Reducibility and Discharging: An Introduction by Example

Daniel W. Cranston

DIMACS, Rutgers and Bell Labs
dcransto@dimacs.rutgers.edu
Joint with Craig Timmons and André Kündgen
The 4-Color Theorem

Def. A graph $G = (V, E)$ is a set of vertices and a set of edges (pairs of vertices).
The 4-Color Theorem

Def. A graph $G = (V, E)$ is a set of vertices and a set of edges (pairs of vertices).
The 4-Color Theorem

Def. A graph \(G = (V, E) \) is a set of vertices and a set of edges (pairs of vertices).
The 4-Color Theorem

Def. A graph $G = (V, E)$ is a set of vertices and a set of edges (pairs of vertices).

Def. A proper vertex coloring gives a color to each vertex so that the 2 endpoints of each vertex get distinct colors.
The 4-Color Theorem

Def. A graph $G = (V, E)$ is a set of vertices and a set of edges (pairs of vertices).

Def. A proper vertex coloring gives a color to each vertex so that the 2 endpoints of each vertex get distinct colors.
The 4-Color Theorem

Def. A graph $G = (V, E)$ is a set of vertices and a set of edges (pairs of vertices).

Def. A proper vertex coloring gives a color to each vertex so that the 2 endpoints of each vertex get distinct colors.

Def. The degree of vertex v, $d(v)$, is the number of incident edges.
The 4-Color Theorem

Def. A graph $G = (V, E)$ is a set of vertices and a set of edges (pairs of vertices).

Def. A proper vertex coloring gives a color to each vertex so that the 2 endpoints of each vertex get distinct colors.

Def. The **degree** of vertex v, $d(v)$, is the number of incident edges.

Def. The **girth** of a graph is the length of the shortest cycle.
The 4-Color Theorem

Def. A graph $G = (V, E)$ is a set of vertices and a set of edges (pairs of vertices).

Def. A proper vertex coloring gives a color to each vertex so that the 2 endpoints of each vertex get distinct colors.

Def. The degree of vertex v, $d(v)$, is the number of incident edges.

Def. The girth of a graph is the length of the shortest cycle.

Thm. Every planar graph has a coloring with at most 4 colors.
The 4-Color Theorem

Def. A graph \(G = (V, E) \) is a set of vertices and a set of edges (pairs of vertices).

Def. A proper vertex coloring gives a color to each vertex so that the 2 endpoints of each vertex get distinct colors.

Def. The degree of vertex \(v \), \(d(v) \), is the number of incident edges.

Def. The girth of a graph is the length of the shortest cycle.

Thm. Every planar graph has a coloring with at most 4 colors.

- Conjectured in 1852.
The 4-Color Theorem

Def. A graph $G = (V, E)$ is a set of vertices and a set of edges (pairs of vertices).

Def. A proper vertex coloring gives a color to each vertex so that the 2 endpoints of each vertex get distinct colors.

Def. The degree of vertex v, $d(v)$, is the number of incident edges.

Def. The girth of a graph is the length of the shortest cycle.

Thm. Every planar graph has a coloring with at most 4 colors.

- Conjectured in 1852.
- Faulty “proofs” given in 1879 and 1880.
The 4-Color Theorem

Def. A graph $G = (V, E)$ is a set of vertices and a set of edges (pairs of vertices).

Def. A proper vertex coloring gives a color to each vertex so that the 2 endpoints of each vertex get distinct colors.

Def. The degree of vertex v, $d(v)$, is the number of incident edges.

Def. The girth of a graph is the length of the shortest cycle.

Thm. Every planar graph has a coloring with at most 4 colors.

- Conjectured in 1852.
- Faulty “proofs” given in 1879 and 1880.
- Proved by Appel and Haken in 1976; used a computer.
The 4-Color Theorem

Def. A graph \(G = (V, E) \) is a set of vertices and a set of edges (pairs of vertices).

Def. A proper vertex coloring gives a color to each vertex so that the 2 endpoints of each vertex get distinct colors.

Def. The *degree* of vertex \(v \), \(d(v) \), is the number of incident edges.

Def. The *girth* of a graph is the length of the shortest cycle.

