Overlap Number of Graphs

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Slides available on my preprint page
Joint with Nitish Korula, Tim LeSaulnier, Kevin Milans
Chris Stocker, Jenn Vandenbussche, and Doug West

Atlanta Lecture Series V
26 February 2012
Definitions

Def: A set overlaps another set if they intersect but neither contains the other.
Definitions

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to $V(G)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ overlap.
Definitions

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to $V(G)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ overlap. The overlap number $\varphi(G)$ is the minimum size of f.

So $\varphi(G) \leq 5$, but $\Phi(G) \leq 6$.

Definitions

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to $V(G)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ overlap. The overlap number $\varphi(G)$ is the minimum size of f.
Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to $V(G)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ overlap. The overlap number $\varphi(G)$ is the minimum size of f.

\begin{align*}
67 & \quad 45 \\
126 & \quad 234 \\
13
\end{align*}
Definitions

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to $V(G)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ overlap. The overlap number $\varphi(G)$ is the minimum size of f.

\[
\begin{array}{c}
67 \\
\downarrow \\
126 - 234 \\
\downarrow \\
13 \\
\end{array}
\]

\[
\begin{array}{c}
45 \\
\downarrow \\
13 \\
\end{array}
\]

so $\varphi(G) \leq 7$
Definitions

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to $V(G)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ overlap. The overlap number $\varphi(G)$ is the minimum size of f.

\[
\begin{array}{ccc}
67 & & 45 \\
\downarrow & \downarrow & \\
126 & - & 234 \\
\downarrow & & \\
13 & & \\
\end{array}
\quad
\begin{array}{ccc}
26 & & 45 \\
\downarrow & \downarrow & \\
12 & - & 14 \\
\downarrow & & \\
13 & & \\
\end{array}
\]

so $\varphi(G) \leq 7$
Definitions

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to $V(G)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ overlap. The overlap number $\varphi(G)$ is the minimum size of f.

\[
\begin{array}{ccc}
67 & 45 & 13 \\
\downarrow & \downarrow & \downarrow \\
126 & 234 & 13 \\
\downarrow & \downarrow & \downarrow \\
12 & 14 & 13 \\
\end{array}
\]

so $\varphi(G) \leq 7$

so $\varphi(G) \leq 6$
Definitions

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to $V(G)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ overlap. The overlap number $\varphi(G)$ is the minimum size of f.

\[
\begin{align*}
67 & \quad 45 \\
\downarrow & \quad \downarrow \\
126 & \quad 234 \\
\downarrow & \quad \downarrow \\
13 & \quad 13
\end{align*}
\]

so $\varphi(G) \leq 7$

\[
\begin{align*}
26 & \quad 45 \\
\downarrow & \quad \downarrow \\
12 & \quad 14 \\
\downarrow & \quad \downarrow \\
13 & \quad 13
\end{align*}
\]

so $\varphi(G) \leq 6$

\[
\begin{align*}
1345 & \quad 45 \\
\downarrow & \quad \downarrow \\
12 & \quad 14 \\
\downarrow & \quad \downarrow \\
13 & \\
\end{align*}
\]
Definitions

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to $V(G)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ overlap. The overlap number $\varphi(G)$ is the minimum size of f.

\[\begin{array}{ccc}
67 & 45 \\
\downarrow & \downarrow \\
126 & 234 \\
\downarrow & \downarrow \\
13 & 13 & 13
\end{array} \]

so $\varphi(G) \leq 7$

\[\begin{array}{ccc}
26 & 45 \\
\downarrow & \downarrow \\
12 & 14 \\
\downarrow & \downarrow \\
13 & 13
\end{array} \]

so $\varphi(G) \leq 6$

\[\begin{array}{ccc}
1345 & 45 \\
\downarrow & \downarrow \\
12 & 14 \\
\downarrow & \downarrow \\
13
\end{array} \]

so $\varphi(G) \leq 5$
Definitions

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to $V(G)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ overlap. The overlap number $\varphi(G)$ is the minimum size of f.

\[
\begin{align*}
67 & \quad 45 \\
\downarrow & \quad \downarrow \\
126 & \quad 234 \\
\downarrow & \quad \downarrow \\
13 & \quad 13 \\
\end{align*}
\]

so $\varphi(G) \leq 7$

\[
\begin{align*}
26 & \quad 45 \\
\downarrow & \quad \downarrow \\
12 & \quad 14 \\
\downarrow & \quad \downarrow \\
13 & \quad 13 \\
\end{align*}
\]

so $\varphi(G) \leq 6$

\[
\begin{align*}
1345 & \quad 45 \\
\downarrow & \quad \downarrow \\
12 & \quad 14 \\
\downarrow & \quad \downarrow \\
13 & \quad 13 \\
\end{align*}
\]

so $\varphi(G) \leq 5$

Def: A pure overlap representation f of a graph G is an overlap representation where no set contains another. The pure overlap number $\Phi(G)$ is the minimum size of f.

Definitions

Def: A set overlaps another set if they intersect but neither contains the other. An overlap representation f of a graph G assigns sets to $V(G)$ so that $uv \in E(G)$ iff $f(u)$ and $f(v)$ overlap. The overlap number $\varphi(G)$ is the minimum size of f.

Def: A pure overlap representation f of a graph G is an overlap representation where no set contains another. The pure overlap number $\Phi(G)$ is the minimum size of f.

So $\varphi(G) \leq 5$, but $\Phi(G) \leq 6$.
Main Results

Thm 1: We have a linear-time algorithm to determine $\varphi(T)$ for every tree T. Corollary: $\varphi(T) \leq |T|$.

Thm 2: If G is a planar n-vertex graph and $n \geq 5$, then $\varphi(G) \leq 2n - 5$, which is sharp for $n = 8$ and $n \geq 10$.

