \]

- \(x^n \) occurs once for each partition of \(n \) into distinct parts.
- Each partition of \(n \) into an even number of distinct parts contributes \(+1 \) to the coefficient of \(x^n \), and each partition of \(n \) into an odd number of distinct parts contributes \(-1 \).
- Partitions of 5 into distinct parts: 5, 1+4, and 2+3.
Proof of Lemma 1: The product as a sum

\[\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots. \]

- \(x^n \) occurs once for each partition of \(n \) into distinct parts.
- Each partition of \(n \) into an even number of distinct parts contributes \(+1 \) to the coefficient of \(x^n \), and each partition of \(n \) into an odd number of distinct parts contributes \(-1 \).

- Partitions of 5 into distinct parts: 5, 1+4, and 2+3.
- So \(x^5 \) occurs in the expansion as
Proof of Lemma 1: The product as a sum

\[\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots \]

- \(x^n \) occurs once for each partition of \(n \) into distinct parts.
- Each partition of \(n \) into an even number of distinct parts contributes +1 to the coefficient of \(x^n \), and each partition of \(n \) into an odd number of distinct parts contributes −1.

- Partitions of 5 into distinct parts: 5, 1+4, and 2+3.
- So \(x^5 \) occurs in the expansion as

\[(-x^5) + (-x)(-x^4) + (-x^2)(-x^3) = \]
Proof of Lemma 1: The product as a sum

\[\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots. \]

▶ \(x^n \) occurs once for each partition of \(n \) into distinct parts.
▶ Each partition of \(n \) into an even number of distinct parts contributes \(+1 \) to the coefficient of \(x^n \), and each partition of \(n \) into an odd number of distinct parts contributes \(-1 \).

▶ Partitions of 5 into distinct parts: 5, 1+4, and 2+3.
▶ So \(x^5 \) occurs in the expansion as

\[
(-x^5) + (-x)(-x^4) + (-x^2)(-x^3) = \\
(-1)(x^5) + (1)(x^5) + (1)(x^5) =
\]
Proof of Lemma 1: The product as a sum

\[\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots \]

- \(x^n \) occurs once for each partition of \(n \) into distinct parts.
- Each partition of \(n \) into an even number of distinct parts contributes \(+1 \) to the coefficient of \(x^n \), and each partition of \(n \) into an odd number of distinct parts contributes \(-1 \).

- Partitions of 5 into distinct parts: 5, 1+4, and 2+3.
- So \(x^5 \) occurs in the expansion as

\[
(-x^5) + (-x)(-x^4) + (-x^2)(-x^3) = \\
(-1)(x^5) + (1)(x^5) + (1)(x^5) = \\
(2)(x^5) - (1)(x^5) =
\]
Proof of Lemma 1: The product as a sum

\[
\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots
\]

- \(x^n\) occurs once for each partition of \(n\) into distinct parts.
- Each partition of \(n\) into an even number of distinct parts contributes \(+1\) to the coefficient of \(x^n\), and each partition of \(n\) into an odd number of distinct parts contributes \(-1\).

- Partitions of 5 into distinct parts: 5, 1+4, and 2+3.
- So \(x^5\) occurs in the expansion as

\[
(-x^5) + (-x)(-x^4) + (-x^2)(-x^3) =
\]

\[
(-1)(x^5) + (1)(x^5) + (1)(x^5) =
\]

\[
(2)(x^5) - (1)(x^5) =
\]

\[
(pe(5) - po(5))(x^5) = x^5.
\]
Proof of Lemma 1: The product as a sum

\[\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots. \]

- \(x^n \) occurs once for each partition of \(n \) into distinct parts.
- Each partition of \(n \) into an even number of distinct parts contributes \(+1\) to the coefficient of \(x^n \), and each partition of \(n \) into an odd number of distinct parts contributes \(-1\).

- Partitions of 6 into distinct parts: 6, 1+5, 2+4, and 1+2+3.
Proof of Lemma 1: The product as a sum

\[
\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots
\]

- \(x^n\) occurs once for each partition of \(n\) into distinct parts.
- Each partition of \(n\) into an even number of distinct parts contributes \(+1\) to the coefficient of \(x^n\), and each partition of \(n\) into an odd number of distinct parts contributes \(-1\).

- Partitions of 6 into distinct parts: 6, 1+5, 2+4, and 1+2+3.
- So \(x^6\) occurs in the expansion as
Proof of Lemma 1: The product as a sum

\[
\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots.
\]

- \(x^n\) occurs once for each partition of \(n\) into distinct parts.
- Each partition of \(n\) into an even number of distinct parts contributes +1 to the coefficient of \(x^n\), and each partition of \(n\) into an odd number of distinct parts contributes −1.