Thm. Every planar graph has a coloring with at most 4 colors.
- Conjectured in 1852.
- Faulty “proofs” given in 1879 and 1880.
- Proved by Appel and Haken in 1976; used a computer.
- Reproved in 1996 by Robertson, Sanders, Seymour, Thomas.
Thm. Every planar graph has a coloring with at most 5 colors
Reducibility and Discharging

Thm. Every planar graph has a coloring with at most 5 colors

1. Every planar graph has a vertex with degree at most 5
Reducibility and Discharging

Thm. Every planar graph has a coloring with at most 5 colors

1. Every planar graph has a vertex with degree at most 5
2. No minimal counterexample has a vertex with degree at most 5
Reducibility and Discharging

Thm. Every planar graph has a coloring with at most 5 colors

1. Every planar graph has a vertex with degree at most 5
2. No minimal counterexample has a vertex with degree at most 5
Thm. Every planar graph has a coloring with at most 5 colors

1. Every planar graph has a vertex with degree at most 5
2. No minimal counterexample has a vertex with degree at most 5
Thm. Every planar graph has a coloring with at most 5 colors

1. Every planar graph has a vertex with degree at most 5
2. No minimal counterexample has a vertex with degree at most 5
Reducibility and Discharging

Thm. Every planar graph has a coloring with at most 5 colors

1. Every **planar graph** has a vertex with **degree at most 5**
2. No **minimal counterexample** has a vertex with **degree at most 5**
Reductibility and Discharging

Thm. Every planar graph has a coloring with at most 5 colors

1. Every *planar graph* has a vertex with *degree* at most 5
2. No *minimal counterexample* has a vertex with *degree* at most 5
Reducibility and Discharging

Thm. Every planar graph has a coloring with at most 5 colors

1. Every planar graph has a vertex with degree at most 5
2. No minimal counterexample has a vertex with degree at most 5
Reducibility and Discharging

Thm. Every planar graph has a coloring with at most 5 colors

1. Every planar graph has a vertex with **degree at most 5**
2. No minimal counterexample has a vertex with **degree at most 5**
Reducibility and Discharging

Thm. Every planar graph has a coloring with at most 5 colors

1. Every planar graph has a vertex with degree at most 5
2. No minimal counterexample has a vertex with degree at most 5
Reducibility and Discharging

Thm. Every planar graph has a coloring with at most 5 colors

1. Every planar graph has a vertex with degree at most 5
2. No minimal counterexample has a vertex with degree at most 5

Thm. Every planar graph has a coloring with at most 4 colors
Thm. Every planar graph has a coloring with at most 5 colors

1. Every **planar graph** has a vertex with **degree at most 5**
2. No **minimal counterexample** has a vertex with **degree at most 5**

![Graph diagram](image)

Thm. Every planar graph has a coloring with at most 4 colors

1. Every **planar graph** contains at least one of a set of **633 specified subgraphs**
Thm. Every planar graph has a coloring with at most 5 colors

1. Every planar graph has a vertex with degree at most 5
2. No minimal counterexample has a vertex with degree at most 5

![Graph Illustration]

Thm. Every planar graph has a coloring with at most 4 colors

1. Every planar graph contains at least one of a set of 633 specified subgraphs
2. No minimal counterexample contains any of the 633 specified subgraphs
Definitions and Examples

Def. An *acyclic coloring* is a proper vertex coloring such that the union of any two color classes induces a forest.
Def. An *acyclic coloring* is a proper vertex coloring such that the union of any two color classes induces a forest.
Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.
Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Grünbaum 1970]
Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 9.
Definitions and Examples

Def. An **acyclic coloring** is a proper vertex coloring such that the union of any two color classes induces a forest.

![Graph Illustration]

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.
Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.

Def. A star coloring is a proper vertex coloring such that the union of any two color classes induces a star forest (contains no P_4).
Definitions and Examples

Def. An *acyclic coloring* is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.

Def. A *star coloring* is a proper vertex coloring such that the union of any two color classes induces a star forest (contains no P_4).

Thm. [Fetin-Raspaud-Reed 2001]
Every planar G has star chromatic number $\chi_s(G)$, at most 80.
Definitions and Examples

Def. An *acyclic coloring* is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.

Def. A *star coloring* is a proper vertex coloring such that the union of any two color classes induces a star forest (contains no P_4).

