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Abstract

This thesis studies both several extremal problems abdatiog of graphs and a labeling problem on
graphs.

We consider colorings of graphs that are either embeddahlifeeiplane or have low maximum degree.
We consider three problems: coloring the vertices of a geapthat no adjacent vertices receive the same
color, coloring the edges of a graph so that no adjacent egge#/e the same color, and coloring the edges
of a graph so that neither adjacent edges nor edges at distaeaeceive the same color. We use the model
where colors on vertices must be chosen from assigned figts@nsider the minimum size of lists needed
to guarantee the existence of a proper coloring.

More precisely, dist assignment function assigns to each vertex a list of colors.pfoper L-coloring
is a proper coloring such that each vertex receives a cabom fts list. A graph ik-list-colorableif it has
anL-coloring for every list assignmehtthat assigns each vertex a list of skzelhelist chromatic number
X1 (G) of a graphG is the minimumk such thatG is k-list-colorable. We also call the list chromatic number
the choice numbebf the graph. If a graph ik-list-colorable, we call ik-choosable

The elementof a graph are its vertices and edges.prper total coloringof a graph is a coloring
of the elements so that no adjacent elements and no incitEmests receive the same color. Tioéal
list-chromatic numbers the minimum list size that guarantees the existence obpeaprtotal coloring. We
give a linear-time algorithm to find a proper total colorimgrh lists of size A(G) — 1. WhenA(G) =4,
our algorithm improves the best known upper bound. WAEB) € {5,6} our algorithm matches the best
known upper bound and runs faster than the best previousihyhkmalgorithm.

The squareof a graphG is the graph obtained fror® by adding the edgey whenever the distance
betweenx andy in G is 2. We study the list chromatic numbers of squares of subaaphs; a graph is
subcubicif it has maximum degree at most 3. We show that the squareeny esubcubic graph other than
the Petersen graph is 8-list-colorable. For planar graptis large girth, we use the discharging method
to improve this upper bound. We show that the square of a pkutacubic graph with girth at least 7 is
7-list-colorable. We show that the square of a planar subayiaph with girth at least 9 is 6-list-colorable.
In each case we give linear-time algorithms to constructtherings from the assigned lists.

The strong edge-chromatic numbef a graph is the minimum number of colors needed to color the
edges so that no two edges on a path of length at most 3 reteiv&ame color. Erdés and Nesetril con-
jectured that whe(G) = 4, the strong edge-chromatic number is at most 20; they gaanstruction
requiring 20 colors. The previous upper bound was 23, duestald We improve this upper bound to 22.

We study the list edge-chromatic numbers of planar graphgirapgh isk-edge-choosabléf its line
graphL(G) is k-choosable. We call the choice number of the line graf®) the edge choice numbeof



G. A kiteis the union of two 3-cycles that share an edge. We show tlapianar graph has no kite (as
a subgraph) and has maximum degree at least 9, then its ¢ist@domatic number equals its maximum
degree. We also show that if a planar graph has no kite (asguagui) and has maximum degree at least 6,
then the list edge-chromatic number is at most one more tlmmeximum degree; the optimal bound is at
most one less than this.

A graph is(r,s)-choosableif whenever each vertex is given a list otolors, we can choose a sublist
of s colors for each vertex so that adjacent vertices receiveidissublists. A graph isG (r,s)-edge-
choosableif its line graphL(G) is (r,s)-choosable. Mohar [38] conjectured that all 3-regular bsapre
(7,2)-edge-choosable. If true, this result would be tight. Wewsltioat all 3-edge-colorable graphs are
(7,2)-edge-choosable; in addition, we show that many snark$7a®-edge-choosable. In each case, we
give a linear-time algorithm to construct the coloring frgmen lists.

The sum choice numbeof a graph is the minimum total weight of a positive integeluation of its
vertices such that the graphliscolorable for any list assignmehtthat the size of the list for each vertex
is the integer value given to that vertex. We generalizeitlga to thek-sum choice numbgwhich is the
minimum sum of list sizes such that we can choksmlors for each vertex (from its list) so that the sets
of colors assigned to adjacent vertices are disjoint. Werdenhe the 2-sum choice number of paths and
cycles; additionally we determine all list-size assigntreinctions that achieve the 2-sum choice number
for paths and cycles.

A labeling of a graph is a bijective function from the sgt,2,...,|E|} onto the edges of the graph.
The sum of the labels on edges incident to a vertex v issémex-sunmatv. A labeling isantimagicif the
vertex-sums are distinct. Ringel [20] conjectured thatyeennected graph other th&a has an antimagic
labeling. We prove that every regular bipartite graph othan a matching has an antimagic labeling.



Acknowledgements

Thanks to Oleg Borodin, who taught a lecture course on thehdiging method at UIUC during spring
2005. Long after | forget the results in this thesis, | willgrateful for those timely words.

Thanks to Lenny Pitt. It has been entertaining and eductiwatching you teach; | have also enjoyed
our discussions about pedagogy.

Thanks to Sasha Kostochka. You have accomplished so mudieiarea of coloring problems, in
particular, using discharging. It has been an honor to get feedback on my thesis work.

Thanks to Jeff Erickson. | will always remember taking cissérom you fondly. It was you who
(perhaps unwittingly) lured me away to the dark side thatoisputer science. You are one of the best
lecturers and writers | have met and I've learned so much fsomdiscussions about the right way to do
things.

Thanks to Doug West. Without you, | would not be here. I'verdetisaid that it's important to choose
an advisor who is much like you want to become. In that endelaxe®succeeded admirably. Your passion
is so evident in your lectures. It was those lectures thatinoad me | wanted to be a combinatorist. Only
later did | fully appreciate how clearly you communicatés & pleasure to learn from one of the greats. It's
been a joy doing research together.

Thanks to my family. Dad and Mom have been an ever-presemosupWithout you in my life, |
wouldn’t be here. And I'm sure the journey wouldn’t have besrrich.