Thm 3: If G is an arbitrary n-vertex graph and $n \geq 14$, then $\varphi(G) \leq n^2/4 - n/2 - 1$, which is sharp for even n.
Main Results

Thm 1: We have a linear-time algorithm to determine $\varphi(T)$ for every tree T. Corollary: $\varphi(T) \leq |T|$.

Thm 2: If G is a planar n-vertex graph and $n \geq 5$, then $\varphi(G) \leq 2n - 5$, which is sharp for $n = 8$ and $n \geq 10$.
Main Results

Thm 1: We have a linear-time algorithm to determine $\varphi(T)$ for every tree T. Corollary: $\varphi(T) \leq |T|$.

Thm 2: If G is a planar n-vertex graph and $n \geq 5$, then $\varphi(G) \leq 2n - 5$, which is sharp for $n = 8$ and $n \geq 10$.

Thm 3: If G is an arbitrary n-vertex graph and $n \geq 14$, then $\varphi(G) \leq n^2/4 - n/2 - 1$, which is sharp for even n.
Preliminaries

Decomposition Bound: Let \mathcal{F} be a decomposition of graph G into cliques of order at most k, where $k \geq 2$. If $\delta(G) \geq k$, then $\Phi(G) \leq |\mathcal{F}|$. In particular, $\delta(G) \geq 2$ implies $\Phi(G) \leq |E(G)|$.
Preliminaries

Decomposition Bound: Let \mathcal{F} be a decomposition of graph G into cliques of order at most k, where $k \geq 2$. If $\delta(G) \geq k$, then $\Phi(G) \leq |\mathcal{F}|$. In particular, $\delta(G) \geq 2$ implies $\Phi(G) \leq |E(G)|$.

Pf: Give each clique in \mathcal{F} its own label, and give each vertex all the labels of cliques that contain it.

Prop: If G is triangle-free, then $\Phi(G) \geq |E(G)|$, and $\Phi(G) = |E(G)|$ when $\delta(G) \geq 2$.

Pf: We can’t do better than one label on each edge.

Deletion Bound: If v is a vertex with $d(v) \leq 2$ in a graph G with at least 3 vertices, then $\Phi(G) \leq \Phi(G - v) + 2$. If $d(v) \leq 1$, then $\phi(G) \leq \phi(G - v) + 2$.

Pf: Easy for Φ, and not too hard for ϕ.
Decomposition Bound: Let \mathcal{F} be a decomposition of graph G into cliques of order at most k, where $k \geq 2$. If $\delta(G) \geq k$, then $\Phi(G) \leq |\mathcal{F}|$. In particular, $\delta(G) \geq 2$ implies $\Phi(G) \leq |E(G)|$.

Pf: Give each clique in \mathcal{F} its own label, and give each vertex all the labels of cliques that contain it.

Prop: If G is triangle-free, then $\Phi(G) \geq |E(G)|$, and $\Phi(G) = |E(G)|$ when $\delta(G) \geq 2$.
Preliminaries

Decomposition Bound: Let \mathcal{F} be a decomposition of graph G into cliques of order at most k, where $k \geq 2$. If $\delta(G) \geq k$, then $\Phi(G) \leq |\mathcal{F}|$. In particular, $\delta(G) \geq 2$ implies $\Phi(G) \leq |E(G)|$.

Pf: Give each clique in \mathcal{F} its own label, and give each vertex all the labels of cliques that contain it.

Prop: If G is triangle-free, then $\Phi(G) \geq |E(G)|$, and $\Phi(G) = |E(G)|$ when $\delta(G) \geq 2$.

Pf: We can’t do better than one label on each edge.
Decomposition Bound: Let \mathcal{F} be a decomposition of graph G into cliques of order at most k, where $k \geq 2$. If $\delta(G) \geq k$, then $\Phi(G) \leq |\mathcal{F}|$. In particular, $\delta(G) \geq 2$ implies $\Phi(G) \leq |E(G)|$.

Pf: Give each clique in \mathcal{F} its own label, and give each vertex all the labels of cliques that contain it.

Prop: If G is triangle-free, then $\Phi(G) \geq |E(G)|$, and $\Phi(G) = |E(G)|$ when $\delta(G) \geq 2$.

Pf: We can’t do better than one label on each edge.

Deletion Bound: If v is a vertex with $d(v) \leq 2$ in a graph G with at least 3 vertices, then $\Phi(G) \leq \Phi(G - v) + 2$. If $d(v) \leq 1$, then $\varphi(G) \leq \varphi(G - v) + 2$.
Decomposition Bound: Let F be a decomposition of graph G into cliques of order at most k, where $k \geq 2$. If $\delta(G) \geq k$, then $\Phi(G) \leq |F|$. In particular, $\delta(G) \geq 2$ implies $\Phi(G) \leq |E(G)|$.

Pf: Give each clique in F its own label, and give each vertex all the labels of cliques that contain it.

Prop: If G is triangle-free, then $\Phi(G) \geq |E(G)|$, and $\Phi(G) = |E(G)|$ when $\delta(G) \geq 2$.

Pf: We can’t do better than one label on each edge.

Deletion Bound: If v is a vertex with $d(v) \leq 2$ in a graph G with at least 3 vertices, then $\Phi(G) \leq \Phi(G - v) + 2$. If $d(v) \leq 1$, then $\varphi(G) \leq \varphi(G - v) + 2$.

Pf: Easy for Φ, and not too hard for φ.
Preliminaries (part 2)

Edge Bound: If $\delta(G) \geq 2$ and $G \neq K_3$, then $\varphi(G) \leq |E(G)| - 1$.
Preliminaries (part 2)

Edge Bound: If \(\delta(G) \geq 2 \) and \(G \neq K_3 \), then \(\varphi(G) \leq |E(G)| - 1 \).

