Using the Potential Method to Color Near-bipartite Graphs

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Matthew Yancey

WATERColor
24 September 2019
Introduction
Introduction

Thm [Grötzsch '59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.
Introduction

Thm [Grötzsch ’59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent.

Pf: "Fold away" all 4-faces.

Dream: Maybe we don't need planarity. Could sparsity be enough?

3-coloring G also 3-colors each subgraph H, so also need H sparse.

Prop: If G is planar with no 3-cycle and no 4-cycle, then $\text{mad}(G) < \frac{10}{3}$, where $\text{mad}(G) := \max_{H \subseteq G} \frac{|E(H)|}{|V(H)|}$.

If $\text{mad}(G) < \frac{10}{3}$, then $\chi(G) \leq 3$.
Introduction

Thm [Grötzsch '59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent.

Prop: If $\text{mad}(G) < \frac{10}{3}$, then $\chi(G) \leq 3$.

Where $\text{mad}(G) := \max_{H \subseteq G} \frac{|E(H)|}{|V(H)|}$.
Introduction

Thm [Grötzsch '59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent. **Pf:** “Fold away” all 4-faces.
Introduction

Thm [Grötzsch '59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent. **Pf:** “Fold away” all 4-faces.

![Diagram of a graph with vertices v, w, x, y connected in a square configuration.](image-url)
Introduction

Thm [Grötzsch ’59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent. **Pf:** “Fold away” all 4-faces.

[Diagrams of planar graphs with no 3-cycles and no 4-faces]
Introduction

Thm [Grötzsch ’59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent. **Pf:** “Fold away” all 4-faces.

![Diagram](image_url)
Introduction

Thm [Grötzsch '59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent. **Pf:** “Fold away” all 4-faces.

\[
\begin{align*}
&\text{v} & \text{w} & \text{y} & \text{x} \\
\end{align*}
\]

\[
\begin{align*}
&\text{v} & \text{w} & \text{y} & \text{x} \\
\end{align*}
\]
Introduction

Thm [Grötzsch ’59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent. **Pf:** “Fold away” all 4-faces.

```
   v
 /  |
 y---w
 /  |
x
```

```
   v
 /  |
 y---w
 /  |
x
```

```
   v
 /  |
 y---w
 /  |
x
```

Introduction

Thm [Grötzsch ’59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent. **Pf:** “Fold away” all 4-faces.

![Diagram](image-url)
Introduction

Thm [Grötzsch ’59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent. **Pf:** “Fold away” all 4-faces.

![Diagram of graphs]

Dream: Maybe we don’t need planarity. Could sparsity be enough? 3-coloring G also 3-colors each subgraph H, so also need H sparse.

Prop: If G is planar with no 3-cycle and no 4-cycle, then $\text{mad}(G) < \frac{10}{3}$, where $\text{mad}(G) := \max_{H \subseteq G} \frac{|E(H)|}{|V(H)|}$.

If $\text{mad}(G) < \frac{10}{3}$, then $\chi(G) \leq 3$.
Introduction

Thm [Grötzsch '59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent. **Pf**: “Fold away” all 4-faces.

Dream: Maybe we don’t need planarity. Could sparsity be enough?
Introduction

Thm [Grötzsch ’59]: If \(G \) is planar with no 3-cycle, then \(\chi(G) \leq 3 \).

Thm: If \(G \) is planar with no 3-cycle and no 4-face, then \(\chi(G) \leq 3 \).

Prop: Theorems are equivalent. **Pf**: “Fold away” all 4-faces.

Dream: Maybe we don’t need planarity. Could sparsity be enough? 3-coloring \(G \) also 3-colors each subgraph \(H \), so also need \(H \) sparse.
Introduction

Thm [Grötzsch '59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent. **Pf**: “Fold away” all 4-faces.

![Graphs](image)

Dream: Maybe we don’t need planarity. Could sparsity be enough? 3-coloring G also 3-colors each subgraph H, so also need H sparse.

Prop: If G is planar with no 3-cycle and no 4-cycle, then $\text{mad}(G) < 10/3$, where $\text{mad}(G) := \max_{H \subseteq G} 2|E(H)|/|V(H)|$.
Introduction

Thm [Grötzsch ’59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent. Pf: “Fold away” all 4-faces.

Dream: Maybe we don’t need planarity. Could sparsity be enough? 3-coloring G also 3-colors each subgraph H, so also need H sparse.

Prop: If G is planar with no 3-cycle and no 4-cycle, then $\text{mad}(G) < \frac{10}{3}$, where $\text{mad}(G) := \max_{H \subseteq G} 2|E(H)|/|V(H)|$.

 Conj: If $\text{mad}(G) < \frac{10}{3}$, then $\chi(G) \leq 3$.

Thm [Grötzsch ’59]: If G is planar with no 3-cycle, then $\chi(G) \leq 3$.

Thm: If G is planar with no 3-cycle and no 4-face, then $\chi(G) \leq 3$.

Prop: Theorems are equivalent. Pf: “Fold away” all 4-faces.

Dream: Maybe we don’t need planarity. Could sparsity be enough? 3-coloring G also 3-colors each subgraph H, so also need H sparse.

Prop: If G is planar with no 3-cycle and no 4-cycle, then $\text{mad}(G) < 10/3$, where $\text{mad}(G) := \max_{H \subseteq G} 2|E(H)|/|V(H)|$.

Conj: If $\text{mad}(G) < 10/3$, then $\chi(G) \leq 3$.
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely.
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For $W \subseteq V(G)$, let

$$\rho(W) := 5|W| - 3|E(G[W])|$$
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For $W \subseteq V(G)$, let
\[
\rho(W) := 5|W| - 3|E(G[W])| \quad \text{and} \quad \text{pot}(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W).
\]
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For \(W \subseteq V(G) \), let
\[
\rho(W) := 5|W| - 3|E(G[W])| \quad \text{and} \quad \text{pot}(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W).
\]

Prop: If \(G \) is planar with no 3-cycle or 4-cycle, then \(\text{pot}(G) \geq 5 \).
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For $W \subseteq V(G)$, let

$$\rho(W) := 5|W| - 3|E(G[W])|$$

and

$$\text{pot}(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W).$$

Prop: If G is planar with no 3-cycle or 4-cycle, then $\text{pot}(G) \geq 5$.

Prop: Each necklace G_k has $\text{pot}(G_k) = 5(3k + 1) - 3(5k + 1) = 2$.

![Diagram of potential and necklace graphs]
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For \(W \subseteq V(G) \), let
\[
\rho(W) := 5|W| - 3|E(G[W])| \quad \text{and} \quad \text{pot}(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W).
\]

Prop: If \(G \) is planar with no 3-cycle or 4-cycle, then \(\text{pot}(G) \geq 5 \).

Prop: Each necklace \(G_k \) has \(\text{pot}(G_k) = 5(3k + 1) - 3(5k + 1) = 2 \).