Thm. [Albertson-Chappell-Kierstead-Kündgen-Ramamurthi ’04]
Every planar G has star chromatic number $\chi_s(G)$, at most 20.
Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.

Def. A star coloring is a proper vertex coloring such that the union of any two color classes induces a star forest (contains no P_4).

Thm. [Albertson-Chappell-Kierstead-Kündgen-Ramamurthi ’04]
Every planar G has star chromatic number $\chi_s(G)$, at most 20.
Definitions and Examples

Def. An acyclic coloring is a proper vertex coloring such that the union of any two color classes induces a forest.

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.

Def. A star coloring is a proper vertex coloring such that the union of any two color classes induces a star forest (contains no P_4).

Thm. [Albertson-Chappell-Kierstead-Kündgen-Ramamurthi ’04]
Every planar G has star chromatic number $\chi_s(G)$, at most 20.
Definitions and Examples

Def. An **acyclic coloring** is a proper vertex coloring such that the union of any two color classes induces a forest.

![Illustration of acyclic coloring](image1.png)

Thm. [Borodin 1979]
Every planar G has acyclic chromatic number, $\chi_a(G)$, at most 5.

Def. A **star coloring** is a proper vertex coloring such that the union of any two color classes induces a star forest (contains no P_4).

![Illustration of star coloring](image2.png)

Thm. [Albertson-Chappell-Kierstead-Kündgen-Ramamurthi ’04]
Every planar G has star chromatic number $\chi_s(G)$, at most 20.
Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.
Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14, then we can partition $V(G)$ into sets I and F s.t. $G[F]$ is a forest and I is a 2-independent set in G.
Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14, then we can partition $V(G)$ into sets I and F s.t. $G[F]$ is a forest and I is a 2-independent set in G.

Def. A set I is 2-independent in G if $\forall u, v \in I \ dist(u, v) > 2$.
Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14, then we can partition $V(G)$ into sets I and F s.t. $G[F]$ is a forest and I is a 2-independent set in G.

Def. A set I is 2-independent in G if $\forall u, v \in I$ dist$(u, v) > 2$.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.
Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14, then we can partition $V(G)$ into sets I and F s.t. $G[F]$ is a forest and I is a 2-independent set in G.

Def. A set I is 2-independent in G if $\forall u, v \in I \ \text{dist}(u, v) > 2$.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of F. If $v \in F$ is distance k from its root, then v gets color $k \ (\text{mod} \ 3)$. If $v \in I$, then v gets color 3.
Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14, then we can partition $V(G)$ into sets I and F s.t. $G[F]$ is a forest and I is a 2-independent set in G.

Def. A set I is 2-independent in G if $\forall u, v \in I \text{ dist}(u, v) > 2$.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of F. If $v \in F$ is distance k from its root, then v gets color $k \pmod{3}$. If $v \in I$, then v gets color 3.

Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14, then we can partition $V(G)$ into sets I and F s.t. $G[F]$ is a forest and I is a 2-independent set in G.

Def. A set I is 2-independent in G if $\forall u, v \in I \text{ dist}(u, v) > 2$.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of F.
If $v \in F$ is distance k from its root, then v gets color $k \pmod{3}$.
If $v \in I$, then v gets color 3.
Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14, then we can partition $V(G)$ into sets I and F s.t. $G[F]$ is a forest and I is a 2-independent set in G.

Def. A set I is 2-independent in G if $\forall u, v \in I \; \text{dist}(u, v) > 2$.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of F. If $v \in F$ is distance k from its root, then v gets color $k \mod 3$. If $v \in I$, then v gets color 3.
Structural Decomposition

Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14, then we can partition $V(G)$ into sets I and F s.t. $G[F]$ is a forest and I is a 2-independent set in G.

Def. A set I is 2-independent in G if $\forall u, v \in I \text{ dist}(u, v) > 2$.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of F. If $v \in F$ is distance k from its root, then v gets color $k \pmod{3}$. If $v \in I$, then v gets color 3.
Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14, then we can partition $V(G)$ into sets I and F s.t. $G[F]$ is a forest and I is a 2-independent set in G.