Pf: Slightly modify a pure overlap labeling of size \(|E(G)| \).
Preliminaries (part 2)

Edge Bound: If $\delta(G) \geq 2$ and $G \neq K_3$, then $\varphi(G) \leq |E(G)| - 1$.

Pf: Slightly modify a pure overlap labeling of size $|E(G)|$.

Def: A *star-cutset* in a graph G is a separating set S containing a vertex x adjacent to all of $S - x$.
Preliminaries (part 2)

Edge Bound: If $\delta(G) \geq 2$ and $G \neq K_3$, then $\varphi(G) \leq |E(G)| - 1$.

Pf: Slightly modify a pure overlap labeling of size $|E(G)|$.

Def: A **star-cutset** in a graph G is a separating set S containing a vertex x adjacent to all of $S - x$.

Edge Lower Bound: If G is a triangle-free graph with no star-cutset, then $\varphi(G) \geq |E(G)| - 1$.
Preliminaries (part 2)

Edge Bound: If $\delta(G) \geq 2$ and $G \neq K_3$, then $\varphi(G) \leq |E(G)| - 1$.

Pf: Slightly modify a pure overlap labeling of size $|E(G)|$.

Def: A star-cutset in a graph G is a separating set S containing a vertex x adjacent to all of $S - x$.

Edge Lower Bound: If G is a triangle-free graph with no star-cutset, then $\varphi(G) \geq |E(G)| - 1$.

Pf idea: We can’t do anything better than in the Edge Bound.
Preliminaries (part 2)

Edge Bound: If $\delta(G) \geq 2$ and $G \neq K_3$, then $\varphi(G) \leq |E(G)| - 1$.

Pf: Slightly modify a pure overlap labeling of size $|E(G)|$.

Def: A **star-cutset** in a graph G is a separating set S containing a vertex x adjacent to all of $S - x$.

Edge Lower Bound: If G is a triangle-free graph with no star-cutset, then $\varphi(G) \geq |E(G)| - 1$.

Pf idea: We can’t do anything better than in the Edge Bound.

Cor. 1 If G is a triangle-free plane graph in which every face has length 4, and G has no star-cutset, then $\varphi(G) = 2n - 5$.
Preliminaries (part 2)

Edge Bound: If \(\delta(G) \geq 2 \) and \(G \neq K_3 \), then \(\varphi(G) \leq |E(G)| - 1 \).

Pf: Slightly modify a pure overlap labeling of size \(|E(G)| \).

Def: A star-cutset in a graph \(G \) is a separating set \(S \) containing a vertex \(x \) adjacent to all of \(S - x \).

Edge Lower Bound: If \(G \) is a triangle-free graph with no star-cutset, then \(\varphi(G) \geq |E(G)| - 1 \).

Pf idea: We can’t do anything better than in the Edge Bound.

Cor. 1 If \(G \) is a triangle-free plane graph in which every face has length 4, and \(G \) has no star-cutset, then \(\varphi(G) = 2n - 5 \).
Preliminaries (part 2)

Edge Bound: If $\delta(G) \geq 2$ and $G \neq K_3$, then $\varphi(G) \leq |E(G)| - 1$.

Pf: Slightly modify a pure overlap labeling of size $|E(G)|$.

Def: A *star-cutset* in a graph G is a separating set S containing a vertex x adjacent to all of $S - x$.

Edge Lower Bound: If G is a triangle-free graph with no star-cutset, then $\varphi(G) \geq |E(G)| - 1$.

Pf idea: We can’t do anything better than in the Edge Bound.

Cor. 1 If G is a triangle-free plane graph in which every face has length 4, and G has no star-cutset, then $\varphi(G) = 2n - 5$.

Cor. 2 For even $n \geq 6$, if we obtain G_n by deleting a matching of size $n/2$ from $K_{n/2,n/2}$, then $\varphi(G_n) = n^2/4 - n/2 - 1$.
Preliminaries (part 2)

Edge Bound: If $\delta(G) \geq 2$ and $G \neq K_3$, then $\varphi(G) \leq |E(G)| - 1$.

Pf: Slightly modify a pure overlap labeling of size $|E(G)|$.

Def: A star-cutset in a graph G is a separating set S containing a vertex x adjacent to all of $S - x$.

Edge Lower Bound: If G is a triangle-free graph with no star-cutset, then $\varphi(G) \geq |E(G)| - 1$.

Pf idea: We can’t do anything better than in the Edge Bound.

Cor. 1 If G is a triangle-free plane graph in which every face has length 4, and G has no star-cutset, then $\varphi(G) = 2n - 5$.

Cor. 2 For even $n \geq 6$, if we obtain G_n by deleting a matching of size $n/2$ from $K_{n/2,n/2}$, then $\varphi(G_n) = n^2/4 - n/2 - 1$.
Planar Graphs

Lemma 1: If G is planar with $n \geq 5$ vertices, then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).
Planar Graphs

Lemma 1: If G is planar with $n \geq 5$ vertices, then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Pf: Let F denote our decomposition of G into edges and triangles.
Planar Graphs

Lemma 1: If G is planar with $n \geq 5$ vertices, then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.
Planar Graphs

Lemma 1: If G is planar with $n \geq 5$ vertices, then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G. If $t = 0$, then Euler’s formula implies the claim.
Planar Graphs

Lemma 1: If G is planar with $n \geq 5$ vertices, then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If $t = 0$, then Euler’s formula implies the claim. So suppose $t \geq 1$.