Thm [Kostochka–Yancey ’12]: If \(\text{pot}(G) \geq 3 \), then \(\chi(G) \leq 3 \).
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For $W \subseteq V(G)$, let

$$\rho(W) := 5|W| - 3|E(G[W])|$$

and

$$\text{pot}(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W).$$

Prop: If G is planar with no 3-cycle or 4-cycle, then $\text{pot}(G) \geq 5$.

Prop: Each necklace G_k has $\text{pot}(G_k) = 5(3k + 1) - 3(5k + 1) = 2$.

Thm [Kostochka–Yancey ’12]: If $\text{pot}(G) \geq 3$, then $\chi(G) \leq 3$.

Pf sketch:
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For \(W \subseteq V(G) \), let

\[
\rho(W) := 5|W| - 3|E(G[W])| \quad \text{and} \quad \text{pot}(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W).
\]

Prop: If \(G \) is planar with no 3-cycle or 4-cycle, then \(\text{pot}(G) \geq 5 \).

Prop: Each necklace \(G_k \) has \(\text{pot}(G_k) = 5(3k + 1) - 3(5k + 1) = 2 \).

\[\begin{array}{ccc}
& & \\
& \text{circles} & \\
& \text{octagon} & \\
& \text{9-vertex} & \\
\end{array}\]

Thm [Kostochka–Yancey ’12]: If \(\text{pot}(G) \geq 3 \), then \(\chi(G) \leq 3 \).

Pf sketch: Note: \(\text{pot}(G) > 0 \iff \text{mad}(G) < 10/3 \).
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For $W \subseteq V(G)$, let

$$\rho(W) := 5|W| - 3|E(G[W])|$$

and

$$\text{pot}(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W).$$

Prop: If G is planar with no 3-cycle or 4-cycle, then $\text{pot}(G) \geq 5$.

Prop: Each necklace G_k has $\text{pot}(G_k) = 5(3k + 1) - 3(5k + 1) = 2$.

Thm [Kostochka–Yancey ’12]: If $\text{pot}(G) \geq 3$, then $\chi(G) \leq 3$.

Pf sketch: Note: $\text{pot}(G) > 0 \iff \text{mad}(G) < 10/3$. G is min c/e, so $\delta(G) \geq 3$.
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For $W \subseteq V(G)$, let

$$\rho(W) := 5|W| - 3|E(G[W])| \quad \text{and} \quad \text{pot}(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W).$$

Prop: If G is planar with no 3-cycle or 4-cycle, then $\text{pot}(G) \geq 5$.
Prop: Each necklace G_k has $\text{pot}(G_k) = 5(3k + 1) - 3(5k + 1) = 2$.

Thm [Kostochka–Yancey ’12]: If $\text{pot}(G) \geq 3$, then $\chi(G) \leq 3$.
Pf sketch: Note: $\text{pot}(G) > 0 \iff \text{mad}(G) < 10/3$. G is min c/e, so $\delta(G) \geq 3$. WTS: Each 3-vertex has two 4^+- nbrs.
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For $W \subseteq V(G)$, let

$$\rho(W) := 5|W| - 3|E(G[W])| \quad \text{and} \quad \text{pot}(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W).$$

Prop: If G is planar with no 3-cycle or 4-cycle, then $\text{pot}(G) \geq 5$. Prop: Each necklace G_k has $\text{pot}(G_k) = 5(3k + 1) - 3(5k + 1) = 2$.

Thm [Kostochka–Yancey ’12]: If $\text{pot}(G) \geq 3$, then $\chi(G) \leq 3$. Pf sketch: Note: $\text{pot}(G) > 0 \iff \text{mad}(G) < 10/3$. G is min c/e, so $\delta(G) \geq 3$. WTS: Each 3-vertex has two 4^+-nbrs. Each vertex v starts with $d(v)$ and each 4^+-vertex gives $1/6$ to each 3-nbrs.
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For $W \subseteq V(G)$, let

$$\rho(W) := 5|W| - 3|E(G[W])| \quad \text{and} \quad \text{pot}(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W).$$

Prop: If G is planar with no 3-cycle or 4-cycle, then $\text{pot}(G) \geq 5$.

Prop: Each necklace G_k has $\text{pot}(G_k) = 5(3k + 1) - 3(5k + 1) = 2$.

Thm [Kostochka–Yancey '12]: If $\text{pot}(G) \geq 3$, then $\chi(G) \leq 3$.

Pf sketch: Note: $\text{pot}(G) > 0 \iff \text{mad}(G) < 10/3$. G is min c/e, so $\delta(G) \geq 3$. WTS: Each 3-vertex has two 4^+-nbrs. Each vertex v starts with $d(v)$ and each 4^+-vertex gives $1/6$ to each 3-nbrs. 3: $3 + 2(1/6) = 10/3$.
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For $W \subseteq V(G)$, let

$$\rho(W) := 5|W| - 3|E(G[W])|$$

and

$$\text{pot}(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W).$$

Prop: If G is planar with no 3-cycle or 4-cycle, then $\text{pot}(G) \geq 5$.

Prop: Each necklace G_k has $\text{pot}(G_k) = 5(3k + 1) - 3(5k + 1) = 2$.

Thm [Kostochka–Yancey ’12]: If $\text{pot}(G) \geq 3$, then $\chi(G) \leq 3$.

Pf sketch: Note: $\text{pot}(G) > 0 \iff \text{mad}(G) < 10/3$. G is min c/e, so $\delta(G) \geq 3$. WTS: Each 3-vertex has two 4^+-nbrs. Each vertex v starts with $d(v)$ and each 4^+-vertex gives $1/6$ to each 3-nbrs.

3: $3 + 2(1/6) = 10/3$.

4^+: $d(v) - d(v)/6 = 5d(v)/6 \geq 20/6$.
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For $W \subseteq V(G)$, let

$$
\rho(W) := 5|W| - 3|E(G[W])| \quad \text{and} \quad \text{pot}(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W).
$$

Prop: If G is planar with no 3-cycle or 4-cycle, then $\text{pot}(G) \geq 5$.

Prop: Each necklace G_k has $\text{pot}(G_k) = 5(3k + 1) - 3(5k + 1) = 2$.

Thm [Kostochka–Yancey ’12]: If $\text{pot}(G) \geq 3$, then $\chi(G) \leq 3$.

Pf sketch: Note: $\text{pot}(G) > 0 \iff \text{mad}(G) < 10/3$. G is min c/e, so $\delta(G) \geq 3$. WTS: Each 3-vertex has two 4^+-nbrs. Each vertex v starts with $d(v)$ and each 4^+-vertex gives $1/6$ to each 3-nbrs.

3: $3 + 2(1/6) = 10/3$.

4^+: $d(v) - d(v)/6 = 5d(v)/6 \geq 20/6$.

