Maker-Breaker Games:
Building a Big Chain in a Poset

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Bill Kinnersley, Kevin Milans, Greg Puleo, Douglas West

VCU Discrete Math Seminar
05 March 2010
Maker-Breaker Games (in General)

Maker-Breaker Game:
Two players, Maker and Breaker, alternate turns. On each turn, the player chooses a not-yet-picked element from a base set.
Maker-Breaker Games (in General)

Maker-Breaker Game:
Two players, **Maker** and **Breaker**, alternate turns. On each turn, the player chooses a not-yet-picked element from a base set. **Maker** tries to collect all the elements in at least one winning subset (i.e. trying to make that subset). **Breaker** tries to stop him.
Maker-Breaker Games (in General)

Maker-Breaker Game:
Two players, Maker and Breaker, alternate turns. On each turn, the player chooses a not-yet-picked element from a base set. Maker tries to collect all the elements in at least one winning subset (i.e. trying to make that subset). Breaker tries to stop him. Game ends when Maker succeeds or all the elements are chosen.
Maker-Breaker Games (in General)

Maker-Breaker Game:
Two players, Maker and Breaker, alternate turns. On each turn, the player chooses a not-yet-picked element from a base set. Maker tries to collect all the elements in at least one winning subset (i.e. trying to make that subset). Breaker tries to stop him. Game ends when Maker succeeds or all the elements are chosen.

Examples
Maker-Breaker Games (in General)

Maker-Breaker Game:
Two players, Maker and Breaker, alternate turns. On each turn, the player chooses a not-yet-picked element from a base set. Maker tries to collect all the elements in at least one winning subset (i.e. trying to make that subset). Breaker tries to stop him. Game ends when Maker succeeds or all the elements are chosen.

Examples
- Maker aims for Hamiltonian Circuit from $E(K_n)$
Maker-Breaker Games (in General)

Maker-Breaker Game:
Two players, Maker and Breaker, alternate turns. On each turn, the player chooses a not-yet-picked element from a base set. Maker tries to collect all the elements in at least one winning subset (i.e. trying to make that subset). Breaker tries to stop him. Game ends when Maker succeeds or all the elements are chosen.

Examples
- Maker aims for Hamiltonian Circuit from $E(K_n)$
- Maker aims for $E(K_q)$ from $E(K_n)$
Maker-Breaker Games (in General)

Maker-Breaker Game:
Two players, Maker and Breaker, alternate turns. On each turn, the player chooses a not-yet-picked element from a base set. Maker tries to collect all the elements in at least one winning subset (i.e. trying to make that subset). Breaker tries to stop him. Game ends when Maker succeeds or all the elements are chosen.

Examples

- Maker aims for Hamiltonian Circuit from $E(K_n)$
- Maker aims for $E(K_q)$ from $E(K_n)$
- Maker aims for a k-term AP from $\{1, 2, \ldots, n\}$
Maker-Breaker Games (in General)

Maker-Breaker Game:
Two players, Maker and Breaker, alternate turns. On each turn, the player chooses a not-yet-picked element from a base set. Maker tries to collect all the elements in at least one winning subset (i.e. trying to make that subset). Breaker tries to stop him. Game ends when Maker succeeds or all the elements are chosen.

Examples

- Maker aims for Hamiltonian Circuit from $E(K_n)$
- Maker aims for $E(K_q)$ from $E(K_n)$
- Maker aims for a k-term AP from $\{1, 2, \ldots, n\}$
- Maker and Breaker play Hex
Maker-Breaker Games (in General)

Maker-Breaker Game:
Two players, Maker and Breaker, alternate turns. On each turn, the player chooses a not-yet-picked element from a base set. Maker tries to collect all the elements in at least one winning subset (i.e. trying to make that subset). Breaker tries to stop him. Game ends when Maker succeeds or all the elements are chosen.

Examples

- Maker aims for Hamiltonian Circuit from $E(K_n)$
- Maker aims for $E(K_q)$ from $E(K_n)$
- Maker aims for a k-term AP from $\{1, 2, \ldots, n\}$
- Maker and Breaker play Hex

We want to find the threshold where the game switches from a Breaker win to a Maker win.
Subset Lattices

Theorem

In the subset lattice L_n, Maker \bullet can get a chain of size n that misses only the top element.
Subset Lattices

Theorem

In the subset lattice L_n, Maker \bigcirc can get a chain of size n that misses only the top element.
Subset Lattices

Theorem

In the subset lattice L_n, Maker \bullet can get a chain of size n that misses only the top element.
Subset Lattices