- **Case 1:** G' has a facial (non-4)-cycle. Now $|\mathcal{F}'| \leq 2(n + 1) - 5 = 2n - 3$, so $|\mathcal{F}| \leq (2n - 3) - 3 + 1 = 2n - 5$.
- **Case 2:** G' has only facial 4-cycles. Now $|\mathcal{F}'| = 2(n + 1) - 4 = 2n - 2$, so $|\mathcal{F}| = (2n - 2) - 3 + 3 = 2n - 4$.
- **Case 3:** Or 2 faces share an edge, so $|\mathcal{F}| \leq |\mathcal{F}'| - 8 + 4 = 2n - 6$.

Planar Graphs

Lemma 1: If G is planar with $n \geq 5$ vertices, then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G. If $t = 0$, then Euler’s formula implies the claim. So suppose $t \geq 1$.

\[
G
\quad \iff \quad G'
\]

\[
\begin{align*}
G &= \quad \text{a triangle} \\
G' &= \text{a tree}
\end{align*}
\]
Planar Graphs

Lemma 1: If \(G \) is planar with \(n \geq 5 \) vertices, then \(G \) decomposes into at most \(2n - 5 \) edges and facial triangles unless every face is a 4-cycle (then \(G \) consists of \(2n - 4 \) edges).

Pf: Let \(\mathcal{F} \) denote our decomposition of \(G \) into edges and triangles. We induct on \(t \), the number of facial triangles in \(G \). If \(t = 0 \), then Euler’s formula implies the claim. So suppose \(t \geq 1 \).

Case 1: \(G' \) has a facial (non-4)-cycle. Now \(|\mathcal{F}'| \leq 2(n + 1) - 5 = 2n - 3 \), so \(|\mathcal{F}| \leq (2n - 3) - 3 + 1 = 2n - 5 \).
Planar Graphs

Lemma 1: If G is planar with $n \geq 5$ vertices, then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G. If $t = 0$, then Euler’s formula implies the claim. So suppose $t \geq 1$.

Case 1: G' has a facial (non-4)-cycle.

Now $|\mathcal{F}'| \leq 2(n + 1) - 5 = 2n - 3$, so $|\mathcal{F}| \leq (2n - 3) - 3 + 1 = 2n - 5$.

Case 2: G' has only facial 4-cycles.
Planar Graphs

Lemma 1: If G is planar with $n \geq 5$ vertices, then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G. If $t = 0$, then Euler's formula implies the claim. So suppose $t \geq 1$.

Case 1: G' has a facial (non-4)-cycle.

Now $|\mathcal{F}'| \leq 2(n + 1) - 5 = 2n - 3$, so $|\mathcal{F}| \leq (2n - 3) - 3 + 1 = 2n - 5$.

Case 2: G' has only facial 4-cycles.
Planar Graphs

Lemma 1: If G is planar with $n \geq 5$ vertices, then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G. If $t = 0$, then Euler’s formula implies the claim. So suppose $t \geq 1$.

Case 1: G' has a facial (non-4)-cycle. Now $|\mathcal{F}'| \leq 2(n + 1) - 5 = 2n - 3$, so $|\mathcal{F}| \leq (2n - 3) - 3 + 1 = 2n - 5$.

Case 2: G' has only facial 4-cycles.
Planar Graphs

Lemma 1: If \(G \) is planar with \(n \geq 5 \) vertices, then \(G \) decomposes into at most \(2n - 5 \) edges and facial triangles unless every face is a 4-cycle (then \(G \) consists of \(2n - 4 \) edges).

Pf: Let \(\mathcal{F} \) denote our decomposition of \(G \) into edges and triangles. We induct on \(t \), the number of facial triangles in \(G \). If \(t = 0 \), then Euler’s formula implies the claim. So suppose \(t \geq 1 \).

Case 1: \(G' \) has a facial (non-4)-cycle. Now \(|\mathcal{F}'| \leq 2(n + 1) - 5 = 2n - 3 \), so \(|\mathcal{F}| \leq (2n - 3) - 3 + 1 = 2n - 5 \).

Case 2: \(G' \) has only facial 4-cycles. Now \(|\mathcal{F}'| = 2(n + 1) - 4 = 2n - 2 \),
Planar Graphs

Lemma 1: If G is planar with $n \geq 5$ vertices, then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G. If $t = 0$, then Euler’s formula implies the claim. So suppose $t \geq 1$.

Case 1: G' has a facial (non-4)-cycle. Now $|\mathcal{F}'| \leq 2(n + 1) - 5 = 2n - 3$, so $|\mathcal{F}| \leq (2n - 3) - 3 + 1 = 2n - 5$.

Case 2: G' has only facial 4-cycles. Now $|\mathcal{F}'| = 2(n + 1) - 4 = 2n - 2$, so $|\mathcal{F}| = (2n - 2) - 9 + 3 = 2n - 8$.
Planar Graphs

Lemma 1: If G is planar with $n \geq 5$ vertices, then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G. If $t = 0$, then Euler’s formula implies the claim. So suppose $t \geq 1$.

Case 1: G' has a facial (non-4)-cycle. Now $|\mathcal{F}'| \leq 2(n + 1) - 5 = 2n - 3$, so $|\mathcal{F}| \leq (2n - 3) - 3 + 1 = 2n - 5$.

Case 2: G' has only facial 4-cycles. Now $|\mathcal{F}'| = 2(n + 1) - 4 = 2n - 2$, so $|\mathcal{F}| = (2n - 2) - 9 + 3 = 2n - 8$.

Case 3: Or 2 faces share an edge,
Planar Graphs

Lemma 1: If G is planar with $n \geq 5$ vertices, then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G. If $t = 0$, then Euler's formula implies the claim. So suppose $t \geq 1$.

Case 1: G' has a facial (non-4)-cycle. Now $|\mathcal{F}'| \leq 2(n + 1) - 5 = 2n - 3$, so $|\mathcal{F}| \leq (2n - 3) - 3 + 1 = 2n - 5$.