Thanks to my fellow grad students, in both the math and coenpgtience departments. The com-
binatorics group here is amazingly active and fertile. Onelgently have | realized how rare this is. In
particular, thanks to Erin Chambers, David Bunde, Kevinadd, Tracy Grauman, and especially Nitish
Korula. You've endured so many of my talks (often more thaocednyou've edited and re-edited my pa-
pers; we've done research together; you've shaped my a@r@bout how to write and how to teach. You've
made the office a home. Thank you.

Thanks most of all to my Lord and Savior, Jesus Christ. Yourayeeason.



Table of Contents

Chapter
1 Introduction . . . . . . . . . e 1
1.1 Coloring Squaresof Graphs. . . . . . . . . . . . . . . e e 1
1.2 Discharging . . . . . . . . e e e e e 2
1.3 (a/b)-choosability . . . . . . .. ... . . e 3
1.4 Antimagic Labelings . . . . . . . . . . e e e 4
1.5 Basicdefinitions forgraphs . . . . . . . . ... e e e 5
2 Coloring Squaresof Graphs . . . . . . . . .. 8
2.1 Strong Edge-Coloring . . . . . . . . .. e e e e e 9
2.1.1 A4-regular graphs with girthfour . . . . .. .. .. ... ... ... ....... 11
2.1.2 A4-regular graphs with girthfive . . . . . . . .. ... ... ... ... ...... 13
2.2 List-colorings of Total Graphs . . . . . . . . . . . .. . .. .. .. 15
2.3 List-coloring the Square of a Subcubic Graph . . . . . . . ...... . ... ... ... 20
23.1 Mainresults. . . . . . e 22
2.3.2 Efficient Algorithms . . . . . . . . . e e 30
2.3.3 FutureWork . . . . . . . e 30
3 Discharging . . . . . . . e 32
3.1 Planar graphs with no triangles sharinganedge . . . . ... ... ... .. ...... 33
3.1.1 Structurallemmas . . . . . . . e 34
3.1.2 Application to Edge-Choosability . . . .. ... ... ... ... .. ...... 39
3.1.3 Planargraphswith(G) =5 . . . . . . . . . . . .. 41
3.2 Planar subcubic graphs with large girth . . . . . . . . . . . ... . ... .. . L. 47
3.2.1 Planar subcubic graphs with girthatleast7 . .. ... ... .. ........ 48
3.2.2 Planar subcubic graphs with girthatleast9 . .. ... ... .. ........ 49
3.2.3 Efficient Algorithms . . . . .. .. .. ... .. . e 52
4 (7,2)-edge-choosability of cubicgraphs. . . . . . . . . ... o 54
41 TheKeyLemma . .. .. . . . . . . . i e e 55
4.2 2-sum-chromatic number . . . . . . ... 57

Vi



5 Antimagic Labeling . . . . . . . ..
5.1 Regular bipartite graphs withodddegree . . . . . . . . . . . . . o oL
5.2 Regular bipartite graphs with evendegree . . . . . . . . . ¢ . o o .

Bibliography . . . . . .

Vii



Chapter 1

Introduction

Graph coloring is a model for partitioning problems. We stegartition a set of objects into subsets that
avoid violating constraints. We define a graph whose vextare the objects; two vertices are joined by an
edge if they are not allowed to be in the same set in the fartitive name the sets of the partition by colors;
usually the colors are positive integers. An alternativeapimg is that a coloring of a graph is a function
that assigns labels (colors) to the vertices.

Most often, we want to minimize the number of labels in a dalpthat satisfies the constraints, where
constraints forbid vertices from having the same label.id#fans of the problem introduce more general
constraints, restrictions on the colorings that may beidensd, or other measures of the coloring to opti-
mize.

1.1 Coloring Squares of Graphs

Thesquare G of a graphG is formed fromG by adding the edgey whenever the distance between vertices
xandyin Gis 2. The line graph.(G) of a graphG has as its vertices the edges@ftwo vertices ofL(G)
are adjacent if their corresponding edges share an endploir€hapters 3 and 4, we study problems of
coloring the edges of a graph. This is equivalent to colotiiregvertices of its line graph. Discussion of such
problems is usually simpler in the language of coloring edafehe original graph. However, to understand
the relationship of the different problems we consider is thesis, it is useful to view these problems as
coloring the vertices of the line graph.

We begin Chapter 2 with the problem of coloring the square liieagraph. The value of(L(G)?)
is bounded in terms of the maximum deg®€G) of G. Let ox = maxs. A(G):kx(L(G)Z). Erdos and
Nesetril gave a construction that requi%% colors wherk is even andﬁﬁ colors wherk is odd; they
conjectured that this igy. It is easy to verify this conjecture fér< 2. Andersen [2] proved the conjecture
for k= 3; 03 = 10. Fork = 4, the conjectured value is 20. Horak [27] gave the previast bpper bound:
04 < 23. We prove that, < 22.

The total graphrl (G) of a graphG has as its vertices the “elements” (vertices and edge§); ¢fvo
vertices ofT (G) are joined by an edge if the corresponding elements aredntat adjacent. The incidence
graph is bipartite, with the vertices @& forming one part and the edges @fforming the other part; two



vertices of the incidence graph are adjacent if the corredipg elements are incident & The total graph
is the square of the incidence graph.

A list assignments a functionL that assigns to each vertex a list of colors (usually pasititegers).
Given a list assignmertt, a graphG is L-colorable ifG has a proper coloring such that each vertex receives
a color from its assigned list. A graph kschoosable if it isL-colorable for every functioh that assigns
to each vertex a list of sizk Thelist chromatic numbepor choosabilityof a graphG, denotedy, (G), is
the minimumk such thats is k-choosable. Analogously, we defilist edge-assignment-edge-colorable
k-edge-choosab)dist edge-chromatic numbgandedge-choosability

In Section 2.2, we consider the problem of list-coloringtafraphs. In particular, we seek an algorithm
that works well for small maximum degree. F®dG) = 3, Juvan, Mohar, and Skrekovski [32] proved that
X (T(G)) < 5. ForA(G) > 3, the previous best upper bound wWg#(G)] + 2, due to Borodin, Kostochka,
and Woodall [5]. We give an algorithm that produces a propdoring from lists of size 2(G) — 1. When
A(G) = 4, this improves the bound of Borodin, Kostochka, and Wdod&henA(G) € {5,6} our bound
matches theirs; however, our algorithm is simpler and radiméar time, unlike theirs.