Def. A set I is 2-independent in G if $\forall u, v \in I \text{ dist}(u, v) > 2$.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of F. If $v \in F$ is distance k from its root, then v gets color $k \pmod{3}$. If $v \in I$, then v gets color 3.
Thm. [A-C-K-K-R] For every surface S there is a constant γ such that every graph G with girth $\geq \gamma$ embedded in S has $\chi_s(G) \leq 4$.

Thm. [Timmons '07] If G is planar and has girth ≥ 14, then we can partition $V(G)$ into sets I and F s.t. $G[F]$ is a forest and I is a 2-independent set in G.

Def. A set I is 2-independent in G if $\forall u, v \in I$ $\text{dist}(u, v) > 2$.

Lem. If we can partition G as in Theorem, then $\chi_s(G) \leq 4$.

Pf. Choose a root in each tree of F. If $v \in F$ is distance k from its root, then v gets color $k \pmod{3}$. If $v \in I$, then v gets color 3.
Reducibility

Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:
Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:
Reducibility

Pf. Assume that \(G \) is a minimal counterexample. \(G \) must not contain any of the following subgraphs:

Partition \(G - v \).
Reducibility

Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

Partition $G - v$. Put v into F.

![Diagram of two connected vertices]
Reducibility

Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

- Partition $G - v$.
- Put v into F.
Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

Partition $G - v$.
Put v into F.

Partition $G - \{u, v, w\}$.
Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

1. Partition $G - v$.
 Put v into F.

2. Partition $G - \{u, v, w\}$.
 Put v into I and u, w into F.

Reducibility
Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

1. **Partition** $G - v$.
 - Put v into F.

2. **Partition** $G - \{u, v, w\}$.
 - Put v into I and u, w into F.
 - Or put u, v, w into F.
Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

- **Partition $G - v$.**
 - Put v into F.

- **Partition $G - \{u, v, w\}$.**
 - Put v into I and u, w into F.
 - Or put u, v, w into F.

- **Partition $G - H$.**
Pf. Assume that \(G \) is a minimal counterexample. \(G \) must not contain any of the following subgraphs:

1. **Partition** \(G - v \).
 - Put \(v \) into \(F \).

2. **Partition** \(G - \{u, v, w\} \).
 - Put \(v \) into \(I \) and \(u, w \) into \(F \).
 - Or put \(u, v, w \) into \(F \).

3. **Partition** \(G - H \).
 - Put \(w \) into \(I \) and others into \(F \).
Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

Partition $G - v$. Put v into F.

Partition $G - \{u, v, w\}$. Put v into I and u, w into F. Or put u, v, w into F.

Partition $G - H$. Put w into I and others into F. Or v into I and others into F.
Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

- Partition $G - v$. Put v into F.
- Partition $G - \{u, v, w\}$. Put v into I and u, w into F. Or put u, v, w into F.
- Partition $G - H$. Put w into I and others into F. Or v into I and others into F. Or all into F.

![Diagram](image-url)
Reducibility

Pf. Assume that G is a minimal counterexample. G must not contain any of the following subgraphs:

1. Partition $G - v$.
 Put v into F.

2. Partition $G - \{u, v, w\}$.
 Put v into I and u, w into F.
 Or put u, v, w into F.

 Put w into I and others into F.
 Or v into I and others into F.
 Or all into F.

“nearby” 2-vertices
Discharging

Give charge $2l(f) - 28$ to each face f and charge $12d(v) - 28$ to each vertex v.
Discharging

Give charge $2l(f) - 28$ to each face f and charge $12d(v) - 28$ to each vertex v.

Since girth ≥ 14, each face has nonnegative charge.
Discharging

Give charge $2l(f) - 28$ to each face f and charge $12d(v) - 28$ to each vertex v.

Since girth ≥ 14, each face has nonnegative charge.

$$\sum_{v \in V} (12d(v) - 28) + \sum_{f \in F} (2l(f) - 28) = 28(|E| - |F| - |V|) = -56$$
Discharging

Give charge $2l(f) - 28$ to each face f and charge $12d(v) - 28$ to each vertex v.

Since girth ≥ 14, each face has nonnegative charge.

\[
\sum_{v \in V} (12d(v) - 28) + \sum_{f \in F} (2l(f) - 28) = 28(|E| - |F| - |V|) = -56
\]

nonnegative
Discharging

Give charge $2l(f) - 28$ to each face f and charge $12d(v) - 28$ to each vertex v.