Contradiction.
Potential: a finer measure of edge density

Idea: Measure “average degree” more finely. For \(W \subseteq V(G) \), let
\[
\rho(W) := 5|W| - 3|E(G[W])| \quad \text{and} \quad \text{pot}(G) := \min_{\emptyset \neq W \subseteq V(G)} \rho(W).
\]

Prop: If \(G \) is planar with no 3-cycle or 4-cycle, then \(\text{pot}(G) \geq 5 \).
Prop: Each necklace \(G_k \) has \(\text{pot}(G_k) = 5(3k + 1) - 3(5k + 1) = 2 \).

\[
\begin{align*}
\text{Thm [Kostochka–Yancey '12]:} & \quad \text{If } \text{pot}(G) \geq 3, \text{ then } \chi(G) \leq 3. \\
\text{Pf sketch:} & \quad \text{Note: } \text{pot}(G) > 0 \iff \text{mad}(G) < 10/3. \ G \text{ is min c/e, so } \delta(G) \geq 3. \ \text{WTS: Each 3-vertex has two } 4^+\text{-nbrs. Each vertex } v \text{ starts with } d(v) \text{ and each } 4^+\text{-vertex gives } 1/6 \text{ to each 3-nbrs.} \\
& \quad 3: \ 3 + 2(1/6) = 10/3. \quad 4^+: \ d(v) - d(v)/6 = 5d(v)/6 \geq 20/6. \ \text{Contradiction.} \\
\text{Problem:} & \quad \text{Need more power for reducibility.}
\end{align*}
\]
Using the Gap Lemma

Gap Lemma:
If $W \subseteq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Cor:
For any $W \subseteq V(G)$ and $e/ \in G[W]$, $\chi(G[W] + e) \leq 3$.

Pf:
Let $G' = G[W] + e$. WTS $\rho(G') \geq 3$.

Fix $X \subseteq V(G')$.

If $|X| = 1$, then $\rho_{G'}(X) = \rho_G(X) = 5$.

If $|X| \geq 2$, then $\rho_{G'}(X) \geq \rho_G(X) - 3 \geq 6 - 3 = 3$.

Cor:
G has no triangle with 2 or more 3-vertices.
Using the Gap Lemma

Gap Lemma: If $W \subseteq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.
Using the Gap Lemma

Gap Lemma: If $W \subseteq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Cor: For any $W \subseteq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \leq 3$.
Using the Gap Lemma

Gap Lemma: If $W \subseteq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Cor: For any $W \subseteq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \leq 3$.

G
Using the Gap Lemma

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Cor: For any $W \subsetneq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \leq 3$.

![Diagram of graphs G and W]
Using the Gap Lemma

Gap Lemma: If $W \subseteq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Cor: For any $W \subseteq V(G)$ and $e \not\in G[W]$, $\chi(G[W] + e) \leq 3$.

![Diagram](image-url)
Using the Gap Lemma

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Cor: For any $W \subsetneq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \leq 3$.

\[\begin{figure}
\centering
\begin{tikzpicture}
 \node (G) at (0,0) {G};
 \node (W) at (-1,0) {W};
 \draw[->] (G) to (W);
\end{tikzpicture}
\end{figure} \]
Using the Gap Lemma

Gap Lemma: If $W \subseteq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Cor: For any $W \subseteq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \leq 3$.

![Diagram](Image)
Using the Gap Lemma

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Cor: For any $W \subsetneq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \leq 3$.

Pf: Let $G' = G[W] + e$. WTS $\text{pot}(G') \geq 3$.

![Diagram of a graph G with a subset W and a possible triangle]
Using the Gap Lemma

Gap Lemma: If \(W \subseteq V(G) \) and \(|W| \geq 2\), then \(\rho(W) \geq 6 \).

Cor: For any \(W \subseteq V(G) \) and \(e \notin G[W] \), \(\chi(G[W] + e) \leq 3 \).

Pf: Let \(G' = G[W] + e \). WTS \(\text{pot}(G') \geq 3 \). Fix \(X \subseteq V(G') \). If \(|X| = 1\), then \(\rho_{G'}(X) = \rho_G(X) = 5 \).
Using the Gap Lemma

Gap Lemma: If $W \subseteq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Cor: For any $W \subseteq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \leq 3$.

Pf: Let $G' = G[W] + e$. WTS $\text{pot}(G') \geq 3$. Fix $X \subseteq V(G')$.

If $|X| = 1$, then $\rho_{G'}(X) = \rho_G(X) = 5$. If $|X| \geq 2$, then $\rho_{G'}(X) \geq \rho_G(X) - 3 \geq 6 - 3 = 3$.
Using the Gap Lemma

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Cor: For any $W \subsetneq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \leq 3$.

Pf: Let $G' = G[W] + e$. WTS $\text{pot}(G') \geq 3$. Fix $X \subseteq V(G')$. If $|X| = 1$, then $\rho_{G'}(X) = \rho_G(X) = 5$. If $|X| \geq 2$, then $\rho_{G'}(X) \geq \rho_G(X) - 3 \geq 6 - 3 = 3$.

Cor: G has no triangle with 2 or more 3-vertices.
Using the Gap Lemma

Gap Lemma: If $W \subseteq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Cor: For any $W \subseteq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \leq 3$.

Pf: Let $G' = G[W] + e$. WTS $\text{pot}(G') \geq 3$. Fix $X \subseteq V(G')$. If $|X| = 1$, then $\rho_{G'}(X) = \rho_G(X) = 5$. If $|X| \geq 2$, then $\rho_{G'}(X) \geq \rho_G(X) - 3 \geq 6 - 3 = 3$.

Cor: G has no triangle with 2 or more 3-vertices.
Using the Gap Lemma

Gap Lemma: If $W \subseteq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Cor: For any $W \subseteq V(G)$ and $e \notin G[W]$, $\chi(G[W] + e) \leq 3$.

Pf: Let $G' = G[W] + e$. WTS $\text{pot}(G') \geq 3$. Fix $X \subseteq V(G')$. If $|X| = 1$, then $\rho_{G'}(X) = \rho_G(X) = 5$. If $|X| \geq 2$, then $\rho_{G'}(X) \geq \rho_G(X) - 3 \geq 6 - 3 = 3$.

Cor: G has no triangle with 2 or more 3-vertices.
Using the Gap Lemma

Gap Lemma: If \(W \subseteq V(G) \) and \(|W| \geq 2 \), then \(\rho(W) \geq 6 \).

Cor: For any \(W \subseteq V(G) \) and \(e \notin G[W] \), \(\chi(G[W] + e) \leq 3 \).

Pf: Let \(G' = G[W] + e \). WTS \(\text{pot}(G') \geq 3 \). Fix \(X \subseteq V(G') \).

If \(|X| = 1 \), then \(\rho_{G'}(X) = \rho_G(X) = 5 \). If \(|X| \geq 2 \), then \(\rho_{G'}(X) \geq \rho_G(X) - 3 \geq 6 - 3 = 3 \).