Case 2: G' has only facial 4-cycles. Now $|\mathcal{F}'| = 2(n + 1) - 4 = 2n - 2$, so $|\mathcal{F}| = (2n - 2) - 9 + 3 = 2n - 8$.

Case 3: Or 2 faces share an edge,
Planar Graphs

Lemma 1: If G is planar with $n \geq 5$ vertices, then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Pf: Let \mathcal{F} denote our decomposition of G into edges and triangles. We induct on t, the number of facial triangles in G.

If $t = 0$, then Euler’s formula implies the claim. So suppose $t \geq 1$.

Case 1: G' has a facial (non-4)-cycle. Now $|\mathcal{F}'| \leq 2(n + 1) - 5 = 2n - 3$,
so $|\mathcal{F}| \leq (2n - 3) - 3 + 1 = 2n - 5$.

Case 2: G' has only facial 4-cycles. Now $|\mathcal{F}'| = 2(n + 1) - 4 = 2n - 2$,
so $|\mathcal{F}| = (2n - 2) - 9 + 3 = 2n - 8$.

Case 3: Or 2 faces share an edge,
so $|\mathcal{F}| \leq |\mathcal{F}'| - 8 + 4 = 2n - 6$.
Planar Graphs

Lemma 1: If G is planar with n vertices and $n \geq 5$ then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).
Lemma 1: If G is planar with n vertices and $n \geq 5$ then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Cor: If G is planar, $n \geq 5$, and $\delta(G) \geq 3$, then $\Phi(G) \leq 2n - 5$, unless G has $2n - 4$ edges and every face is a 4-cycle.
Planar Graphs

Lemma 1: If G is planar with n vertices and $n \geq 5$ then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Cor: If G is planar, $n \geq 5$, and $\delta(G) \geq 3$, then $\Phi(G) \leq 2n - 5$, unless G has $2n - 4$ edges and every face is a 4-cycle.

Pf: This follows from Lemma 1 and the Decomposition Bound.
Planar Graphs

Lemma 1: If G is planar with n vertices and $n \geq 5$ then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Cor: If G is planar, $n \geq 5$, and $\delta(G) \geq 3$, then $\Phi(G) \leq 2n - 5$, unless G has $2n - 4$ edges and every face is a 4-cycle.

Pf: This follows from Lemma 1 and the Decomposition Bound.

Thm 2: If G is a planar n-vertex graph and $n \geq 5$, then $\varphi(G) \leq 2n - 5$, which is sharp for $n = 8$ and $n \geq 10$.
Planar Graphs

Lemma 1: If G is planar with n vertices and $n \geq 5$ then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Cor: If G is planar, $n \geq 5$, and $\delta(G) \geq 3$, then $\Phi(G) \leq 2n - 5$, unless G has $2n - 4$ edges and every face is a 4-cycle.

Pf: This follows from Lemma 1 and the Decomposition Bound.

Thm 2: If G is a planar n-vertex graph and $n \geq 5$, then $\varphi(G) \leq 2n - 5$, which is sharp for $n = 8$ and $n \geq 10$.

Pf sketch: Use the Deletion Bound ($\Phi(G) \leq \Phi(G - v) + 2$ if $d(v) \leq 2$) to reduce to $\delta(G) \geq 3$, then invoke the corollary above.
Planar Graphs

Lemma 1: If G is planar with n vertices and $n \geq 5$ then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Cor: If G is planar, $n \geq 5$, and $\delta(G) \geq 3$, then $\Phi(G) \leq 2n - 5$, unless G has $2n - 4$ edges and every face is a 4-cycle.

Pf: This follows from Lemma 1 and the Decomposition Bound.

Thm 2: If G is a planar n-vertex graph and $n \geq 5$, then $\varphi(G) \leq 2n - 5$, which is sharp for $n = 8$ and $n \geq 10$.

Pf sketch: Use the Deletion Bound ($\Phi(G) \leq \Phi(G - v) + 2$ if $d(v) \leq 2$) to reduce to $\delta(G) \geq 3$, then invoke the corollary above. If G consists of $2n - 4$ edges, then $\varphi(G) \leq |E(G)| - 1 = 2n - 5$.

What's missing? Lot's of messy base cases.
Planar Graphs

Lemma 1: If G is planar with n vertices and $n \geq 5$ then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Cor: If G is planar, $n \geq 5$, and $\delta(G) \geq 3$, then $\Phi(G) \leq 2n - 5$, unless G has $2n - 4$ edges and every face is a 4-cycle.

Pf: This follows from Lemma 1 and the Decomposition Bound.

Thm 2: If G is a planar n-vertex graph and $n \geq 5$, then $\varphi(G) \leq 2n - 5$, which is sharp for $n = 8$ and $n \geq 10$.

Pf sketch: Use the Deletion Bound ($\Phi(G) \leq \Phi(G - v) + 2$ if $d(v) \leq 2$) to reduce to $\delta(G) \geq 3$, then invoke the corollary above. If G consists of $2n - 4$ edges, then $\varphi(G) \leq |E(G)| - 1 = 2n - 5$. What’s missing?
Planar Graphs

Lemma 1: If G is planar with n vertices and $n \geq 5$ then G decomposes into at most $2n - 5$ edges and facial triangles unless every face is a 4-cycle (then G consists of $2n - 4$ edges).

Cor: If G is planar, $n \geq 5$, and $\delta(G) \geq 3$, then $\Phi(G) \leq 2n - 5$, unless G has $2n - 4$ edges and every face is a 4-cycle.

Pf: This follows from Lemma 1 and the Decomposition Bound.

Thm 2: If G is a planar n-vertex graph and $n \geq 5$, then $\varphi(G) \leq 2n - 5$, which is sharp for $n = 8$ and $n \geq 10$.