Theorem

In the subset lattice L_n, Maker ♣ can get a chain of size n that misses only the top element.
Subset Lattices

Theorem

In the subset lattice L_n, Maker can get a chain of size n that misses only the top element.
Subset Lattices

Theorem

In the subset lattice L_n, Maker \bullet can get a chain of size n that misses only the top element.
Subset Lattices

Theorem

In the subset lattice L_n, Maker can get a chain of size n that misses only the top element.
Subset Lattices

Theorem

In the subset lattice L_n, Maker \bigcirc can get a chain of size n that misses only the top element.
Subset Lattices

Theorem

In the subset lattice L_n, Maker \bullet can get a chain of size n that misses only the top element.
Subset Lattices

Theorem

In the subset lattice L_n, Maker can get a chain of size n that misses only the top element.
Subset Lattices

Theorem
In the subset lattice L_n, Maker \blacklozenge can get a chain of size n that misses only the top element.

Corollary
In the poset \hat{L}_n, Maker can get a maximum size chain.
Theorem

If P is the product of two chains, each of size s, then Maker can build a chain in P of size at least $\lceil \frac{3}{2}s \rceil - 1$.
Product of Two Chains

Theorem

If P is the product of two chains, each of size s, then Maker can build a chain in P of size at least $\left\lceil \frac{3}{2} s \right\rceil - 1$.
Product of Two Chains

Theorem

If P is the product of two chains, each of size s, then Maker can build a chain in P of size at least $\lceil \frac{3}{2} s \rceil - 1$.
Product of Two Chains

Theorem

If P is the product of two chains, each of size s, then Maker can build a chain in P of size at least $\lceil \frac{3}{2} s \rceil - 1$.
Product of Two Chains

Theorem
If P is the product of two chains, each of size s, then Maker can build a chain in P of size at least $\lceil \frac{3}{2} s \rceil - 1$.

Maker’s Strategy
If Breaker plays a green, then Maker plays its pair. Otherwise, Maker plays a blue, if he can.
Product of Two Chains

Theorem

If P is the product of two chains, each of size s, then Maker can build a chain in P of size at least $\lceil \frac{3}{2}s \rceil - 1$.

Maker’s Strategy

If Breaker plays a green, then Maker plays its pair. Otherwise, Maker plays a blue, if he can. Thus: $\left\lceil \frac{1}{2}s \right\rceil + (s - 1) = \left\lceil \frac{3}{2}s \right\rceil - 1$.
Product of Two Chains

Theorem

If P is the product of two chains, of sizes s_1, s_2 with $s_1 \geq s_2$, then Maker can build a chain in P of size at least $\lceil \frac{1}{2} s_1 \rceil + s_2 - 1$.

Maker’s Strategy

If Breaker plays a green, then Maker plays its pair. Otherwise, Maker plays a blue, if he can. Thus: $\lceil \frac{1}{2} s_1 \rceil + s_2 - 1$.
Product of Two Chains (cont’d)

Theorem

If P is the product of two chains, of sizes s_1, s_2 with $s_1 \geq s_2$, then Breaker can hold Maker to a chain of size at most $\left\lceil \frac{1}{2}s_1 \right\rceil + s_2 - 1$.

$$(s_1, s_2)$$

$$(1,1)$$
Theorem
If \(P \) is the product of two chains, of sizes \(s_1, s_2 \) with \(s_1 \geq s_2 \), then Breaker can hold Maker to a chain of size at most \(\lceil \frac{1}{2} s_1 \rceil + s_2 - 1 \).

Breaker’s Strategy
Pair elements “length-wise”. Whatever element Maker plays, Breaker plays its pair.
Product of Two Chains (cont’d)

Theorem
If P is the product of two chains, of sizes s_1, s_2 with $s_1 \geq s_2$, then Breaker can hold Maker to a chain of size at most $\lceil \frac{1}{2} s_1 \rceil + s_2 - 1$.

Pair elements “length-wise”. Whatever element Maker plays, Breaker plays its pair.
Product of Two Chains (cont’d)

Theorem

If P is the product of two chains, of sizes s_1, s_2 with $s_1 \geq s_2$, then Breaker can hold Maker to a chain of size at most $\left\lceil \frac{1}{2} s_1 \right\rceil + s_2 - 1$.