Cor: \(G \) has no triangle with 2 or more 3-vertices.
Proving the Gap Lemma

Recall: \(\rho(W) = 5|W| - 3|E(G[W])| \).
Proving the Gap Lemma

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. Obs: If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.
Proving the Gap Lemma

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. Obs: If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.
Proving the Gap Lemma

Recall: \(\rho(W) = 5|W| - 3|E(G[W])| \). Obs: If \(X, Y \subseteq V(G) \) and \(X \cap Y \neq \emptyset \), then \(\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)| \).

Gap Lemma: If \(W \subsetneq V(G) \) and \(|W| \geq 2 \), then \(\rho(W) \geq 6 \).

Pf: Choose \(R \subsetneq V(G) \) with \(|R| \geq 2 \) to minimize \(\rho(R) \).
Proving the Gap Lemma

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Pf: Choose $R \subsetneq V(G)$ with $|R| \geq 2$ to minimize $\rho(R)$.

![Graph with sets G and R](image)

Easy to check when $|R| \leq 3$; assume $|R| \geq 4$.
Proving the Gap Lemma

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. Obs: If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Pf: Choose $R \subsetneq V(G)$ with $|R| \geq 2$ to minimize $\rho(R)$.

Easy to check when $|R| \leq 3$; assume $|R| \geq 4$. 3-color $G[R]$; call it φ.
Proving the Gap Lemma

Recall: \(\rho(W) = 5|W| - 3|E(G[W])| \). Obs: If \(X, Y \subseteq V(G) \) and \(X \cap Y \neq \emptyset \), then \(\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)| \).

Gap Lemma: If \(W \subsetneq V(G) \) and \(|W| \geq 2 \), then \(\rho(W) \geq 6 \).

Pf: Choose \(R \subsetneq V(G) \) with \(|R| \geq 2 \) to minimize \(\rho(R) \).

Easy to check when \(|R| \leq 3 \); assume \(|R| \geq 4 \). 3-color \(G[R] \); call it \(\varphi \). Contract each color class to a single vertex to get \(G' \).
Proving the Gap Lemma

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. **Obs:** If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Pf: Choose $R \subsetneq V(G)$ with $|R| \geq 2$ to minimize $\rho(R)$.

Easy to check when $|R| \leq 3$; assume $|R| \geq 4$. 3-color $G[R]$; call it φ. Contract each color class to a single vertex to get G'. If $\chi(G') \leq 3$, then $\chi(G) \leq 3$.
Proving the Gap Lemma

Recall: \(\rho(W) = 5|W| - 3|E(G[W])| \). **Obs:** If \(X, Y \subseteq V(G) \) and \(X \cap Y \neq \emptyset \), then \(\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)| \).

Gap Lemma: If \(W \subsetneq V(G) \) and \(|W| \geq 2 \), then \(\rho(W) \geq 6 \).

Pf: Choose \(R \subsetneq V(G) \) with \(|R| \geq 2 \) to minimize \(\rho(R) \).

![Diagram of gap lemma proof](image)

Easy to check when \(|R| \leq 3 \); assume \(|R| \geq 4 \). 3-color \(G[R] \); call it \(\varphi \). Contract each color class to a single vertex to get \(G' \). If \(\chi(G') \leq 3 \), then \(\chi(G) \leq 3 \). Some \(S \subseteq V(G') \) has \(\rho_{G'}(S) \leq 2 \).
Proving the Gap Lemma

Recall: \(\rho(W) = 5|W| - 3|E(G[W])| \). **Obs:** If \(X, Y \subseteq V(G) \) and \(X \cap Y \neq \emptyset \), then \(\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)| \).

Gap Lemma: If \(W \varsubsetneq V(G) \) and \(|W| \geq 2 \), then \(\rho(W) \geq 6 \).

Pf: Choose \(R \varsubsetneq V(G) \) with \(|R| \geq 2 \) to minimize \(\rho(R) \).

\[
G \quad R \quad \varnothing \quad \rightarrow \quad G' \quad Z \quad S
\]

Easy to check when \(|R| \leq 3 \); assume \(|R| \geq 4 \). 3-color \(G[R] \); call it \(\varnothing \). Contract each color class to a single vertex to get \(G' \).

If \(\chi(G') \leq 3 \), then \(\chi(G) \leq 3 \). Some \(S \subseteq V(G') \) has \(\rho_{G'}(S) \leq 2 \).

If \(S \cap Z = \emptyset \), then \(2 \geq \rho_{G'}(S) = \rho_G(S) \), a contradiction.
Proving the Gap Lemma

Recall: $\rho(W) = 5|W| - 3|E(G[W])|$. Obs: If $X, Y \subseteq V(G)$ and $X \cap Y \neq \emptyset$, then $\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)|$.

Gap Lemma: If $W \subsetneq V(G)$ and $|W| \geq 2$, then $\rho(W) \geq 6$.

Pf: Choose $R \subsetneq V(G)$ with $|R| \geq 2$ to minimize $\rho(R)$.

\[
\begin{array}{c}
G \\
S \setminus Z \\
\varphi \\
R \\
\end{array}
\quad \leftrightarrow
\quad
\begin{array}{c}
G' \\
S \\
Z \\
\end{array}
\]

Easy to check when $|R| \leq 3$; assume $|R| \geq 4$. 3-color $G[R]$; call it φ. Contract each color class to a single vertex to get G'. If $\chi(G') \leq 3$, then $\chi(G) \leq 3$. Some $S \subseteq V(G')$ has $\rho_{G'}(S) \leq 2$. If $S \cap Z = \emptyset$, then $2 \geq \rho_{G'}(S) = \rho_G(S)$, a contradiction. Instead

\[
\rho_G((S \setminus Z) \cup R) \leq \rho_{G'}(S) - \rho_{G'}(S \cap Z) + \rho_G(R)
\]
Proving the Gap Lemma

Recall: \(\rho(W) = 5|W| - 3|E(G[W])| \). **Obs:** If \(X, Y \subseteq V(G) \) and \(X \cap Y \neq \emptyset \), then \(\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)| \).

Gap Lemma: If \(W \subsetneq V(G) \) and \(|W| \geq 2 \), then \(\rho(W) \geq 6 \).

Pf: Choose \(R \subsetneq V(G) \) with \(|R| \geq 2 \) to minimize \(\rho(R) \).