A graph issubcubicif its maximum degree is at most three. The third problem welysin Chapter 2
is list-coloring the square of a subcubic graph. Recenthgriiassen [41] proved that the chromatic number
of the square of a planar subcubic graph is at most 7. In 200&td€hka and Woodall [35] conjectured
thaty, (G?) = x(G?) for every graphG. We begin by considering the square of every subcubic graph (
necessarily planar). The square of the Petersen gragfy,isvhich requires 10 colors. However, we show
thaty, (G?) < 8 for every subcubic grapB that is not the Petersen graph.

Our technique is to choose colors for almost all of the vestigreedily. The maximum degree in the
square of a subcubic graph can be as large as 9. We give aingrétewhich each vertex (except for a
few at the end of the ordering) preceeds at least two of itghtairs inG2. When each vertex having at
most 7 earlier neighbors, the greedy coloring uses at masib8sc(adding 1 for the vertex itself). The main
difficulty in proving the theorem is showing that we can cdtwe last few vertices in the ordering (those that
don't preceed at least two of their neighborsGf).

We also consider list-coloring the square of a subcubicgslgnaph with large girth. However, because
those results use a different method, we defer them to Chapte

1.2 Discharging

In Chapter 3, we prove results for two different coloring lgeams; all of our results use the “discharging
method”. The discharging method is a technique for provtngcsural properties of a graph in the presence
of a global complexity bound such as a bound on the averagexvdegree. Many such results guarantee
that every graph in such a class contains at least one of disdeseet of subgraphs with small vertex degrees.

For example, a well-known lemma of Wernicke states: If th@imum degree in a planar graph is
5, then the graph contains an edgesuch thatd(u) + d(v) < 11. Borodin strengthened this result to
prove that: If the minimum degree in a planar graph is 5, thengraph contains a triangle/w such that
d(u) +d(v) +d(w) < 17. The presence of these subgraphs with small degree-sarthea be used in
inductive proofs of coloring results. The discharging noetthas been particularly successful when applied
to planar graphs, where Euler's Formula yields a naturahtian the average vertex degree.



In 1964, Vizing [44, 45, 19] proved that every gra@hsatisfiesA(G) < x'(G) < A(G) +1. The most
famous conjecture in list-coloring is the List Coloring Qecture [4], which asserts that every gra@h
satisfiesy|(G) = X'(G). Haggkvist and Janssen [22] proved tRHG) < A(G) +cA(G)%3logA(G), where
cis a constant greater than 0. Kostochka [34] proved thak dyales inG are long enough relative & G),
theny|(G) <A(G) + 1.

There has been even more substantial progress on provingigh€oloring Conjecture for planar
graphs. In 1990, Borodin [6] proved it for planar graphs witlaximum degree at least 14. In 1997,
Borodin, Kostochka, and Woodall [5] proved it for planarga with maximum degree at least 12. We con-
sider planar graphs that have smaller maximum degree and @dain subgraphs. Aite is two 3-cycles
sharing an edge. We show that the List Coloring Conjectuteiesfor planar graphs that have no kites and
have maximum degree at least 9.

We also consider the weaker conjecture §jaG) < A(G) + 1 for every graplG; this is called Vizing's
Conjecture. We prove Vizing's Conjecture for planar grafitet have no kites and have maximum degree
at least 6. This improves results of Zhang and Wu and of Wadd.#m Zhang and Wu [55] showed that
Vizing's Conijecture is true for a planar gra@if A(G) > 6 andG has no 4-cycle. Wang and Lih [47]
showed that Vizing’s Conjecture holds for a planar grépifi A(G) > 6 andG has no two triangles sharing
a vertex. In each case, the set of subgraphs that we forbide(gik a strict subset of the set of subgraphs
forbidden in the previous results. Hence, our results aonger.

In Chapter 3, we further study the problem of list-coloritg tsquare of a subcubic graph; here we
consider planar subcubic graphs with large girth. We shat ithG is subcubic, planar, and has girth at
least 7, therx; (G?) < 7. We also show that i is subcubic, planar, and has girth at least 9, t€¢62) < 6.

1.3 (a,b)-choosability

In the paper in which Erdos, Rubin, and Taylor introducedodability, they also introduce@, b)-choosability.
A graph is(a,b)-choosableif whenever each vertex is assigned a listaafolors, we can choose a subset
of b colors for each vertex from its assigned list so that adjagertices receive disjoint subsets. Thus,
k-choosability is exactlyk, 1)-choosability.

In Chapter 4, we study7, 2)-edge-choosability of 3-regular graphs. A grapls (a, b)-edge-choosable
if its line graphL(G) is (a,b)-choosable. For a fixed grahand positive intege, it is natural to ask what
the minimuma is such that is (a, b)-choosable.

In a Problem of the Month (a section of his website where hguieatly posts open problems), Bojan
Mohar [38] asked for the minimumsuch that every 3-regular graph(is2)-edge-choosable. He conjec-
tured that every 3-regular graph is (7,2)-edge-choosatikenot difficult to show that every 3-regular graph
is (8,2)-edge-choosable, using a generalization of Bfobkeorem. Tuza and Voigt [43] proved that: If
a connected grapB is not complete and not an odd cycle, th@ns (A(G)m, m)-choosable for alin > 1.
Since the line graph of a 3-regular graph has maximum degregesdmplies that every 3-regular graph is
(8,2)-edge-choosable.

It is also not difficult to construct a 3-regular graph thahet (6,2)-edge-choosable. Foi@by sub-
dividing an edge oK4. We see by inspection th&t is not (6,2)-edge-colorable and thus is not (6,2)-



edge-choosable. Hence, any 3-regular graph that conaiasot (6,2)-edge-choosable. As a result, the
conjecture that every 3-regular graph is (7,2)-edge-ciidesis sharp if true.

We show that every 3-edge-colorable graph is (7,2)-edgeszdble. We also show that many 3-regular
graphs that are not 3-edge-colorable are §ilR)-edge-choosable. Our main tool is the following lemma.