Pf sketch: Use the Deletion Bound ($\Phi(G) \leq \Phi(G - v) + 2$ if $d(v) \leq 2$) to reduce to $\delta(G) \geq 3$, then invoke the corollary above. If G consists of $2n - 4$ edges, then $\varphi(G) \leq |E(G)| - 1 = 2n - 5$.

What’s missing? Lot’s of messy base cases.
Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph. If $n \geq 7$ and $\delta(G) \geq 2$, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Pf: Since $\varphi(G) \leq |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let X and Y be the parts, with $k = |X| \leq |Y|$. If G has a clone, we can delete it. So at most one vertex of Y has degree k. Thus $|E(G)| \leq (k - 1)(n - k) + 1$, and $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$, and some $y \in Y$ has degree k and all others have degree $k - 1$. Delete y to form G'. Now $\Phi(G') \leq |E(G')| = \lfloor n^2/4 \rfloor - n/2 + 1 - \lfloor n/2 \rfloor = \lfloor n^2/4 - n/2 \rfloor + 1$. Let f be a pure overlap labeling of G' using one label per edge. Let $y' \in Y$ be a vertex of G' and let x' be its non-neighbor in X. Extend f to G as follows: let $f(y) = f(y') \cup a$ (where a is a new label) and add a to $f(x')$. So $\varphi(G) \leq \Phi(G') + 1 \leq \lfloor n^2/4 - n/2 \rfloor + 1$.

Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If $n \geq 7$ and $\delta(G) \geq 2$, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Pf: Since $\varphi(G) \leq |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$.
Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph. If $n \geq 7$ and $\delta(G) \geq 2$, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Pf: Since $\varphi(G) \leq |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let X and Y be the parts, with $k = |X| \leq |Y|$. If G has a clone, we can delete it. So at most one vertex of Y has degree k.
Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph. If $n \geq 7$ and $\delta(G) \geq 2$, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Pf: Since $\varphi(G) \leq |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let X and Y be the parts, with $k = |X| \leq |Y|$. If G has a clone, we can delete it. So at most one vertex of Y has degree k.

Thus $|E(G)| \leq (k - 1)(n - k) + 1$,

Lemma: Let G be an n-vertex bipartite graph. If $n \geq 7$ and $\delta(G) \geq 2$, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Pf: Since $\varphi(G) \leq |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$.

Let X and Y be the parts, with $k = |X| \leq |Y|$. If G has a clone, we can delete it. So at most one vertex of Y has degree k.

Thus $|E(G)| \leq (k - 1)(n - k) + 1$, and $|X| = \lceil n/2 \rceil$ and $|Y| = \lfloor n/2 \rfloor$.
Lemma: Let G be an n-vertex bipartite graph. If $n \geq 7$ and $\delta(G) \geq 2$, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Pf: Since $\varphi(G) \leq |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let X and Y be the parts, with $k = |X| \leq |Y|$. If G has a clone, we can delete it. So at most one vertex of Y has degree k.

Thus $|E(G)| \leq (k - 1)(n - k) + 1$,
and $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$,
and some $y \in Y$ has degree k
and all others have degree $k - 1$.
Lemma: Let G be an n-vertex bipartite graph. If $n \geq 7$ and $\delta(G) \geq 2$, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Pf: Since $\varphi(G) \leq |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$. Let X and Y be the parts, with $k = |X| \leq |Y|$. If G has a clone, we can delete it. So at most one vertex of Y has degree k.

Thus $|E(G)| \leq (k - 1)(n - k) + 1$, and $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$, and some $y \in Y$ has degree k and all others have degree $k - 1$.
Lemma: Let G be an n-vertex bipartite graph. If $n \geq 7$ and $\delta(G) \geq 2$, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Proof: Since $\varphi(G) \leq |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$.

Let X and Y be the parts, with $k = |X| \leq |Y|$. If G has a clone, we can delete it. So at most one vertex of Y has degree k.

Thus $|E(G)| \leq (k - 1)(n - k) + 1$, and $|X| = \lceil n/2 \rceil$ and $|Y| = \lceil n/2 \rceil$, and some $y \in Y$ has degree k and all others have degree $k - 1$.

Delete y to form G'. Now $\Phi(G') \leq |E(G')| = \lceil n^2/4 - n/2 + 1 \rceil - \lceil n/2 \rceil = \lceil n^2/4 - n + 1 \rceil$.
Bipartite Graphs

Lemma: Let G be an n-vertex bipartite graph.
If $n \geq 7$ and $\delta(G) \geq 2$, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Pf: Since $\varphi(G) \leq |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$.
Let X and Y be the parts, with $k = |X| \leq |Y|$. If G has a clone, we can delete it. So at most one vertex of Y has degree k.

Thus $|E(G)| \leq (k - 1)(n - k) + 1$,
and $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$,
and some $y \in Y$ has degree k
and all others have degree $k - 1$.

Delete y to form G'. Now
$\Phi(G') \leq |E(G')| = \lfloor n^2/4 - n/2 + 1 \rfloor - \lfloor n/2 \rfloor = \lfloor n^2/4 - n + 1 \rfloor$.
Let f be a pure overlap labeling of G' using one label per edge.
Lemma: Let G be an n-vertex bipartite graph. If $n \geq 7$ and $\delta(G) \geq 2$, then $\varphi(G) \leq \frac{n^2}{4} - \frac{n}{2} - 1$.

Pf: Since $\varphi(G) \leq |E(G)| - 1$, we have $|E(G)| > \frac{n^2}{4} - \frac{n}{2}$.

Let X and Y be the parts, with $k = |X| \leq |Y|$. If G has a clone, we can delete it. So at most one vertex of Y has degree k.

Thus $|E(G)| \leq (k - 1)(n - k) + 1$,

and $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$,

and some $y \in Y$ has degree k and all others have degree $k - 1$.