![Diagram](image)

Easy to check when \(|R| \leq 3 \); assume \(|R| \geq 4 \). 3-color \(G[R] \); call it \(\varphi \). Contract each color class to a single vertex to get \(G' \). If \(\chi(G') \leq 3 \), then \(\chi(G) \leq 3 \). Some \(S \subseteq V(G') \) has \(\rho_{G'}(S) \leq 2 \). If \(S \cap Z = \emptyset \), then \(2 \geq \rho_{G'}(S) = \rho_G(S) \), a contradiction. Instead
\[
\rho_G((S \setminus Z) \cup R) \leq \rho_{G'}(S) - \rho_{G'}(S \cap Z) + \rho_G(R) \\
\leq 2 - 5 + 5 = 2,
\]
Proving the Gap Lemma

Recall: \(\rho(W) = 5|W| - 3|E(G[W])| \). **Obs:** If \(X, Y \subseteq V(G) \) and \(X \cap Y \neq \emptyset \), then \(\rho(X \cup Y) = \rho(X) + \rho(Y) - 3|E(X, Y)| \).

Gap Lemma: If \(W \not\subseteq V(G) \) and \(|W| \geq 2 \), then \(\rho(W) \geq 6 \).

Pf: Choose \(R \not\subseteq V(G) \) with \(|R| \geq 2 \) to minimize \(\rho(R) \).

\[
\begin{align*}
G & \quad \quad \quad R \quad G' \\
S \setminus Z & \quad \quad \quad \varnothing \quad S \setminus Z \\
\end{align*}
\]

Easy to check when \(|R| \leq 3 \); assume \(|R| \geq 4 \). 3-color \(G[R] \); call it \(\varphi \). Contract each color class to a single vertex to get \(G' \).

If \(\chi(G') \leq 3 \), then \(\chi(G) \leq 3 \). Some \(S \subseteq V(G') \) has \(\rho_{G'}(S) \leq 2 \).
If \(S \cap Z = \emptyset \), then \(2 \geq \rho_{G'}(S) = \rho_G(S) \), a contradiction. Instead

\[
\rho_G((S \setminus Z) \cup R) \leq \rho_{G'}(S) - \rho_{G'}(S \cap Z) + \rho_G(R) \\
\leq 2 - 5 + 5 = 2,
\]

Contradiction!
Near-bipartite Graphs

Defn: G is near-bipartite (nb) if $V(G)$ has a partition (I, F) with I an independent set and $G[F]$ a forest.
Near-bipartite Graphs

Defn: G is near-bipartite (nb) if $V(G)$ has a partition (I, F) with I an independent set and $G[F]$ a forest.

Rem: 2-colorable $⊊$ near-bipartite $⊊$ 3-colorable.
Near-bipartite Graphs

Defn: G is near-bipartite (nb) if $V(G)$ has a partition (I, F) with I an independent set and $G[F]$ a forest.

Rem: 2-colorable $⊊$ near-bipartite $⊊$ 3-colorable.
Near-bipartite Graphs

Defn: G is near-bipartite (nb) if $V(G)$ has a partition (I, F) with I an independent set and $G[F]$ a forest.

Rem: 2-colorable $⊊$ near-bipartite $⊊$ 3-colorable.
Near-bipartite Graphs

Defn: G is near-bipartite (nb) if $V(G)$ has a partition (I, F) with I an independent set and $G[F]$ a forest.

Rem: 2-colorable $⊊$ near-bipartite $⊊$ 3-colorable.

Defn: G is nb-critical if G is not nb, but $G - e$ is for all e.
Near-bipartite Graphs

Defn: G is near-bipartite (nb) if $V(G)$ has a partition (I, F) with I an independent set and $G[F]$ a forest.

Rem: 2-colorable $⊊$ near-bipartite $⊊$ 3-colorable.

Defn: G is nb-critical if G is not nb, but $G - e$ is for all e.

```
\begin{center}
\begin{tikzpicture}
  \begin{scope}
    \draw (0,0) -- (1,1) -- (0,2) -- (-1,1) -- cycle;
  \end{scope}
  \begin{scope}[xshift=2cm]
    \draw (0,0) -- (1,1) -- (0,2) -- (-1,1) -- cycle;
  \end{scope}
\end{tikzpicture}
\end{center}
```
Main Results: Near-bipartite Graphs

Defn: \(G \) is near-bipartite (nb) if \(V(G) \) has a partition \((I,F)\) with \(I \) an ind. set and \(G[F] \) a forest.

For multigraph \(G \) and \(W \subseteq V(G) \),
\[
\rho_m(W) := 3|W| - 2|E(G[W])|
\]
and
\[
pot_m(G) := \min_{W \subseteq V(G)} \rho(W)
\]

Thm: If \(G \) is a multigraph with \(pot_m(G) \geq -1 \) and \(G \) has no \(K_4 \) or Moser spindle, then \(G \) is nb. This is sharp infinitely often.

Defn: For a simple graph \(G \) and each \(W \subseteq V(G) \),
\[
\rho_s(W) := 8|W| - 5|E(G[W])|
\]
and
\[
pot_s(G) := \min_{W \subseteq V(G)} \rho(W)
\]

Thm: If \(G \) is a simple graph with \(pot_s(G) \geq -4 \) and \(G \) has no subgraph in a finite \(H \) then \(G \) is nb. This is sharp infinitely often.
Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if $V(G)$ has a partition (I, F) with I an ind. set and $G[F]$ a forest.
Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if $V(G)$ has a partition (I, F) with I an ind. set and $G[F]$ a forest. For multigraph G and $W \subseteq V(G)$,

$$
\rho_m(W) := 3|W| - 2|E(G[W])| \quad \text{and} \quad \text{pot}_m(G) := \min_{W \subseteq V(G)} \rho(W).
$$
Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if $V(G)$ has a partition (I, F) with I an ind. set and $G[F]$ a forest. For multigraph G and $W \subseteq V(G)$,

$$\rho_m(W) := 3|W| - 2|E(G[W])|$$

and

$$\text{pot}_m(G) := \min_{W \subseteq V(G)} \rho(W).$$

Thm: If G is a multigraph with $\text{pot}_m(G) \geq -1$ and G has no K_4 or Moser spindle, then G is nb. This is sharp infinitely often.
Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if $V(G)$ has a partition (I, F) with I an ind. set and $G[F]$ a forest. For multigraph G and $W \subseteq V(G)$,

$$\rho_m(W) := 3|W| - 2|E(G[W])|$$

and

$$\text{pot}_m(G) := \min_{W \subseteq V(G)} \rho(W).$$

Thm: If G is a multigraph with $\text{pot}_m(G) \geq -1$ and G has no K_4 or Moser spindle, then G is nb. This is sharp infinitely often.
Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if $V(G)$ has a partition (I, F) with I an ind. set and $G[F]$ a forest. For multigraph G and $W \subseteq V(G)$,

$$\rho_m(W) := 3|W| - 2|E(G[W])| \quad \text{and} \quad \text{pot}_m(G) := \min_{W \subseteq V(G)} \rho(W).$$

Thm: If G is a multigraph with $\text{pot}_m(G) \geq -1$ and G has no K_4 or Moser spindle, then G is nb. This is sharp infinitely often.