Lemmal.l. LetA={a,...,a} be a matching anB = {by, ... ,bx} be an edge set such thrts incident
toa anda; 1 but not to any other edge M (the subscript indices are viewed modyjo Let the list assigned
to edgee bel (e), with all the lists having the same size. It is possible toasgoone color for each edge of
A from its list so that; anda;1 together use at most one color frauth;).

By careful repeated application of this lemma, we reduceptidblem to choosing two colors for each
edge on a collection of vertex-disjoint cycles; each edgée$e cycles has either 3, 4, or 5 remaining
colors available. Coloring a graph from vertex lists of umagsize has been studied by Isaak [29, 30],
Heinold [25] and Berliner, Bostelmann, Brualdi, and De§@lt In comparing various functions for the list
sizes, they seek to minimize the sum of the list sizes for ation wherel-colorings are guaranteed, calling
the minimum value of the sum tleim-choice numbeaf the graph. We are not aware of any past work on
the more general version of the problem, where we want tosghawre than one color for each vertex.

A list size function ffor a graph assigns to each vertex a list size. A graphf i&)-choosableif
whenever each vertexis assigned a list of siz&(v), we can choosk colors for each vertex from its list so
that adjacent vertices receive disjoint sets of colors. \Weapply results on( f,k)-edge-choosability to the
problem of(7,2)-edge-choosability of 3-regular graphs. In particular,stedy the( f, 2)-edge-choosabilty
of paths and cycles. Because the line graph of a cycle (pathlso a cycle (path), we simply study the
(f,2)-choosability of cycles and paths.

We show that for every cycl€, there exists a list size functiofi with sum 4 such thaiC, is (f,2)-
choosable. Because of the application to the probleli7 &)-edge-choosability, we are particularly inter-
ested in list size function$ with all sizes in{3,4,5}. We determine all such list size functions with sum 4
such thaC, is (f,2)-edge-choosable.

1.4 Antimagic Labelings

Antimagic labelings were introduced by Ringel in 1990lakeling of a graphG is a bijection fromE(G)
to{1,...,|E(G)|}. For afixed labeling, theertex-sumatv is the sum of the labels used on edges incident
to vertexv. A labeling isantimagicif the vertex-sums are distinct. We call a gragftimagicif it has an
antimagic labeling.

In 1990, Ringel [20] conjectured that every connected grafbter thanK, is antimagic. The most
significant progress on this problem is a result of Alon efHl.which states the existence of a constant
such that if the minimum degree in arvertex graph is at leasgiogn, then the graph is antimagic. In this
paper, we show that every regular bipartite graph (with eegtt least 2) is antimagic. Our technique relies
heavily on the Marriage Theorem.

A 1-factor of a graph is a 1-regular spanning subgraph. The Marriageréhe [52] says that every
regular bipartite graph has a 1-factor. By induction, we gartition the edges of a regular bipartite graph



into disjoint 1-factors. Throughout Chapter 5, we referhe two parts of the bipartite graph AsandB,
with each part of size.

When two vertices have the same vertex-sum under a givelirighere say that the verticesonflict
We view the process of constructing an antimagic labelingesslving the “potential conflict” for each pair
of vertices. When we have labeled a subset of the edges, Wheaum at each vertexgartial sum Our
general approach is to label all but a single 1-factor sottiapartial sums i are @ mod 3), while the
partial sums irB are not congruent to(@nod 3. We label the final 1-factor with labels that are 0 modulo 3
so that we resolve all potential conflicts withdnand withinB.

1.5 Basic definitions for graphs

A graph Gconsists of a sl (G) of verticesand a seE(G) of edges such that each edge is an unordered
pair of vertices. We call the pair of vertices that make up @geetheendpointsof that edge; if verticesi
andv are the endpoints of an edgewe say thati andv areadjacentand that they are each incidentdo
Edges arencidentif they have a common endpoint.

A multigraphis more general than a graph, allowing the edges to form aisetubf vertex pairs and
allowing edges whose endpoints are not distinct. Edgesbavie same pair of endpoints araultiple
edges An edge whose endpoints are not distinct Ie@. A graph in the model defined above has neither
loops nor multiple edges; in the context of a discussion oftigraphs, we may emphasize the absence of
loops and multiple edges by calling a grapbimplegraph.

Thedegreeof a vertexv, denotedl(v), is the number of edges that have the vertex as an endpotspex
that a loop counts twice toward the degree of its endpoirdvefy vertex has degréethe graph ik-regular
(or simplyregular). A 3-regular graph isubic a graph with maximum degree 3sabcubic We useA\(G)
andd(G) to denote the maximum and minimum degree of vertices in ahggapespectively.

A subgraph Hof a graphG is a graphH such thatv(H) C V(G) andE(H) C E(G). An induced
subgraphH of G is a maximal subgraph with the vertex $&H ). The subgraphs formed by removing the
the edge sdE; and the vertex sat; are denoted by — E; andG — V4, respectively. IfE; is a single edge
orVy is a single vertex, we simply writ€ — e or G — v, respectively.

Verticesu andv areconnectedf there exists a list of edges such thais an endpoint of the first edge,
v is an endpoint of the last edge, and each successive paige§ethare a common endpoint. Tdistance
betweeru andv is the size of the smallest such list of edges. A graph is adeddf every two vertices in
it are connected. Aomponentf a graph is a maximal connected subgraph.

When we draw a graph, we represent each vertex as a point eime@ge as a line between its endpoints.
If we can draw a grapf® in the plane so that none of its edges intersect (exceptiacibramon endpoints),
then we say that grap@ is planar, we call such a drawing planar embeddingWe call a particular planar
embedding of a planar graphpéane graph Thefacesof a plane graph are the maximal connected regions
of the plane not containing a vertex or a point along an eddgkeoémbedding.

We useV (G) andE(G) to denote the vertex set and edge set of a gfaystor a plane grapfs, we use
F(G) to denote the set of faces arido denote|F(G)|. Thelengthof a face is the number of edges on
the boundary of the face; if an edge appears twice along thedawy of a face, then the edge counts twice
toward the length of the face. A face of length three tsangle; if every face of a planar embedding is a



triangle, then the embedding igpéanar triangulation A k-vertex is a vertex of degrde ak-face is a face
of lengthk.