- Partitions of 6 into distinct parts: 6, 1+5, 2+4, and 1+2+3.
- So \(x^6\) occurs in the expansion as

\[
(-x^6) + (-x)(-x^5) + (-x^2)(-x^4) + (-x)(-x^2)(-x^3) =
\]
Proof of Lemma 1: The product as a sum

\[\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots. \]

- \(x^n\) occurs once for each partition of \(n\) into distinct parts.
- Each partition of \(n\) into an even number of distinct parts contributes +1 to the coefficient of \(x^n\), and each partition of \(n\) into an odd number of distinct parts contributes −1.

- Partitions of 6 into distinct parts: 6, 1+5, 2+4, and 1+2+3.
- So \(x^6\) occurs in the expansion as

\[
(-x^6) + (-x)(-x^5) + (-x^2)(-x^4) + (-x)(-x^2)(-x^3) = \\
(-1)(x^6) + (1)(x^6) + (1)(x^6) + (-1)(x^6) =
\]

\[
= 0.
\]
Proof of Lemma 1: The product as a sum

\[
\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots .
\]

- \(x^n\) occurs once for each partition of \(n\) into distinct parts.
- Each partition of \(n\) into an even number of distinct parts contributes \(+1\) to the coefficient of \(x^n\), and each partition of \(n\) into an odd number of distinct parts contributes \(-1\).

- Partitions of 6 into distinct parts: 6, 1+5, 2+4, and 1+2+3.
- So \(x^6\) occurs in the expansion as

\[
(1)(x^6) + (1)(x^6) + (1)(x^6) + (-1)(x^6) = (2)(x^6) - (2)(x^6) = 0.
\]
Proof of Lemma 1: The product as a sum

\[\prod_{m=1}^{\infty} (1 - x^m) = (1 - x)(1 - x^2)(1 - x^3)(1 - x^4)(1 - x^5) \ldots. \]

- \(x^n\) occurs once for each partition of \(n\) into distinct parts.
- Each partition of \(n\) into an even number of distinct parts contributes +1 to the coefficient of \(x^n\), and each partition of \(n\) into an odd number of distinct parts contributes −1.

- Partitions of 6 into distinct parts: 6, 1+5, 2+4, and 1+2+3.
- So \(x^6\) occurs in the expansion as

\[(-x^6) + (-x)(-x^5) + (-x^2)(-x^4) + (-x)(-x^2)(-x^3) =
\]
\[(-1)(x^6) + (1)(x^6) + (1)(x^6) + (-1)(x^6) =
\]
\[(2)(x^6) - (2)(x^6) =
\]
\[(p_e(6) - p_o(6))(x^6) = 0. \]
Pentagonal Number Theorem: Outline of Proof

Lemma 1:
\[
\prod_{m=1}^{\infty} (1 - x^m) = 1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n
\]

Lemma 2:
\[
1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \ldots
\]
Pentagonal Number Theorem: Outline of Proof

Lemma 1: √

\[\prod_{m=1}^{\infty} (1 - x^m) = 1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n \]

Lemma 2:

\[1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \ldots \]
Proof Part 2: Cancellation of partition numbers

Lemma 2:

\[1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n)) x^n = 1 - x - x^2 + x^5 + x^7 + ... \]
Proof Part 2: Cancellation of partition numbers

Lemma 2:

\[1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \ldots \]

= \[x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + \ldots \]
Proof Part 2: Cancellation of partition numbers

Lemma 2:

\[1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \ldots \]

\[= x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + \ldots \]

\[= \sum_{k=-\infty}^{\infty} (-1)^k x^{\frac{3k^2-k}{2}} \]
Proof Part 2: Cancellation of partition numbers

Lemma 2:

\[
1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \ldots
\]

\[
= x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + \ldots
\]

\[
= \sum_{k=-\infty}^{\infty} (-1)^k x^{\frac{3k^2-k}{2}}
\]

We must show:

1. That \(p_e(n) - p_o(n) = 0\) unless \(n\) is a pentagonal number.
2. If \(n\) is a pentagonal number (\(n = 3k^2 - k\)), then \(p_e(n) - p_o(n) = (-1)^k\).
Proof Part 2: Cancellation of partition numbers

Lemma 2:

\[1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \ldots \]

\[= x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + \ldots \]

\[= \sum_{k=-\infty}^{\infty} (-1)^k x^{\frac{3k^2-k}{2}} \]

We must show:

- That \(p_e(n) - p_o(n) = 0 \) unless \(n \) is a pentagonal number.
Proof Part 2: Cancellation of partition numbers

Lemma 2:

\[
1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \ldots
\]

\[
= x^{P(0)} - x^{P(1)} - x^{P(-1)} + x^{P(2)} + \ldots
\]

\[
= \sum_{k=-\infty}^{\infty} (-1)^k x^{\frac{3k^2-k}{2}}
\]