Defn: For a simple graph G and each $W \subseteq V(G)$,

$$\rho_s(W) := 8|W| - 5|E(G[W])| \quad \text{and} \quad \text{pot}_s(G) := \min_{W \subseteq V(G)} \rho(W).$$
Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if $V(G)$ has a partition (I, F) with I an ind. set and $G[F]$ a forest. For multigraph G and $W \subseteq V(G)$,

$$\rho_m(W) := 3|W| - 2|E(G[W])|$$

and

$$\text{pot}_m(G) := \min_{W \subseteq V(G)} \rho(W).$$

Thm: If G is a multigraph with $\text{pot}_m(G) \geq -1$ and G has no K_4 or Moser spindle, then G is nb. This is sharp infinitely often.

Defn: For a simple graph G and each $W \subseteq V(G)$,

$$\rho_s(W) := 8|W| - 5|E(G[W])|$$

and

$$\text{pot}_s(G) := \min_{W \subseteq V(G)} \rho(W).$$

Thm: If G is a simple graph with $\text{pot}_s(G) \geq -4$ and G has no subgraph in a finite \mathcal{H} then G is nb. This is sharp infinitely often.
Main Results: Near-bipartite Graphs

Defn: G is near-bipartite (nb) if $V(G)$ has a partition (I,F) with I an ind. set and $G[F]$ a forest. For multigraph G and $W \subseteq V(G)$,

$$\rho_m(W) := 3|W| - 2|E(G[W])|$$

and

$$\text{pot}_m(G) := \min_{W \subseteq V(G)} \rho(W).$$

Thm: If G is a multigraph with $\text{pot}_m(G) \geq -1$ and G has no K_4 or Moser spindle, then G is nb. This is sharp infinitely often.

Defn: For a simple graph G and each $W \subseteq V(G)$,

$$\rho_s(W) := 8|W| - 5|E(G[W])|$$

and

$$\text{pot}_s(G) := \min_{W \subseteq V(G)} \rho(W).$$

Thm: If G is a simple graph with $\text{pot}_s(G) \geq -4$ and G has no subgraph in a finite \mathcal{H} then G is nb. This is sharp infinitely often.
Complications

Ques: What is harder for us than in proof for 3-coloring?

- Colors I and F are “different”.

To prove gap lemma, color subgraph and contract. Specify which vertex is colored I and which is colored F. Prove general result allowing precoloring.

To contract a subset W with low potential, must ensure new graph G' has no forbidden $H \in H$. Must really understand H.

Maybe $\text{mad}(G) > 16/5$, so discharging to get $16/5$ everywhere gives no contradiction. Show G almost consists of independent set of 4-vertices and 3-vertices inducing a forest. Color G.

Complications

Ques: What is harder for us than in proof for 3-coloring?

- Colors I and F are “different”. To prove gap lemma, color subgraph and contract.
Complications

Ques: What is harder for us than in proof for 3-coloring?
▶ Colors I and F are “different”. To prove gap lemma, color subgraph and contract. Specify which vertex is colored I and which is colored F.
Ques: What is harder for us than in proof for 3-coloring?

- Colors I and F are “different”. To prove gap lemma, color subgraph and contract. Specify which vertex is colored I and which is colored F. Prove general result allowing precoloring.
Complications

Ques: What is harder for us than in proof for 3-coloring?

- Colors I and F are “different”. To prove gap lemma, color subgraph and contract. Specify which vertex is colored I and which is colored F. Prove general result allowing precoloring.

![Diagram showing the process of color subgraph and contract](image)
Complications

Ques: What is harder for us than in proof for 3-coloring?

- Colors I and F are “different”. To prove gap lemma, color subgraph and contract. Specify which vertex is colored I and which is colored F. Prove general result allowing precoloring.

$$
\begin{array}{c}
\text{W} & \text{I}_W & \text{F}_W \\
\end{array}
\rightarrow
\begin{array}{c}
\text{W} & \text{w}_i & \text{w}_f \\
\end{array}
$$

- To contract a subset W with low potential, must ensure new graph G' has no forbidden $H \in \mathcal{H}$.
Complications

Ques: What is harder for us than in proof for 3-coloring?

- Colors I and F are “different”. To prove gap lemma, color subgraph and contract. Specify which vertex is colored I and which is colored F. Prove general result allowing precoloring.

- To contract a subset W with low potential, must ensure new graph G' has no forbidden $H \in \mathcal{H}$. Must really understand \mathcal{H}.
Complications

Ques: What is harder for us than in proof for 3-coloring?

- Colors I and F are “different”. To prove gap lemma, color subgraph and contract. Specify which vertex is colored I and which is colored F. Prove general result allowing precoloring.

$$\begin{array}{c}
W & l_w & F_w \\
\rightarrow & & \\
W & w_i & w_f
\end{array}$$

- To contract a subset W with low potential, must ensure new graph G' has no forbidden $H \in H$. Must really understand H.

- Maybe $\text{mad}(G) > 16/5$, so discharging to get $16/5$ everywhere gives no contradiction.
Complications

Ques: What is harder for us than in proof for 3-coloring?

- Colors I and F are “different”. To prove gap lemma, color subgraph and contract. Specify which vertex is colored I and which is colored F. Prove general result allowing precoloring.

\[\begin{array}{c}
\text{To contract a subset } W \\
\text{with low potential, must ensure new graph } G' \text{ has no forbidden } H \in \mathcal{H}. \text{ Must really understand } \mathcal{H}.
\end{array} \]

- Maybe $\text{mad}(G) > 16/5$, so discharging to get $16/5$ everywhere gives no contradiction. Show G almost consists of ind. set of 4-vertices and 3-vertices inducing a forest.
Complications

Ques: What is harder for us than in proof for 3-coloring?

- Colors \(I \) and \(F \) are “different”. To prove gap lemma, color subgraph and contract. Specify which vertex is colored \(I \) and which is colored \(F \). Prove general result allowing precoloring.

![Diagram](image)

- To contract a subset \(W \) with low potential, must ensure new graph \(G' \) has no forbidden \(H \in \mathcal{H} \). Must really understand \(\mathcal{H} \).
- Maybe \(\text{mad}(G) > 16/5 \), so discharging to get \(16/5 \) everywhere gives no contradiction. Show \(G \) almost consists of ind. set of 4-vertices and 3-vertices inducing a forest. Color \(G \).
Complications

Ques: What is harder for us than in proof for 3-coloring?

- Colors \(I \) and \(F \) are “different”. To prove gap lemma, color subgraph and contract. Specify which vertex is colored \(I \) and which is colored \(F \). Prove general result allowing precoloring.

![Diagram](image)

- To contract a subset \(W \) with low potential, must ensure new graph \(G' \) has no forbidden \(H \in \mathcal{H} \). Must really understand \(\mathcal{H} \).

- Maybe \(\text{mad}(G) > 16/5 \), so discharging to get \(16/5 \) everywhere gives no contradiction. Show \(G \) almost consists of ind. set of 4-vertices and 3-vertices inducing a forest. Color \(G \).
Complications

Ques: What is harder for us than in proof for 3-coloring?