The square G of a graphG is formed fromG by adding the edg&y whenever the distance between
verticesx andy in G is 2. ThePetersen graplhas as its vertices the 2-element subsets of a 5-element set;
two vertices are adjacent if the corresponding 2-elemelnsets are disjoint. Two non-adjacent vertices
correspond to pairs whose union has three elements, ane lieeg have a unique common neighbor.
Therefore, the square of the Petersen graphidsIn fact, the Petersen graph is the only cubic grgm@uch
thatG? is a complete graph on 10 vertices.

Theline graph Hof a graphG has as its vertices the edge sei@ftwo vertices are adjacent i if
their corresponding edges share an endpoi@.ifmhe elementf a graph are its edges and vertices. The
total graph T(G) of a graphG has as its vertices the elements@fvertices ofT (G) are adjacent if their
corresponding elements are incidentin

A graph is apath if its vertices can be ordered so that vertices are adjaceattly when they are
successive. A graph is@cleif its vertices can be placed on a circle so that vertices dj&cant exactly
when they are successive on the circle. Tdrgthsof paths and cycles are the sizes of their edge sets. If a
graph contains some cycle, thendgisth is the minimum length of its cycles.

A graph onn vertices is a&omplete graphdenoted, when it has vertices, if the vertices are pairwise
adjacent. A set of pairwise adjacent vertices in a graphcligjae a set of pairwise nonadjacent vertices is
anindependent set

A coloring of a graphG is an assignment of colors (often denoted by positive imgde the vertices
of G. A proper coloringis a coloring such that Similarly, aedge-coloringof G is a coloring of its line
graphL(G), and aproper edge-coloringf G is a proper coloring oE(G); equivalently, we coloE(G) so
that incident edges receive distinct colorspartial [edge]-coloringof G is a proper [edge]-coloring of a
subgraph ofG.

A k-coloringis a coloring that usdscolors; if a graph has a propkicoloring, then it ik-colorable The
chromatic numbeof a graphG, denotedy(G), is the minimumk such thaG is k-colorable. Analagously,
we define edge-chromatic numb&redge-coloring, andé-edge-colorable; we denote the edge-chromatic
number ofG by x'(G).

Euler's Formularelates the numbers of faces, edges, and vertices in a dedriane graphf —e+n=
2; this formula can easily be proved by induction on the surthefnumbers of vertices and edges. Euler’s
Formula is the basis of the discharging arguments that vy stuChapter 3. It also enables us to prove an
upper bound on the average degree of a planar graph in teritssgirth. The maximum average degree of
a graphG, denotedmad G) is the maximum taken over all subgrapHsof the average degree bf. We
often color a graph recursively; if our proof uses a boundhenaiverage degree & then we need the same
bound for all subgraphs @3.

Lemma 1.2. If G is a planar graph with girth at leagtthenmadG) < 22

g-2
Proof: Every subgraph o6 is a planar graph with girth at leagt hence, it suffices to prove this upper
bound for the average degree of the full graph Since the sum of the degrees counts each edge twice,
the average degree equals/@ Also, summing the lengths of the faces yields>2 fg, so f < 2e/g.



Substituting forf in Euler's Formula yielde=n—-2+ f < n—2+ 2e/g, and solving fore yields e <
(n—2)g/(g— 2). Hence the average degree is less thg(@— 2). O



Chapter 2

Coloring Squares of Graphs

The best general bound for coloring a grapkin terms of its maximum degre® G)) comes from Brooks'’
Theorem [52], which states thgtG) < A(G) + 1 and thatx(G) < A(G) unlessG is a complete graph or
an odd cycle. Erdds, Rubin, and Taylor [13] extended ttssilteto list coloring by showing thaf (G) <
A(G) + 1 and thaty; (G) < A(G) unlessG is a complete graph or an odd cycle.

In this chapter, we give algorithms for three graph colofingblems. Each problem can be viewed as
coloring (or list coloring) the squai®? of a graphG. In each case, the graf@has a special structure that
enables us to color (or list colo@? with fewer thanA(G?) colors. We will color almost all of the vertices
greedily, then color the last few vertices more carefully.€hsure that we use fewer thafG?) colors, we
will order the vertices so that at the time we greedily coloeaexv, at least two neighbors afin G2 will
be uncolored.

We begin by reserving a connected nontrivial subgrdpio color more carefully after we color all the
other vertices. For each vertext V(H), we define the distana(v,H) to be the length of the shortest path
in G fromvtoV(H). We greedily color the vertices in decreasing orded (@fH ).

Suppose that we are coloring an arbitrary verdkat has distance at least 2 frdth Let w andx be
the first two vertices after on a shortest path fromto H. Bothw andx will be uncolored, when we color
v, since they have smaller distanceHo Sincew andx are both adjacent ta in G2, at mostA(G?) — 2
neighbors ofv (in G?) are already colored when we colar A similar argument holds for vertices having
distance 1 fronH, sinceH is nontrivial. That is, inG?, v has at least two neighbors\(H). Therefore, we
use at most\(G?) — 1 colors to greedily coloG? —V (H). The main difficulty in proving these theorems
is choosing an appropriate subgragtand showing that we can extend the coloringy{t1) using at most
A(G?) — 1 colors.

Although each of the problems we consider can be viewed asigglthe squar&? of a graphG, we
usually phrase the argument as coloring the gi@much that vertices at distance 2 receive different colors;
this language allows us to highlight structural propertiethe graphG that might otherwise be obscured.



2.1 Strong Edge-Coloring

A proper edge-colorings an assignment of a color to each edge of a graph so that nedges with a
common endpoint receive the same colostiong edge-colorings a proper edge-coloring with the further
property that no two edges with the same color lie on a patlemgth three. Thetrong edge-chromatic
numberis the minimum number of colors that allow a strong edge+iidp In this section we consider the
maximum possible strong edge-chromatic number as a funofithe maximum degree of the graph. For
other variations of the problem, we refer the reader to & btievey by West [53] and a paper by Faudree,
Schelp, Gyarfas, and Tuza [15].