Delete y to form G'. Now

$\Phi(G') \leq |E(G')| = \lfloor \frac{n^2}{4} - \frac{n}{2} + 1 \rfloor - \lfloor n/2 \rfloor = \lfloor \frac{n^2}{4} - n + 1 \rfloor$.

Let f be a pure overlap labeling of G' using one label per edge.

Let y' be a vertex of Y in G' and let x' be its non-neighbor in X.
Lemma: Let G be an n-vertex bipartite graph.
If $n \geq 7$ and $\delta(G) \geq 2$, then $\varphi(G) \leq \frac{n^2}{4} - \frac{n}{2} - 1$.

Pf: Since $\varphi(G) \leq |E(G)| - 1$, we have $|E(G)| > \frac{n^2}{4} - \frac{n}{2}$.
Let X and Y be the parts, with $k = |X| \leq |Y|$. If G has a clone, we can delete it. So at most one vertex of Y has degree k.

Thus $|E(G)| \leq (k - 1)(n - k) + 1$, and $|X| = \lceil n/2 \rceil$ and $|Y| = \lfloor n/2 \rfloor$, and some $y \in Y$ has degree k and all others have degree $k - 1$.

Delete y to form G'. Now $\Phi(G') \leq |E(G')| = \lfloor \frac{n^2}{4} - \frac{n}{2} + 1 \rfloor - \lfloor n/2 \rfloor = \lfloor \frac{n^2}{4} - n + 1 \rfloor$.
Let f be a pure overlap labeling of G' using one label per edge. Let y' be a vertex of Y in G' and let x' be its non-neighbor in X. Extend f to G as follows: let $f(y) = f(y') \cup a$ (where a is a new label) and add a to $f(x')$.
Lemma: Let G be an n-vertex bipartite graph. If $n \geq 7$ and $\delta(G) \geq 2$, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Pf: Since $\varphi(G) \leq |E(G)| - 1$, we have $|E(G)| > n^2/4 - n/2$.

Let X and Y be the parts, with $k = |X| \leq |Y|$. If G has a clone, we can delete it. So at most one vertex of Y has degree k.

Thus $|E(G)| \leq (k - 1)(n - k) + 1$,
and $|X| = \lceil n/2 \rceil$ and $|Y| = \lfloor n/2 \rfloor$,
and some $y \in Y$ has degree k
and all others have degree $k - 1$.

Delete y to form G'. Now
$\Phi(G') \leq |E(G')| = \lceil n^2/4 - n/2 + 1 \rceil - \lfloor n/2 \rfloor = \lfloor n^2/4 - n + 1 \rfloor$.

Let f be a pure overlap labeling of G' using one label per edge.
Let y' be a vertex of Y in G' and let x' be its non-neighbor in X.
Extend f to G as follows: let $f(y) = f(y') \cup a$ (where a is a new label) and add a to $f(x')$. So $\varphi(G) \leq \Phi(G') + 1 \leq \lfloor n^2/4 - n + 2 \rfloor$.
General n-vertex graphs

Theorem: If G is an n-vertex graph, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Lemma: If G has a triangle T, then $\Phi(G) \leq \Phi(G-T) + n$.

Lemma: If $n \geq 7$, then $\Phi(G) \leq \left\lfloor n^2/4 \right\rfloor$.

Pf sketch of theorem:

▶ G is bipartite
▶ G is triangle-free, but not bipartite

Consider shortest odd cycle C, with length $2k + 1$

$|E(G)| \leq (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1)) \leq 2n/4$

Edge bound is good enough unless $k = 2$, . . .

▶ G has a triangle T
▶ $G-T$ is bipartite
▶ $G-T$ is triangle-free, but not bipartite

▶ $G-T$ has a triangle T'

Now $\Phi(G-T-T') \leq \left\lfloor (n-6)^2/4 \right\rfloor$, so $\Phi(G) \leq \left\lfloor (n-6)^2/4 \right\rfloor + 2n - 3 \leq n^2/4 - n/2 - 1$.
General n-vertex graphs

Theorem: If G is an n-vertex graph, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Lemma: If G has a triangle T, then $\Phi(G) \leq \Phi(G - T) + n$.
General n-vertex graphs

Theorem: If G is an n-vertex graph, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Lemma: If G has a triangle T, then $\Phi(G) \leq \Phi(G - T) + n$.

Lemma: If $n \geq 7$, then $\Phi(G) \leq \lfloor n^2/4 \rfloor$.
General n-vertex graphs

Theorem: If G is an n-vertex graph, then $\varphi(G) \leq \frac{n^2}{4} - \frac{n}{2} - 1$.

Lemma: If G has a triangle T, then $\Phi(G) \leq \Phi(G - T) + n$.

Lemma: If $n \geq 7$, then $\Phi(G) \leq \left\lfloor \frac{n^2}{4} \right\rfloor$.

Pf sketch of theorem:
General \(n \)-vertex graphs

Theorem: If \(G \) is an \(n \)-vertex graph, then \(\varphi(G) \leq n^2/4 - n/2 - 1 \).

Lemma: If \(G \) has a triangle \(T \), then \(\Phi(G) \leq \Phi(G - T) + n \).

Lemma: If \(n \geq 7 \), then \(\Phi(G) \leq \lfloor n^2/4 \rfloor \).

Pf sketch of theorem:

- \(G \) is bipartite
General n-vertex graphs

Theorem: If G is an n-vertex graph, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Lemma: If G has a triangle T, then $\Phi(G) \leq \Phi(G - T) + n$.

Lemma: If $n \geq 7$, then $\Phi(G) \leq \lfloor n^2/4 \rfloor$.

Pf sketch of theorem:

- G is bipartite
- G is triangle-free, but not bipartite
General \(n \)-vertex graphs

Theorem: If \(G \) is an \(n \)-vertex graph, then \(\varphi(G) \leq n^2/4 - n/2 - 1 \).