- Colors I and F are “different”. To prove gap lemma, color subgraph and contract. Specify which vertex is colored I and which is colored F. Prove general result allowing precoloring.

![Diagram showing color subgraph and contract]

- To contract a subset W with low potential, must ensure new graph G' has no forbidden $H \in \mathcal{H}$. Must really understand \mathcal{H}.

- Maybe $\text{mad}(G) > 16/5$, so discharging to get $16/5$ everywhere gives no contradiction. Show G almost consists of ind. set of 4-vertices and 3-vertices inducing a forest. Color G.

![Diagram showing 4-vertices and 3-vertices]

Complications

Ques: What is harder for us than in proof for 3-coloring?

- Colors I and F are “different”. To prove gap lemma, color subgraph and contract. Specify which vertex is colored I and which is colored F. Prove general result allowing precoloring.

- To contract a subset W with low potential, must ensure new graph G' has no forbidden $H \in \mathcal{H}$. Must really understand \mathcal{H}.

- Maybe $\text{mad}(G) > 16/5$, so discharging to get $16/5$ everywhere gives no contradiction. Show G almost consists of ind. set of 4-vertices and 3-vertices inducing a forest. Color G.

Complications

Ques: What is harder for us than in proof for 3-coloring?

- Colors \(I \) and \(F \) are “different”. To prove gap lemma, color subgraph and contract. Specify which vertex is colored \(I \) and which is colored \(F \). Prove general result allowing precoloring.

![Diagram showing contracted graph](image)

- To contract a subset \(W \) with low potential, must ensure new graph \(G' \) has no forbidden \(H \in \mathcal{H} \). Must really understand \(\mathcal{H} \).

- Maybe \(\text{mad}(G) > 16/5 \), so discharging to get \(16/5 \) everywhere gives no contradiction. Show \(G \) almost consists of ind. set of 4-vertices and 3-vertices inducing a forest. Color \(G \).
Algorithms

Discharging Proof into Algorithm (Typical)

- Find reducible configuration H
- Recursively color $G - H$
- Extend coloring to H
Algorithms

Discharging Proof into Algorithm (Typical)

- Find reducible configuration H
- Recursively color $G - H$
- Extend coloring to H

Our Proof into Algorithm

- Handle “easy” reducible configurations as above
Algorithms

Discharging Proof into Algorithm (Typical)

- Find reducible configuration H
- Recursively color $G - H$
- Extend coloring to H

Our Proof into Algorithm

- Handle “easy” reducible configurations as above
- If red. config uses gap lemma, first find W minimizing $\rho(W)$
Algorithms

Discharging Proof into Algorithm (Typical)

- Find reducible configuration H
- Recursively color $G - H$
- Extend coloring to H

Our Proof into Algorithm

- Handle “easy” reducible configurations as above
- If red. config uses gap lemma, first find W minimizing $\rho(W)$
 - If $\rho(W)$ violates gap lemma, color $G[W]$ and $G(\phi, W)$
 (gap lemma guarantees success)
Algorithms

Discharging Proof into Algorithm (Typical)

- Find reducible configuration \(H \)
- Recursively color \(G - H \)
- Extend coloring to \(H \)

Our Proof into Algorithm

- Handle “easy” reducible configurations as above
- If red. config uses gap lemma, first find \(W \) minimizing \(\rho(W) \)
 - If \(\rho(W) \) violates gap lemma, color \(G[W] \) and \(G(\varphi, W) \) (gap lemma guarantees success)
 - Otherwise, reduce as normal
Algorithms

Discharging Proof into Algorithm (Typical)

- Find reducible configuration H
- Recursively color $G - H$
- Extend coloring to H

Our Proof into Algorithm

- Handle “easy” reducible configurations as above
- If red. config uses gap lemma, first find W minimizing $\rho(W)$
 - If $\rho(W)$ violates gap lemma, color $G[W]$ and $G(\varphi, W)$
 (gap lemma guarantees success)
 - Otherwise, reduce as normal
- May have many plausible reductions; need one with no $H \in \mathcal{H}$
 Finding right one takes time $O(n^{21})$; color recursively, extend
Thm [Goldberg '84]: Given arbitrary vertex and edge weights, we can find a set of minimum potential in polynomial time.
Summary

▶ Prove Grötzsch’s Theorem by edge density?
Summary

- Prove Grötzsch’s Theorem by edge density?
- Fold 4-faces; need $\text{mad}(G) < 10/3 \implies \chi(G) \leq 3$.

Necklaces are infinitely many counterexamples.

Better measure:

$$\rho(W) = 5 |W| - 3 |E(G[W])|.$$

$$\text{pot}(G) = \min \rho(W); \text{mad}(G) < 10/3 \text{ iff } \text{pot}(G) > 0.$$

For all necklaces, $\text{pot}(G) = 2$.

Thm [KY]: If $\text{pot}(G) \geq 3$, then $\chi(G) \leq 3$.

Pf: reducibility/discharging, gap lemma.

2-colorable \subset near-bipartite (nb) \subset 3-colorable

$$\rho_s(W) = 8 |W| - 5 |E(G[W])|$$ and $\text{pot}_s(G) = \min \rho_s(W)$

If $\text{pot}_s(G) \geq -4$ and G has no subgraph in H, then G is nb.

Pf similar to above; 3 complications.

Sharp infinitely often.
Summary

- Prove Grötzsch’s Theorem by edge density?
- Fold 4-faces; need $\text{mad}(G) < 10/3 \implies \chi(G) \leq 3$.
- Necklaces are infinitely many counterexamples.
Summary

- Prove Grötzsch’s Theorem by edge density?
- Fold 4-faces; need $\text{mad}(G) < 10/3 \implies \chi(G) \leq 3$.
- Necklaces are infinitely many counterexamples.
- Better measure: $\rho(W) = 5|W| - 3|E(G[W])|$.
Summary

- Prove Grötzsch’s Theorem by edge density?
- Fold 4-faces; need $\text{mad}(G) < \frac{10}{3} \implies \chi(G) \leq 3$.
- Necklaces are infinitely many counterexamples.

- Better measure: $\rho(W) = 5|W| - 3|E(G[W])|$.
 $\text{pot}(G) = \min \rho(W)$; $\text{mad}(G) < \frac{10}{3}$ iff $\text{pot}(G) > 0$
Summary

- Prove Grötzsch’s Theorem by edge density?
- Fold 4-faces; need $\text{mad}(G) < 10/3 \implies \chi(G) \leq 3$.
- Necklaces are infinitely many counterexamples.

- Better measure: $\rho(W) = 5|W| - 3|E(G[W])|$.
 $\text{pot}(G) = \min \rho(W)$; $\text{mad}(G) < 10/3$ iff $\text{pot}(G) > 0$
- For all necklaces, $\text{pot}(G) = 2$.