We useA(G) to denote the maximum degree of a graphlin the context of a particular grapgh, we
often writek to denoteA(G). In 1985, Erdds and NeSetfil gave the following condinrc Begin with a
5-cycle and expand each of two nonadjacent vertices| kt®| nonadjacent vertices, each of which inherits
all the neighbors of the original vertex; in the same wayaexpeach of the other three original vertices into
[k/2] nonadjacent vertices. This graph @é edges wherk is even and}i(Sk2 —2k+ 1) edges wherk is
odd; since it has no induced2, all edges must receive distinct colors. Erdés and Niggetijectured that
for eachk, the maximum strong-edge chromatic number of a graph A{) = k is exactly the number of
edges in their construction. (The Erdés-NeSetfil carmsion fork = 4 is shown in figure (1a). ) Chung et
al. [10] later showed that for eadtthis is the unique largest graph with no inducég 2

Andersen [2] proved the conjecture for the ckse 3. In this section, we improve the result for the case
k= 4. The best upper bound previously known was 23, proved bglH@7]; we improve this upper bound
to 22. Our proof is valid without change for multigraphs, but simplicity we phrase it in the language
of graphs. We use as colors the $&12,...,22} of integers from 1 to 22. A greedy coloring algorithm
sequentially colors the edges, using the least color thatdtiglready prohibited from use on an edge at the
time the edge is colored. Figure (1b) shows that the colodl oseeach edge is restricted by colors on at
most 24 other edges. We use the notafRde) to mean the edges that are colored before edbat restrict
the color ore.

For every edgein any edge order, we haVe(e)| < 24. Thus, for every edge order, the greedy algorithm
produces a strong edge-coloring that uses at most 25 cdiowever, there is always some order of the
edges for which the greedy algorithm uses exactly the mimmumber of colors required. Our aim in
this section is to construct an order of the edges such teagithedy algorithm uses at most 22 colors.
Throughout this section, when we use the term coloring, wamstrong edge-coloring. Each component
of G can be colored independently of other components, so we ssayree thaG is connected.

Letw be a fixed vertex of a grapB. Letd(v,w) denote the distance from vertexo w (i.e. the length
of the shortest path with endpoingsandw). The distance from an edge= uv to w, denotedd(e,w), is
the minimum of the distances fromto w and fromv to w. We say that an edge orderdempatiblewith
vertexw if e precedes; in the order only whemi(e;,w) > d(e;, w). Intuitively, we color all the edges at
distancei + 1 (farther fromw) before we color any edge at distarid@earer tov). Similarly, if we specify
a cycleC in the graph, we can define tli¢v,C) to be the length of the shortest path witas one endpoint
and the other endpoint in the 3&(C). We say an edge order is compatible w@lif e; precedes, in the
order only wherd(e;,C) > d(ez,C). Finally, letxs(G) be the minimum number of colors that allow a strong
edge-coloring ofa.



(@) (b)

Figure 2.1 (a) The Erd&s-Nesetfil construction for A(G) = 4. This graph requires 20 colors. (b) The color used on each edge eis
restricted by the colors on at most 24 other edges.

Lemma 2.1. If A(G) = 4, thenG contains a vertex such thaks(G—v) < 21 If A(G) = 4, thenG contains
a cycleC such thai’s(G —E(C)) < 21.

Proof: We first consider coloring — v, wherev € G. Greedily color the edges in an order that is compatible
with v. Suppose we are coloring edgehat is not incident tor. Let u be the first vertex not ie along a
shortest path frome to v. None of the four edges incident tchas been colored, since each edge incident to
u has shorter distance from Thus,|R(e)| < 24— 4 = 20.

To prove the case of coloring — E(C), we color the edges in an order compatible v@thirhe argument
above holds for every edge not incidentQoIf eis incident toC and |V (C)| > 4, then at least four edges
whose colors restrict the color @are edges of; so againR(e)| < 24— 4 = 20. If eis incident toC and
[V (C)| = 3, then by counting we see that the coloreds restricted by the colors on at most 23 other edges.
The three uncolored edges@fimply that|R(e)| < 23— 3= 20. O

Lemma 2.1 shows that if a graph has maximum degree 4, then nveotar nearly all edges using at
most 21 colors. In the rest of this section, we show that weat&ays finish the edge-coloring using at most
one additional color. Our main result is thatifG) = 4, thenx(G) < 22. We begin by handling the easy
cases: when the graph is not 4-regular, when the girth is at @nd when the girth is at least 6. We defer
the other cases (when the graph is 4-regular and has girt®Ytorthe later part of this section.

Lemma 2.2. Let G be a multigraph with maximum degree 4.8((G) < 4 or G has girth less than 4, then
Xs(G) <21

Proof. For any edgesincident to a vertex of degree at most 3, there are at most 20 edges that cantrestric
the colors available oa Therefore, a greedy coloring in an order compatible witlses at most 21 colors.

If G contains a 3-cycle, laf be a 3-cycle. By Lemma 2.1, we can greedily color all edgesmixthe
edges ofC using at most 21 colors. Each edgef C has at most 20 edges that restrict the color usee on
hence we can finish the coloring with at most 21 colors. d
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Lemma 2.3. If G is 4-regular and has girth at least six, théfG) < 22.

Proof: By Lemma 2.1, we can choose an arbitrary vereand greedily color all edges not incidentuo
using at most 21 colors. Now we recolor edges®,, €3, ande, (as shown in Figure 2) using color 22. Edges
€1, 6,63, andey can receive the same color since the girtksa$ at least 6. Since each edgimcident tovis
within distance 1 of each edges{ig, e, €3,€4}, at most 20 edges relevantaédave colors if1,2,...,21},

so we can finish the coloring greedily on the remaining fouyesd d

Figure 2.2 Vertex v has degree 4 and the girth of the graph is at least 6.

Lemma 2.3 proves Theorem 2.8 for 4-regular graphs with gittleast 6. In Sections 2.1.1 and 2.1.2,
we consider 4-regular graphs with girths 4 and 5, respdgtiWe find pairs of edges that can receive the
same color. In this case, even thoy&e)| > 21, because some edgesiife) do not receive distinct colors,
we ensure that at most 22 colors are used.