Since girth ≥ 14, each face has nonnegative charge.

$$\sum_{v \in V} (12d(v) - 28) + \sum_{f \in F} (2l(f) - 28) = 28(|E| - |F| - |V|) = -56$$

- negative
- nonnegative
Discharging

Give charge \(2l(f) - 28\) to each face \(f\) and charge \(12d(v) - 28\) to each vertex \(v\).

Since girth \(\geq 14\), each face has nonnegative charge.

\[
\sum_{v \in V} (12d(v) - 28) + \sum_{f \in F} (2l(f) - 28) = 28(|E| - |F| - |V|) = -56
\]

Discharging rule: each 2-vert receives 2 from each nearby 3\(^+\)-vert.
Discharging

Give charge $2l(f) - 28$ to each face f and charge $12d(v) - 28$ to each vertex v.

Since girth ≥ 14, each face has nonnegative charge.

$$\sum_{v \in V} (12d(v) - 28) + \sum_{f \in F} (2l(f) - 28) = 28(|E| - |F| - |V|) = -56$$

Discharging rule: each 2-vert receives 2 from each nearby 3+-vert.

Show each vertex has nonnegative charge.
Discharging

Give charge $2l(f) - 28$ to each face f and charge $12d(v) - 28$ to each vertex v.

Since girth ≥ 14, each face has nonnegative charge.

$$\sum_{v \in V} (12d(v) - 28) + \sum_{f \in F} (2l(f) - 28) = 28(|E| - |F| - |V|) = -56$$

Discharging rule: each 2-vert receives 2 from each nearby 3$^+$-vert.

Show each vertex has nonnegative charge.

2-vert: $12(2) - 28 + 2(2) = 0$
Discharging

Give charge \(2l(f) - 28\) to each face \(f\) and charge \(12d(v) - 28\) to each vertex \(v\).

Since girth \(\geq 14\), each face has nonnegative charge.

\[
\sum_{v \in V} (12d(v) - 28) + \sum_{f \in F} (2l(f) - 28) = 28(|E| - |F| - |V|) = -56
\]

Discharging rule: each 2-vert receives 2 from each nearby 3\(^+-\)-vert.

Show each vertex has nonnegative charge.

2-vert: \(12(2) - 28 + 2(2) = 0\)

3-vert: \(12(3) - 28 - 4(2) = 0\)
Discharging

Give charge $2l(f) - 28$ to each face f and charge $12d(v) - 28$ to each vertex v.

Since girth ≥ 14, each face has nonnegative charge.

$$\sum_{v \in V} (12d(v) - 28) + \sum_{f \in F} (2l(f) - 28) = 28(|E| - |F| - |V|) = -56$$

Discharging rule: each 2-vert receives 2 from each nearby 3$^+$-vert.

Show each vertex has nonnegative charge.

2-vert: $12(2) - 28 + 2(2) = 0$

3-vert: $12(3) - 28 - 4(2) = 0$

4$^+$-vert: $12d(v) - 28 - 2d(v)2 = 8d(v) - 28 > 0$
Discharging

Give charge \(2l(f) - 28\) to each face \(f\) and charge \(12d(v) - 28\) to each vertex \(v\).

Since girth \(\geq 14\), each face has nonnegative charge.

\[
\sum_{v \in V}(12d(v) - 28) + \sum_{f \in F}(2l(f) - 28) = 28(|E| - |F| - |V|) = -56
\]

Discharging rule: each 2-vert receives 2 from each nearby 3\(^+\)-vert.

Show each vertex has nonnegative charge.

2-vert: \(12(2) - 28 + 2(2) = 0\)

3-vert: \(12(3) - 28 - 4(2) = 0\)

4\(^+\)-vert: \(12d(v) - 28 - 2d(v)2 = 8d(v) - 28 > 0\)

Contradiction! So \(G\) contains a reducible configuration.
An Efficient Coloring Algorithm
An Efficient Coloring Algorithm

Many discharging proofs translate into linear-time algorithms.
An Efficient Coloring Algorithm

Many discharging proofs translate into linear-time algorithms.

