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Prop. If χ(G ) = 7, then cr(G ) ≥ 7.
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Def. Crossing number, cr(G );
e.g., cr(K6) = 3.

Bound χ(G ) in g(G ), τ(G ), or cr(G )?
If so, what are the extremal graphs?
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Cor. Max χ(G ) such that τ(G ) = t satisfies 6t − 2 ≤ χ(G ) ≤ 6t.
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Thm. [Kostochka-Stiebitz ’96] If G is r -critical and G 6= Kr and
n 6= 2r − 1, then
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so cr(G ) ≥ (7/3)m − (25/3)(n − 2) ≥ n + (92/3) > 40.



Proving Albertson’s Conjecture (for lots more cases)
Crossing Lemma [Pach et. al. ’06] If m ≥ (103/16)n, then

cr(G ) ≥
1

31.1

m3

n2
.

Thm. [Pach et. al. ’06]

cr(G ) ≥ (7/3)m − (25/3)(n − 2)

cr(G ) ≥ 3m − (35/3)(n − 2)

cr(G ) ≥ 4m − (103/6)(n − 2)
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Pf. Assume G is 9-critical and G 6= K9. Note n ≥ 10.

If n 6= 17, then Kostochka-Stiebitz bound gives m ≥ 4n + 6,
so cr(G ) ≥ (7/3)m − (25/3)(n − 2) ≥ n + (92/3) > 40.

If n = 17, then Dirac’s bound gives m ≥ 4n + 3,
so cr(G ) ≥ (7/3)m − (25/3)(n − 2) ≥ 122/3 > 40.



Proving Albertson’s Conjecture (for lots more cases)
Crossing Lemma [Pach et. al. ’06] If m ≥ (103/16)n, then

cr(G ) ≥
1

31.1

m3

n2
.

Thm. [Pach et. al. ’06]

cr(G ) ≥ (7/3)m − (25/3)(n − 2)

cr(G ) ≥ 3m − (35/3)(n − 2)

cr(G ) ≥ 4m − (103/6)(n − 2)

Prop. Albertson’s Conjecture for r = 9. (Recall cr(K9) = 36.)

Pf. Assume G is 9-critical and G 6= K9. Note n ≥ 10.

If n 6= 17, then Kostochka-Stiebitz bound gives m ≥ 4n + 6,
so cr(G ) ≥ (7/3)m − (25/3)(n − 2) ≥ n + (92/3) > 40.

If n = 17, then Dirac’s bound gives m ≥ 4n + 3,
so cr(G ) ≥ (7/3)m − (25/3)(n − 2) ≥ 122/3 > 40.

Thm. Albertson’s Conjecture is true for r ≤ 12.
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