2.1.1 4-regular graphs with girth four

Lemma 2.1 shows that we can color nearly all edges of the guajtg 21 colors. Here we consider 4-
regular graphs of girth four. We give an edge order such tiagteedy coloring uses at most 22 colors;
in some cases we precolor four edges prior to the greedyieglove useA(e) to denote the set of colors
available on edge.

Lemma 2.4. If G is 4-regular and has girth 4, thgh(G) < 22.

Proof: Let C be a 4-cycle, with the 4 edges labeled(1 < i < 4) in cyclic order. Label the pair of
edges not on the cycle and adjacentctandc_; is asg andby; (all subscripts are mod 4). L& =
{a1,az,a3,a4,b1,b2,b3,b4}. By Lemma 2.1, we greedily color all edges except the thoserancident to
C. This uses at most 21 colors. If two edgesSshare an endpoint not @@, they form abad pair. The
girth condition implies that that every bad pair must cansfsone edge from{as,b;} and one edge from
{as,bs} (or similarly one edge frorjay, b,} and one edge frorfiay, bs}.

Case 1:If the twelve uncolored edges contain at least two bad piesy we greedily color the edges in
S. Eachg; has its color restricted by colors on at most 21 other edgeg\(si)| > 4 for all i; thus we can
finish by greedily coloring the four edges ©f

11



a C1 by

by C3 ag

Figure 2.3 A 4-cycle in a 4-regular graph.

Case 2:Suppose the uncolored edges contain exactly one bad paiexkmple, suppose edgasand
a4 share an endpoint. Call edges by, az, andbsz apack

Subcase 2.1: Suppose we can assign color 22 to two edgespEdkeNow we greedily color all edges
except the edges &. This uses at most 21 colors (Lemma 2.1). The color on eaishrestricted by the
colors on at most 22 edges. Since color 22 is used twice anhessg edges, eachsatisfiegA(c)| > 4. So
we can greedily finish the coloring.

Subcase 2.2: Suppose no pair of edges in the pack can reloeisarhe color. This implies the existence
of edges between each pair of nonadjacent edges of the pakth€se four additional edgetagonal
edges. Observe (by counting) that the color used on a dihgdga is restricted by colors on at most 21
edges. So we can color the diagonal edges last in the gredohjngo Thus we greedily color all edges
except the four edges &fand the four diagonal edges (this uses at most 21 colors).Wwwwolor the four
edges ofC (the four uncolored diagonal edges ensure there are enalmts available to color the edges of
C). Lastly, we color the four diagonal edges.

Case 3:Finally, suppose that the uncolored edges contain no bad. piai this case we will greedily
color almost all edges of the graph (Lemma 2.1), but must diitiadal work beforehand to ensure that
after greedily coloring most of the edges eactvill satisfy |A(ci)| > 4. As above, call edges, by, a3, and
bs a pack. Similarly, call edges, by, a4, andb, a pack.

Case 3.1: Suppose we can assign color 21 to two edges of okapa@ssign color 22 to two edges of
the other pack. We greedily color all edges but the four ed§€s Lemma 2.1 showed that a similar greedy
coloring used at most 21 colors; however in Lemma 2.1 nonbevétiges were precolored. We adapt that
argument to show that even in the presence of these fourlpredeedges a greedy coloring uses at most 22
colors. Lemma 2.1 argued there were at least four uncolaigdseamong those edges that restrict the color
of the edge being colored, $8(e)| < 20. The same argument applies in this case except that fossi
of the edges that was uncolored in Lemma 2.1 is now coloredcé|®(e)| < 21 (this follows from the fact
that the four uncolored edges in Lemma 2.1 were incident@cstime vertex and in the present situation
at most one precolored edge is incident to each vertex). ¢J¢he greedy coloring uses at most 22 colors.
The color used on eadh is restricted by the colors on at most 23 edges. Since colbend 22 are each
repeated among these edges, we see thatcpaalisfiegA(ci)| > 4. So we can greedily finish the coloring.

Case 3.2: Suppose we cannot assign color 21 to two edges packand assign color 22 to two edges
of the other pack. If no two edges in a pack can receive the saloe this implies the existence of edges
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between each pair of nonadjacent edges of the pack. Thews®#dron each of these four diagonal edges is
restricted by the colors on at most 21 edges. As we did aboeayreedily color all edges except the four
edges ofC and the four diagonal edges. Now we color the four edges, @ind lastly, we color the four
diagonal edges. d

2.1.2 4-regular graphs with girth five

Here we consider 4-regular graphs with girth five. As in theecaf girth four, we color nearly all the
edges by Lemma 2.1. Intuitively, if there are enough difiéelors available to be used on the remaining
uncolored edges, we should be able to complete this coltwrgjving each uncolored edge its own color.
However, if there are fewer different colors available thia® number of uncolored edges, this approach is
doomed to fail. Hall's Theorem [52] formalizes this intoiti. In the language of Hall's Theorem, we have
muncolored edges, and the getdenotes the colors available to use on edge

Theorem 2.5 (Hall's Theorem). A family of setsA1, A, ...,Am has a system of distinct representatives if
and only if the union of any of these sets contains at leastlements for alf from 1 tom.

We define gpartial coloring to be a strong edge-coloring except that some edges may lodoreat.
Suppose that we have a partial coloring, with only the edgd deft uncolored. LetA(e) be the set of
colors available to color edge Then Hall's Theorem guarantees that if we are unable to tmphe
coloring by giving each edge its own color, there exists aSsetT with |S > |UecsA(e)|. Define the
discrepancydisdS) = |§ — | UecsA(€)].

Our idea is to color the set of edges with maximum discrepati@gn argue that this coloring can be
extended to the remaining uncolored edges.