Lemma: If \(G \) has a triangle \(T \), then \(\Phi(G) \leq \Phi(G - T) + n \).

Lemma: If \(n \geq 7 \), then \(\Phi(G) \leq \lceil n^2/4 \rceil \).

Pf sketch of theorem:

- \(G \) is bipartite
- \(G \) is triangle-free, but not bipartite
 - Consider shortest odd cycle \(C \), with length \(2k + 1 \)
General n-vertex graphs

Theorem: If G is an n-vertex graph, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Lemma: If G has a triangle T, then $\Phi(G) \leq \Phi(G - T) + n$.

Lemma: If $n \geq 7$, then $\Phi(G) \leq \lfloor n^2/4 \rfloor$.

Pf sketch of theorem:

- G is bipartite
- G is triangle-free, but not bipartite

 Consider shortest odd cycle C, with length $2k + 1$

 $|E(G)| \leq (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))^2/4$
General n-vertex graphs

Theorem: If G is an n-vertex graph, then $\varphi(G) \leq \frac{n^2}{4} - \frac{n}{2} - 1$.

Lemma: If G has a triangle T, then $\Phi(G) \leq \Phi(G - T) + n$.

Lemma: If $n \geq 7$, then $\Phi(G) \leq \left\lfloor \frac{n^2}{4} \right\rfloor$.

Pf sketch of theorem:

- G is bipartite
- G is triangle-free, but not bipartite
 Consider shortest odd cycle C, with length $2k + 1$
 $|E(G)| \leq (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))^2/4$
 Edge bound is good enough unless $k = 2, \ldots$
General n-vertex graphs

Theorem: If G is an n-vertex graph, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Lemma: If G has a triangle T, then $\Phi(G) \leq \Phi(G - T) + n$.

Lemma: If $n \geq 7$, then $\Phi(G) \leq \lceil n^2/4 \rceil$.

Pf sketch of theorem:

- G is bipartite
- G is triangle-free, but not bipartite

 Consider shortest odd cycle C, with length $2k + 1$

 $|E(G)| \leq (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))^2/4$

 Edge bound is good enough unless $k = 2, \ldots$

- G has a triangle T
General n-vertex graphs

Theorem: If G is an n-vertex graph, then $\varphi(G) \leq \frac{n^2}{4} - \frac{n}{2} - 1$.

Lemma: If G has a triangle T, then $\Phi(G) \leq \Phi(G - T) + n$.

Lemma: If $n \geq 7$, then $\Phi(G) \leq \lfloor \frac{n^2}{4} \rfloor$.

Pf sketch of theorem:

- G is bipartite
- G is triangle-free, but not bipartite
 Consider shortest odd cycle C, with length $2k + 1$
 $|E(G)| \leq (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))^2/4$
 Edge bound is good enough unless $k = 2, \ldots$
- G has a triangle T
 - $G - T$ is bipartite
General n-vertex graphs

Theorem: If G is an n-vertex graph, then $\varphi(G) \leq n^2/4 - n/2 - 1$.

Lemma: If G has a triangle T, then $\Phi(G) \leq \Phi(G - T) + n$.

Lemma: If $n \geq 7$, then $\Phi(G) \leq \lfloor n^2/4 \rfloor$.

Pf sketch of theorem:

- G is bipartite
- G is triangle-free, but not bipartite
 - Consider shortest odd cycle C, with length $2k + 1$
 - $|E(G)| \leq (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))^2/4$
 - Edge bound is good enough unless $k = 2, \ldots$
- G has a triangle T
 - $G - T$ is bipartite
 - $G - T$ is triangle-free, but not bipartite
General \(n \)-vertex graphs

Theorem: If \(G \) is an \(n \)-vertex graph, then \(\varphi(G) \leq n^2/4 - n/2 - 1 \).

Lemma: If \(G \) has a triangle \(T \), then \(\Phi(G) \leq \Phi(G - T) + n \).

Lemma: If \(n \geq 7 \), then \(\Phi(G) \leq \lfloor n^2/4 \rfloor \).

Pf sketch of theorem:

- \(G \) is bipartite
- \(G \) is triangle-free, but not bipartite

 Consider shortest odd cycle \(C \), with length \(2k + 1 \)

 \[|E(G)| \leq (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))^2/4 \]

 Edge bound is good enough unless \(k = 2, \ldots \)
- \(G \) has a triangle \(T \)

 \(\rightarrow \) \(G - T \) is bipartite

 \(\rightarrow \) \(G - T \) is triangle-free, but not bipartite

 \(\rightarrow \) \(G - T \) has a triangle \(T' \)
General n-vertex graphs

Theorem: If G is an n-vertex graph, then $\varphi(G) \leq n^2 / 4 - n/2 - 1$.

Lemma: If G has a triangle T, then $\Phi(G) \leq \Phi(G - T) + n$.

Lemma: If $n \geq 7$, then $\Phi(G) \leq \lfloor n^2 / 4 \rfloor$.

Pf sketch of theorem:

- G is bipartite
- G is triangle-free, but not bipartite
 - Consider shortest odd cycle C, with length $2k + 1$
 - $|E(G)| \leq (2k + 1) + k(n - (2k + 1)) + (n - (2k + 1))^2 / 4$
 - Edge bound is good enough unless $k = 2, \ldots$
- G has a triangle T
 - $G - T$ is bipartite
 - $G - T$ is triangle-free, but not bipartite
 - $G - T$ has a triangle T'
 - Now $\Phi(G - T - T') \leq \lfloor (n - 6)^2 / 4 \rfloor$, so $\Phi(G) \leq \lfloor (n - 6)^2 / 4 \rfloor + 2n - 3 \leq n^2 / 4 - n/2 - 1$