Breaker’s Strategy

Pair elements “length-wise”. Whatever element Maker plays, Breaker plays its pair. So: $(s_1 + s_2 - 1) - \left\lfloor \frac{1}{2} s_1 \right\rfloor = \left\lceil \frac{1}{2} s_1 \right\rceil + s_2 - 1$.
Product of d Chains

Theorem

*If P is the product of d chains, with sizes $s_1 \geq \cdots \geq s_d$, then a maximum chain in P has size $S = \sum s_i - (d - 1)$. Maker can build a chain in P of size at least $S - \left\lfloor \frac{1}{2}s_1 \right\rfloor$.***
Product of d Chains

Theorem

If P is the product of d chains, with sizes $s_1 \geq \cdots \geq s_d$, then a maximum chain in P has size $S = \sum s_i - (d - 1)$.

Maker can build a chain in P of size at least $S - \left\lfloor \frac{1}{2} s_1 \right\rfloor$.

![Diagram](image-url)
Product of \(d \) Chains

Theorem

If \(P \) is the product of \(d \) chains, with sizes \(s_1 \geq \cdots \geq s_d \), then a maximum chain in \(P \) has size \(S = \sum s_i - (d - 1) \).

Maker can build a chain in \(P \) of size at least \(S - \left\lfloor \frac{1}{2}s_1 \right\rfloor \).
Product of d Chains

Theorem

*If P is the product of d chains, with sizes $s_1 \geq \cdots \geq s_d$, then a maximum chain in P has size $S = \sum s_i - (d - 1)$. Maker can build a chain in P of size at least $S - \left\lfloor \frac{1}{2}s_1 \right\rfloor$.***

Maker’s Strategy

Like before, but Maker’s old green pairs now become green \hat{L}_ks.
Product of d Chains

Theorem

If P is the product of d chains, with sizes $s_1 \geq \cdots \geq s_d$, then a maximum chain in P has size $S = \sum s_i - (d - 1)$. Maker can build a chain in P of size at least $S - \left\lfloor \frac{1}{2}s_1 \right\rfloor$.

Maker’s Strategy

Like before, but Maker’s old green pairs now become green \hat{L}_ks.
Walker-Blocker on the Wedge

The wedge W_k^d is $\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k\}$.
Walker-Blocker on the Wedge

The wedge \(W_k^d \) is \(\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k\} \).

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.
Walker-Blocker on the Wedge

The wedge W^d_k is $\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in *increasing order*.

Theorem

In W^2_k, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.
Walker-Blocker on the Wedge

The wedge W_k^d is $\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.

Theorem

In W_k^2, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Walker gets 7 levels in W_{10}^2.
Walker-Blocker on the Wedge

The wedge W^d_k is $\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.

Theorem

In W^2_k, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Walker gets 7 levels in W^2_{10}.
Walker-Blocker on the Wedge

The wedge W_k^d is $\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.

Theorem

In W_k^2, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.
Walker-Blocker on the Wedge

The wedge W_k^d is $\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k}\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.

Theorem

In W_k^2, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Walker gets 7 levels in W_{10}^2.
Walker-Blocker on the Wedge

The wedge W_k^d is $\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.

Theorem

In W_k^2, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.
Walker-Blocker on the Wedge

The wedge W^d_k is $\{(x_1, \ldots, x_d)| x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in **increasing order**.

Theorem

In W^2_k, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Walker gets 7 levels in W^2_{10}.
Walker-Blocker on the Wedge

The wedge W^d_k is $\{(x_1, \ldots, x_d)| x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.

Theorem

In W^2_k, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.
Walker-Blocker on the Wedge

The wedge W^d_k is $\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.

Theorem

In W^2_k, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Walker gets 7 levels in W^2_{10}.
Walker-Blocker on the Wedge

The wedge W^d_k is $\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.

Theorem

In W^2_k, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Walker gets 7 levels in W^2_{10}.
Walker-Blocker on the Wedge

The wedge W^d_k is $\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in *increasing order*.

Theorem

In W^2_k, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Walker gets 7 levels in W^2_{10}.
Walker-Blocker on the Wedge

The wedge W_k^d is $\{(x_1, \ldots, x_d)| x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in **increasing order**.

Theorem

In W_k^2, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Walker gets 7 levels in W_{10}^2.
Walker-Blocker on the Wedge

The wedge W^d_k is $\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.

Theorem

In W^2_k, Walker can get $\lceil \frac{2k}{3} \rceil$ levels, and no more.
Walker-Blocker on the Wedge

The wedge W_k^d is $\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.

Theorem

In W_k^2, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.
Walker-Blocker on the Wedge

The wedge W^d_k is $\{(x_1, \ldots, x_d) \mid x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in **increasing order**.

Theorem

In W^2_k, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Walker gets 7 levels in W^2_{10}.
Walker-Blocker on the Wedge

The wedge W^d_k is $\{(x_1, \ldots, x_d) | x_i \geq 0$ and $\sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.