We must show:

- That \(p_e(n) - p_o(n) = 0 \) unless \(n \) is a pentagonal number.
- If \(n \) is a pentagonal number \((n = \frac{3k^2-k}{2}) \), then \(p_e(n) - p_o(n) = (-1)^k \).
Proof Part 2: Cancellation of partition numbers

For any partition of n in standard form, we define:

$s =$ number of dots along slope, and

$b =$ number of dots along base.

\[
\begin{array}{cccccccccccccccc}
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\end{array}
\]
Proof Part 2: Cancellation of partition numbers

For any partition of n in standard form, we define:
$s = $ number of dots along slope, and
$b = $ number of dots along base.

$n=29$, $b=3$, $s=2$;
Proof Part 2: Cancellation of partition numbers

For any partition of n in standard form, we define:
$s = \text{number of dots along slope, and}$
$b = \text{number of dots along base.}$

$n=29, \ b=3, \ s=2;$

We are interested in $p_e(n) - p_o(n).$
We want a bijection between P_e and $P_o.$
Proof Part 2: Cancellation of partition numbers

For any partition of n in standard form, we define:
$s = \text{number of dots along slope, and}$
$b = \text{number of dots along base.}$

$n=29$, $b=3$, $s=2$;

We are interested in $p_e(n) - p_o(n)$.
We want a bijection between P_e and P_o.

Given a partition of n, we either shift the slope down, or we shift the base up. This operation is self-inverse wherever it is defined.
Proof Part 2: Cancellation of partition numbers

For any partition of n in standard form, we define:
$s = \text{number of dots along slope, and}$
$b = \text{number of dots along base.}$

$n = 29, \quad b = 2, \quad s = 3;$

We are interested in $p_e(n) - p_o(n)$.
We want a bijection between P_e and P_o.

Given a partition of n, we either shift the slope down, or we shift the base up. This operation is self-inverse wherever it is defined.
Proof Part 2: Cancellation of partition numbers

Consider an arbitrary partition of n in standard form. If $b < s$, the operation is defined and self-inverse:
Proof Part 2: Cancellation of partition numbers

Consider an arbitrary partition of n in standard form.
If $b < s$, the operation is defined and self-inverse:
Proof Part 2: Cancellation of partition numbers

Consider an arbitrary partition of \(n \) in standard form.

If \(b < s \), the operation is defined and self-inverse:
Proof Part 2: Cancellation of partition numbers

Consider an arbitrary partition of \(n \) in standard form.

If \(b < s \), the operation is defined and self-inverse:

If \(b > s + 1 \), the operation is defined and self-inverse:
Proof Part 2: Cancellation of partition numbers

Consider an arbitrary partition of n in standard form.

If $b < s$, the operation is defined and self-inverse:

If $b > s + 1$, the operation is defined and self-inverse:
Proof Part 2: Cancellation of partition numbers

Consider an arbitrary partition of n in standard form.

If $b < s$, the operation is defined and self-inverse:

If $b > s + 1$, the operation is defined and self-inverse:

Note: This operation changes the parity of the number of parts.
Proof Part 2: Cancellation of partition numbers

Consider an arbitrary partition of n in standard form.

If $b < s$, the operation is defined and self-inverse:

If $b > s + 1$, the operation is defined and self-inverse:

Note: This operation changes the parity of the number of parts.
Proof Part 2: Cancellation of partition numbers

Example: $n = 8$

The operation is a bijection between P_e and P_o.
Proof Part 2: Cancellation of partition numbers

What if our partition of \(n \) has \(b = s \) or \(b = s + 1 \)?
The problem occurs when the slope and base “intersect”.
Proof Part 2: Cancellation of partition numbers

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base “intersect”.

Example 1:

$b = s$, no intersection
Proof Part 2: Cancellation of partition numbers

What if our partition of \(n \) has \(b = s \) or \(b = s + 1 \)?
The problem occurs when the slope and base “intersect”.

Example 1:

\[
\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array}
\]

\(b = s + 1 \), no intersection
Proof Part 2: Cancellation of partition numbers

What if our partition of n has $b = s$ or $b = s + 1$?
The problem occurs when the slope and base “intersect”.

Example 2:

$b = s$, intersection
Proof Part 2: Cancellation of partition numbers

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base "intersect".

Example 2:

not in standard form!
Proof Part 2: Cancellation of partition numbers

What if our partition of n has $b = s$ or $b = s + 1$?
The problem occurs when the slope and base “intersect”.

Example 2:

$b = s$, intersection
Proof Part 2: Cancellation of partition numbers

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base “intersect”.