Generalization
An Efficient Coloring Algorithm

Many discharging proofs translate into linear-time algorithms.

Generalization

\[\sum 12d(v) - 28 < 0 \]
An Efficient Coloring Algorithm

Many discharging proofs translate into linear-time algorithms.

Generalization

$$\sum 12d(v) - 28 < 0 \Rightarrow mad(G) < \frac{28}{12}$$
An Efficient Coloring Algorithm

Many discharging proofs translate into linear-time algorithms.

Generalization

\[\sum 12d(v) - 28 < 0 \Rightarrow mad(G) < \frac{28}{12} \]

Thm. If \(mad(G) < \frac{28}{12} \), then we can partition \(V(G) \) into sets \(I \) and \(F \) s.t. \(G[F] \) is a forest and \(I \) is a 2-independent set in \(G \).
An Efficient Coloring Algorithm

Many discharging proofs translate into linear-time algorithms.

Generalization

\[\sum 12d(v) - 28 < 0 \implies mad(G) < \frac{28}{12} \]

Thm. If \(mad(G) < \frac{28}{12} \), then we can partition \(V(G) \) into sets \(I \) and \(F \) s.t. \(G[F] \) is a forest and \(I \) is a 2-independent set in \(G \).

Open Questions

- What is the minimum girth \(g \) s.t. \(G \) planar and girth \(\geq g \) implies an \(I,F \)-partition?
An Efficient Coloring Algorithm

Many discharging proofs translate into linear-time algorithms.

Generalization

$$\sum 12d(v) - 28 < 0 \Rightarrow mad(G) < \frac{28}{12}$$

Thm. If $mad(G) < \frac{28}{12}$, then we can partition $V(G)$ into sets I and F s.t. $G[F]$ is a forest and I is a 2-independent set in G.

Open Questions

- What is the minimum girth g s.t. G planar and girth $\geq g$ implies an I, F-partition?

 We know that $8 \leq g$
An Efficient Coloring Algorithm

Many discharging proofs translate into linear-time algorithms.

Generalization

$$\sum 12d(v) - 28 < 0 \Rightarrow mad(G) < \frac{28}{12}$$

Thm. If $mad(G) < \frac{28}{12}$, then we can partition $V(G)$ into sets I and F s.t. $G[F]$ is a forest and I is a 2-independent set in G.

Open Questions

- What is the minimum girth g s.t. G planar and girth $\geq g$ implies an I, F-partition?
 We know that $8 \leq g \leq 13$
An Efficient Coloring Algorithm

Many discharging proofs translate into linear-time algorithms.

Generalization

\[\sum 12d(v) - 28 < 0 \Rightarrow mad(G) < \frac{28}{12} \]

Thm. If \(mad(G) < \frac{28}{12} \), then we can partition \(V(G) \) into sets \(I \) and \(F \) s.t. \(G[F] \) is a forest and \(I \) is a 2-independent set in \(G \).

Open Questions

- What is the minimum girth \(g \) s.t. \(G \) planar and girth \(\geq g \) implies an \(I, F \)-partition?
 We know that \(8 \leq g \leq 13 \)

- What is the minimum girth \(g \) s.t. \(G \) planar and girth \(\geq g \) implies \(\chi_s(G) \leq 4 \)?
An Efficient Coloring Algorithm

Many discharging proofs translate into linear-time algorithms.

Generalization

\[\sum 12d(v) - 28 < 0 \Rightarrow \text{mad}(G) < \frac{28}{12} \]

Thm. If \(\text{mad}(G) < \frac{28}{12} \), then we can partition \(V(G) \) into sets \(I \) and \(F \) s.t. \(G[F] \) is a forest and \(I \) is a 2-independent set in \(G \).

Open Questions

- What is the minimum girth \(g \) s.t. \(G \) planar and girth \(\geq g \) implies an \(I,F \)-partition?

 We know that \(8 \leq g \leq 13 \)

- What is the minimum girth \(g \) s.t. \(G \) planar and girth \(\geq g \) implies \(\chi_s(G) \leq 4 \)?

- For an arbitrary surface \(S \), what is the minimum \(\gamma_S \) s.t. girth \(\geq \gamma_S \) and \(G \) embedded in \(S \) implies an \(I,F \)-partition?