Theorem

In W^2_k, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Proposition

A greedy strategy for Walker loses at most $\lfloor k/3 \rfloor$ levels.

Walker gets 7 levels in W^2_{10}.
Walker-Blocker on the Wedge

The wedge W^d_k is \{$(x_1, \ldots, x_d) | x_i \geq 0$ and $\sum x_i < k$\}.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.

Theorem

In W^2_k, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Proposition

A greedy strategy for Walker loses at most $\lfloor k/3 \rfloor$ levels.

\[\ell_W + \ell_B = k \]

Walker gets 7 levels in W^2_{10}.
Walker-Blocker on the Wedge

The wedge W^d_k is $\{(x_1, \ldots, x_d)| x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in **increasing order**.

Theorem

In W^2_k, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Proposition

A greedy strategy for Walker loses at most $\lfloor k/3 \rfloor$ levels.

\[\ell_W + \ell_B = k \]

\[\ell_W = t_W \text{ and } \ell_B \leq \frac{1}{2} t_B \text{ and } t_W = t_B \]

Walker gets 7 levels in W^2_{10}.
Walker-Blocker on the Wedge

The wedge W_k^d is \{(x_1, \ldots, x_d)| x_i \geq 0$ and $\sum x_i < k}\}.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in **increasing order**.

Theorem

In W_k^2, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Proposition

A greedy strategy for Walker loses at most $\lfloor k/3 \rfloor$ levels.

\[
\ell_W + \ell_B = k \\
\ell_W = t_W \text{ and } \ell_B \leq \frac{1}{2} t_B \text{ and } t_W = t_B \\
\ell_B \leq \frac{1}{2} t_B = \frac{1}{2} t_W = \frac{1}{2} \ell_W = \frac{1}{2} (k - \ell_B)
\]

Walker gets 7 levels in W_{10}^2
Walker-Blocker on the Wedge

The wedge W^d_k is $\{(x_1, \ldots, x_d) | x_i \geq 0 \text{ and } \sum x_i < k\}$.

Walker-Blocker: same as Maker-Breaker, but now Walker must get the elements of his chain in increasing order.

Theorem

In W^2_k, Walker can get $\lceil 2k/3 \rceil$ levels, and no more.

Proposition

A greedy strategy for Walker loses at most $\lfloor k/3 \rfloor$ levels.

\begin{align*}
\ell_W + \ell_B &= k \\
\ell_W &= t_W \text{ and } \ell_B \leq \frac{1}{2} t_B \text{ and } t_W = t_B \\
\ell_B &\leq \frac{1}{2} t_B = \frac{1}{2} t_W = \frac{1}{2} \ell_W = \frac{1}{2} (k - \ell_B) \\
\ell_B &\leq \frac{1}{3} k
\end{align*}

Walker gets 7 levels in W^2_{10}
Angel-Devil game

Angel-Devil Game

Angel: Move from \((x, y)\) to \((x_1, y_1)\) if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).

Devil: Burn one point \((x, y)\).

Question [Conway 1982]: Can the angel move forever?

Answer [M´ath´e, Kloster 2006]: Yes!

Theorem In the wedge, Walker can get all levels.

Question: What about \(W_3^k\) through \(W_{13}^k\)?

Conjecture In the wedge \(W_3^k\), Walker can get all the levels.
Angel-Devil game

Angel-Devil Game

Angel: Move from \((x, y)\) to \((x_1, y_1)\)
if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).

Answer [M’athé, Kloster 2006]: Yes!

Theorem
In the wedge, Walker can get all levels.

Question: What about \(W_3^k\) through \(W_{13}^k\)?

Conjecture
In the wedge \(W_3^k\), Walker can get all the levels.
Angel-Devil game

Angel-Devil Game
Angel: Move from \((x, y)\) to \((x_1, y_1)\) if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).
Devil: Burn one point \((x, y)\).
Angel-Devil game

Angel-Devil Game
Angel: Move from \((x, y)\) to \((x_1, y_1)\) if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).
Devil: Burn one point \((x, y)\).
Angel-Devil game

Angel-Devil Game
Angel: Move from \((x, y)\) to \((x_1, y_1)\)
if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).
Devil: Burn one point \((x, y)\).

Question [Conway 1982]: Can the angel move forever?
Answer [M’athé, Kloster 2006]: Yes!

Theorem
In the wedge, Walker can get all levels.

Question: What about \(W_3^k\) through \(W_{13}^k\)?