Thm [KY]: If $\text{pot}(G) \geq 3$, then $\chi(G) \leq 3$.
Pro: reducibility/discharging, gap lemma.

2-colorable \subsetneq near-bipartite (nb) \subsetneq 3-colorable

$\rho_s(W) = 8|W| - 5|E(G[W])|$
and $\text{pot}_s(G) = \min \rho_s(W)$

- If $\text{pot}_s(G) \geq -4$ and G has no subgraph in H, then G is nb.
- Pf similar to above; 3 complications.

Sharp infinitely often.
Summary

- Prove Grötzsch’s Theorem by edge density?
- Fold 4-faces; need $\text{mad}(G) < 10/3 \implies \chi(G) \leq 3$.
- Necklaces are infinitely many counterexamples.

- Better measure: $\rho(W) = 5|W| - 3|E(G[W])|$.
 $\text{pot}(G) = \min \rho(W)$; $\text{mad}(G) < 10/3$ iff $\text{pot}(G) > 0$.
- For all necklaces, $\text{pot}(G) = 2$.
- Thm [KY]: If $\text{pot}(G) \geq 3$, then $\chi(G) \leq 3$.
Summary

- Prove Grötzsch’s Theorem by edge density?
- Fold 4-faces; need \(\text{mad}(G) < \frac{10}{3} \implies \chi(G) \leq 3 \).
- Necklaces are infinitely many counterexamples.

- Better measure: \(\rho(W) = 5|W| - 3|E(G[W])| \).
 \(\text{pot}(G) = \min \rho(W) \); \(\text{mad}(G) < \frac{10}{3} \) iff \(\text{pot}(G) > 0 \)
- For all necklaces, \(\text{pot}(G) = 2 \).
- Thm [KY]: If \(\text{pot}(G) \geq 3 \), then \(\chi(G) \leq 3 \).
- Pf: reducibility/discharging, gap lemma.
Summary

- Prove Grötzsch’s Theorem by edge density?
- Fold 4-faces; need $\text{mad}(G) < 10/3 \implies \chi(G) \leq 3$.
- Necklaces are infinitely many counterexamples.

- Better measure: $\rho(W) = 5|W| - 3|E(G[W])|$.
 $\text{pot}(G) = \min \rho(W)$; $\text{mad}(G) < 10/3$ iff $\text{pot}(G) > 0$
- For all necklaces, $\text{pot}(G) = 2$.
- Thm [KY]: If $\text{pot}(G) \geq 3$, then $\chi(G) \leq 3$.
- Pf: reducibility/discharging, gap lemma.

- 2-colorable \subsetneq near-bipartite (nb) \subsetneq 3-colorable
Summary

- Prove Grötzsch’s Theorem by edge density?
- Fold 4-faces; need $\text{mad}(G) < 10/3 \implies \chi(G) \leq 3$.
- Necklaces are infinitely many counterexamples.

- Better measure: $\rho(W) = 5|W| - 3|E(G[W])|$.
 $\text{pot}(G) = \min \rho(W)$; mad$(G) < 10/3$ iff $\text{pot}(G) > 0$
- For all necklaces, $\text{pot}(G) = 2$.
- Thm [KY]: If $\text{pot}(G) \geq 3$, then $\chi(G) \leq 3$.
- Pf: reducibility/discharging, gap lemma.

- 2-colorable \subsetneq near-bipartite (nb) \subsetneq 3-colorable
- $\rho_s(W) = 8|W| - 5|E(G[W])|$ and $\text{pot}_s(G) = \min \rho_s(W)$
Summary

- Prove Grötzsch’s Theorem by edge density?
- Fold 4-faces; need \(\text{mad}(G) < \frac{10}{3} \implies \chi(G) \leq 3 \).
- Necklaces are infinitely many counterexamples.

- Better measure: \(\rho(W) = 5|W| - 3|E(G[W])| \).
 \(\text{pot}(G) = \min \rho(W) \); \(\text{mad}(G) < \frac{10}{3} \) iff \(\text{pot}(G) > 0 \)
- For all necklaces, \(\text{pot}(G) = 2 \).
- Thm [KY]: If \(\text{pot}(G) \geq 3 \), then \(\chi(G) \leq 3 \).
- Pf: reducibility/discharging, gap lemma.

- 2-colorable \(\subsetneq \) near-bipartite (nb) \(\subsetneq \) 3-colorable
- \(\rho_s(W) = 8|W| - 5|E(G[W])| \) and \(\text{pot}_s(G) = \min \rho_s(W) \)
- If \(\text{pot}_s(G) \geq -4 \) and \(G \) has no subgraph in \(H \), then \(G \) is nb.
Prove Grötzsch’s Theorem by edge density?
Fold 4-faces; need \(\text{mad}(G) < \frac{10}{3} \implies \chi(G) \leq 3 \).
Necklaces are infinitely many counterexamples.

Better measure: \(\rho(W) = 5|W| - 3|E(G[W])| \).
\(\text{pot}(G) = \min \rho(W) \); \(\text{mad}(G) < \frac{10}{3} \) iff \(\text{pot}(G) > 0 \).
For all necklaces, \(\text{pot}(G) = 2 \).
Thm [KY]: If \(\text{pot}(G) \geq 3 \), then \(\chi(G) \leq 3 \).
Pf: reducibility/discharging, gap lemma.

2-colorable \(\subsetneq \) near-bipartite (nb) \(\subsetneq \) 3-colorable
\(\rho_s(W) = 8|W| - 5|E(G[W])| \) and \(\text{pot}_s(G) = \min \rho_s(W) \).
If \(\text{pot}_s(G) \geq -4 \) and \(G \) has no subgraph in \(\mathcal{H} \), then \(G \) is nb.
Pf similar to above; 3 complications.
Summary

- Prove Grötzsch’s Theorem by edge density?
- Fold 4-faces; need $\text{mad}(G) < \frac{10}{3} \Rightarrow \chi(G) \leq 3$.
- Necklaces are infinitely many counterexamples.

- Better measure: $\rho(W) = 5|W| - 3|E(G[W])|$.
 $\text{pot}(G) = \min \rho(W)$; $\text{mad}(G) < \frac{10}{3}$ iff $\text{pot}(G) > 0$.
- For all necklaces, $\text{pot}(G) = 2$.
- Thm [KY]: If $\text{pot}(G) \geq 3$, then $\chi(G) \leq 3$.
- Pf: reducibility/discharging, gap lemma.

- 2-colorable \subsetneq near-bipartite (nb) \subsetneq 3-colorable
- $\rho_s(W) = 8|W| - 5|E(G[W])|$ and $\text{pot}_s(G) = \min \rho_s(W)$
- If $\text{pot}_s(G) \geq -4$ and G has no subgraph in \mathcal{H}, then G is nb.
- Pf similar to above; 3 complications. Sharp infinitely often.