Example 2:

not in standard form!
Proof Part 2: Cancellation of partition numbers

What if our partition of \(n \) has \(b = s \) or \(b = s + 1 \)? The problem occurs when the slope and base “intersect”.

Example 3:

\[
\begin{array}{cccc}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet
\end{array}
\]

\(b = s + 1 \), intersection
Proof Part 2: Cancellation of partition numbers

What if our partition of n has $b = s$ or $b = s + 1$? The problem occurs when the slope and base “intersect”.

Example 3:

not a valid partition!
Proof Part 2: Cancellation of partition numbers

What if our partition of n has $b = s$ or $b = s + 1$?
The problem occurs when the slope and base “intersect”.

Example 3:

\[
\begin{array}{c}
\text{\includegraphics[width=0.3\textwidth]{example3}} \\
\end{array}
\]

$b = s + 1$, intersection
Proof Part 2: Cancellation of partition numbers

What if our partition of \(n \) has \(b = s \) or \(b = s + 1 \)? The problem occurs when the slope and base “intersect”.

Example 3:

\[\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array} \]

not in standard form!
Proof Part 2: Cancellation of partition numbers

When does n have a problem partition?
When does n have a problem partition?

Case 1: $b = s$

Note: The “parity” of this partition is the parity of b.

\[\text{Diagram: } \]
Proof Part 2: Cancellation of partition numbers

When does \(n \) have a problem partition?

Case 1: \(b = s \)

Note: The “parity” of this partition is the parity of \(b \).

\[
\begin{align*}
n &= b^2 + \sum_{i=1}^{b-1} i = \frac{2b^2 + b(b-1)}{2} = \frac{3b^2 - b}{2} = P(b)
\end{align*}
\]

For such \(n \), \(p_e(n) - p_o(n) = (-1)^b \).
Proof Part 2: Cancellation of partition numbers

When does n have a problem partition?
Proof Part 2: Cancellation of partition numbers

When does n have a problem partition?

Case 2: $b = s + 1$

Note: The “parity” of this partition is the parity of $b - 1$.
Proof Part 2: Cancellation of partition numbers

When does \(n \) have a problem partition?
Case 2: \(b = s + 1 \)

Note: The “parity” of this partition is the parity of \(b - 1 \).

\[
\begin{align*}
 n &= (b - 1)^2 + \sum_{i=1}^{b-1} i \\
 &= \frac{2(b-1)^2 + b(b-1)}{2} \\
 &= \frac{2(b-1)^2 + b^2 - b}{2} \\
 &= \frac{3(b-1)^2 + (b-1)}{2} = P(-(b - 1))
\end{align*}
\]

For such \(n \), \(p_e(n) - p_o(n) = (-1)^{b-1} \).
Proof Part 2: Cancellation of partition numbers

Summary: When \(n \) is a pentagonal number, \(n \) has exactly one problem partition. We can tell whether the problem partition is even or odd by examining \(k \), where \(n = \frac{3k^2 - k}{2} \). Otherwise, \(n \) has no problem partitions, so we have a bijection between \(P_e \) and \(P_o \).
Proof Part 2: Cancellation of partition numbers

Summary: When \(n \) is a pentagonal number, \(n \) has exactly one problem partition. We can tell whether the problem partition is even or odd by examining \(k \), where \(n = \frac{3k^2 - k}{2} \). Otherwise, \(n \) has no problem partitions, so we have a bijection between \(P_e \) and \(P_o \).

Example: \(n = 7 \)
Pentagonal Number Theorem: Outline of Proof

Lemma 1:

\[\prod_{m=1}^{\infty} (1 - x^m) = 1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n \]

Lemma 2:

\[1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \ldots \]
Pentagonal Number Theorem: Outline of Proof

Lemma 1: \(\prod_{m=1}^{\infty} (1 - x^m) = 1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n \)

Lemma 2:

\[1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + \ldots \]
Pentagonal Number Theorem: Outline of Proof

Lemma 1: \(\prod_{m=1}^{\infty} (1 - x^m) = 1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n \)

Lemma 2: \(1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + ... \)
Pentagonal Number Theorem: Outline of Proof

Lemma 1: \(\prod_{m=1}^{\infty} (1 - x^m) = 1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n\)

Lemma 2: \(1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + ...\)

We may now conclude that indeed,

\(\prod_{m=1}^{\infty} (1 - x^m) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + ...\)
Pentagonal Number Theorem: Outline of Proof

Lemma 1:

\[
\prod_{m=1}^{\infty} (1 - x^m) = 1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n
\]

Lemma 2:

\[
1 + \sum_{n=1}^{\infty} (p_e(n) - p_o(n))x^n = 1 - x - x^2 + x^5 + x^7 + ...
\]

We may now conclude that indeed,

\[
\prod_{m=1}^{\infty} (1 - x^m) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + ...
\]