Conjecture
In the wedge \(W_3^k\), Walker can get all the levels.
Angel-Devil game

Angel-Devil Game

Angel: Move from \((x, y)\) to \((x_1, y_1)\) if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).

Devil: Burn one point \((x, y)\).

Question [Conway 1982]: Can the angel move forever?
Answer [M´athé, Kloster 2006]: Yes!

Theorem
In the wedge, Walker can get all levels.

Question: What about \(W_3^k\) through \(W_{13}^k\)?

Conjecture
In the wedge \(W_3^k\), Walker can get all the levels.
Angel-Devil game

Angel-Devil Game

Angel: Move from \((x, y)\) to \((x_1, y_1)\) if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).

Devil: Burn one point \((x, y)\).

Question [Conway 1982]: Can the angel move forever?

Answer [M´athé, Kloster 2006]: Yes!

Theorem: In the wedge, Walker can get all levels.

Question: What about \(W_{3k}\) through \(W_{13k}\)?

Conjecture: In the wedge \(W_{3k}\), Walker can get all the levels.
Angel-Devil game

Angel-Devil Game

Angel: Move from \((x, y)\) to \((x_1, y_1)\)
if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).

Devil: Burn one point \((x, y)\).
Angel-Devil game

Angel-Devil Game

Angel: Move from \((x, y)\) to \((x_1, y_1)\)
if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).

Devil: Burn one point \((x, y)\).

Question [Conway 1982]: Can the angel move forever?
Answer [M´ath´e, Kloster 2006]: Yes!

Theorem
In the wedge, Walker can get all levels.

Question: What about \(W_3^k\) through \(W_{13}^k\)?

Conjecture
In the wedge \(W_3^k\), Walker can get all the levels.
Angel-Devil game

Angel-Devil Game

Angel: Move from \((x, y)\) to \((x_1, y_1)\) if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).

Devil: Burn one point \((x, y)\).

Question [Conway 1982]: Can the angel move forever?

Answer [M´ath´e, Kloster 2006]: Yes!

Theorem
In the wedge, Walker can get all levels.

Question: What about \(W_{3k}\) through \(W_{13k}\)?

Conjecture
In the wedge \(W_{3k}\), Walker can get all the levels.
Angel-Devil game

Angel-Devil Game

Angel: Move from \((x, y)\) to \((x_1, y_1)\) if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).

Devil: Burn one point \((x, y)\).

Question [Conway 1982]:
Can the angel move forever?

Answer [Máthé, Kloster 2006]: Yes!
Angel-Devil game

Angel-Devil Game

Angel: Move from \((x, y)\) to \((x_1, y_1)\) if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).

Devil: Burn one point \((x, y)\).

Question [Conway 1982]: Can the angel move forever?

Answer [Máthé, Kloster 2006]: Yes!

Theorem

In the wedge \(W_{24}^k\), *Walker can get all levels.*
Angel-Devil game

Angel-Devil Game

Angel: Move from \((x, y)\) to \((x_1, y_1)\) if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).

Devil: Burn one point \((x, y)\).

Question [Conway 1982]:
Can the angel move forever?

Answer [Máthé, Kloster 2006]: Yes!

Theorem

In the wedge \(W_k^{24}\), Walker can get all levels.
Angel-Devil game

Angel-Devil Game
Angel: Move from \((x, y)\) to \((x_1, y_1)\) if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).
Devil: Burn one point \((x, y)\).

Question [Conway 1982]: Can the angel move forever?

Answer [Máthé, Kloster 2006]: Yes!

Theorem
In the wedge \(W_{14}^{14}\), Walker can get all levels.
Angel-Devil game

Angel-Devil Game

Angel: Move from \((x, y)\) to \((x_1, y_1)\) if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).

Devil: Burn one point \((x, y)\).

Question [Conway 1982]: Can the angel move forever?

Answer [Máthé, Kloster 2006]: Yes!

Theorem

In the wedge \(W_k^{14}\), Walker can get all levels.

Question: What about \(W_k^3\) through \(W_k^{13}\)?
Angel-Devil game

Angel-Devil Game

Angel: Move from \((x, y)\) to \((x_1, y_1)\) if \(|x - x_1| \leq 2\) and \(|y - y_1| \leq 2\).

Devil: Burn one point \((x, y)\).

Question [Conway 1982]: Can the angel move forever?

Answer [Máthé, Kloster 2006]: Yes!

Theorem

In the wedge \(W_k^{14}\), Walker can get all levels.

Question: What about \(W_k^3\) through \(W_k^{13}\)?

Conjecture

In the wedge \(W_k^3\), Walker can get all the levels.