Lemma 2.6. Let T be the set of uncolored edges in a partially colored graphSlbe a subset of with
maximum discrepancy. Then a valid coloring #can be extended to a valid coloring for allDf

Proof: Assume the claim is false. Since the coloringSxfannot be extended b\ S, some set of edges
S C (T\ S has positive discrepancy (after coloriy We show that diS6SUS) > disd(S). Let R be the
set of colors available to use on at least one edg&ofS). Let Ry be the set of colors available to use on
at least one edge & Let R, be the set of colors available to use on at least one ed§eaffer the edges
of Shave been colored. L&t= disqS). Then|S = k+ |R¢| and|S| > 1+ |R,|. SinceSandS are disjoint,
we get

ISUS| =19+ S| > k+ 1+ |Ry| +|Re| > k+ R

The latter inequality holds since a color which isRi\ R; must be inR; and therefore we hav&| =
|IR{URy| < |Ry1|+ |Ro|. Hence

diso(SUS) = |SUS| - R > k= disd(S).

This contradicts the maximality of disg( Hence, any valid coloring & can be extended to a valid coloring
of T. O
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Lemma 2.7. If G is 4-regular and has girth 5, thgh(G) < 22.

Proof. Let C be a 5-cycle, with the 5 edges labelgd(1 < i < 5) in cyclic order and the pair of edges
not on the cycle and adjacent t and ¢_; is labeleda and b; (all subscripts are mod 5). L& =
{a1,a2,a3,a4,b1,bp,b3,bs}. Edgea; is at least distance 2 from at least one of edggsnd bs; for if

a; has edge to az and edges, to b then we have the 4-cyck, e, bz, as. Thus (by possibly renamirag
andbs) we can assume there is no edge between ealgasdbs.

Figure 2.4 A 5-cycle in a 4-regular graph.

By repeating the same argument, we can assume there is nbetlggen the two edges of each of the
following pairs: (a1,bs), (as,bs), (as,by), and(az,bs). Assign color 21 to edgds andcs and assign color
22 to edgess andby. Greedily color all edges except the edge€aind the edges iB. This uses at most
22 colors.

There are 11 uncolored edges; if we cannot assign a disthat © each uncolored edge, then Hall's
Theorem guarantees there exists a subset of the uncolaged @dth positive discrepancy. L8be a subset
of the uncolored edges with maximum discrepancy. By cogritie uncolored edges near each uncolored
edge, we observe thatéfis an edge o€, then|A(e)| > 8 and ifeis an edge irB then|A(e)| > 5. We can
assume thab contains some edge @, since otherwise we can greedily coB({Lemma 2.1), then extend
the coloring to the remaining uncolored edges (Lemma 2i6ge®lisS) > 0 and|A(e)| > 8 for each edge
of C, we havel§is 9, 10, or 11.

Case 1:SupposéS] is 9 or 10. Then sinc8is missing at most two uncolored edg&s;ontains at least
one of the paifay, bs), the pair(ay,bs), and the pai(as,bs). Since each edge in the pair satisfiége)| > 5
and| UecsA(e)| <9, some color is available for use on both edges of the paisigAsthe same color to
both edges. Note that each uncolored eelgeB satisfie§R(e)| < 24— 3 = 21; so we can greedily color the
remaining uncolored edges B Now if Scontains the paifa;, bs) or the pair(as, bs) then color the edges
of the 5-cycle in the ordet;,cq,Cs, Cy; if Scontains the paifay,bs) then color the edges of the 5-cycle in
the ordercy, c4,C1, Cs.

Case 2: Suppos€l§ is 11 and that no color is available on both edges of any of #ies pa;, bs),
(a2,bs), and (ag,bs) (otherwise the above argument holds). Note thdiiic;)| > 8, |A(as)| > 5, and
|A(c1) UA(as)| < | UeesA(e)] < 10, then|A(c1) NA(as)| # 0. Assign the same color i anday; call it
color x. Before colorx was assigned to; anday, it had been available on exactly one edge of each of the
three pairs. Greedily color those three edges (none of tlsescosed on these three edges is cajoMNow
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the three remaining uncolored edges B each satisfyfA(e)| > 3, so we can greedily color them. Greedily
color the three remaining edges in the ordgrc,, Cs. d

Theorem 2.8. Any graph with maximum degree 4 has a strong edge-coloritig a¢imost 22 colors.
Proof. The theorem follows immediately from Lemmas 2.2, 2.3, 204l 2.7. O

We note that it is straightforward to convert this proof toagorithm that runs in linear time. We
assume a data structure that stores all the relevant infammabout each vertex. Using breadth-first search,
we can calculate the distance classes, as well as impleraelmi@mma in linear time.

A natural question is whether it is possible to extend thesdef this section to largde. The best
bound we could hope for from the techniques of this secti@kis- 3k+ 2. It is straightforward to prove an
analog of Lemma 2.1 that gives a strong edge-coloring tifat uses B — 3k+ 1 colors except that it leaves
uncolored those edges incident to a single vertex (howdweruthor was unable to prove an analog to the
“uncolored cycle” portion of Lemma 2.1). & a vertex of degree less thanthen by the analog of Lemma
2.1,G has a strong edge-coloring that uses at mk$t-23k+ 1 colors. Using the ideas of Lemma 2.3, we
see that ifG is k-regular and has girth at least 6, thérhas a strong edge-coloring that usés$ 2 3k + 2
colors. Thus, to complete a proof for graphs with langesne must consider the case of regular graphs with
girth 3, 4, or 5.

2.2 List-colorings of Total Graphs

In this section, we study the list chromatic number of “ta@edphs”. When discussing these graphs, it is
convenient to refer to the edges and vertices of a graph ateitsents Thetotal graph T(G) of a graphG
then has as its vertices the element&pénd two vertices of (G) form an edge ifT (G) if the corresponding
elements ofs are adjacent or incident iG.

An alternative construction of the total graph starts witb gubdivision graph 85), which is formed
by replacing each edge &f with a path of length 2 having the same endpoints as the atigitige. Equiv-
alently, the subdivision graph is the incidence graph ofitkc@ence relation between vertices and edges in
G. That s, it is a bipartite graph with partite s&t$G) andE(G), with v € V(G) adjacent tee € E(G) in
S(G) if vis an endpoint oéin G. Note thatv (T(G)) =V (S(G)). In fact, the total graph is the square of the
subdivision graph.

In most coloring problems, arguments for connected graphsuttigraphs apply to each component of
a disconnected graph or multigraph, so when studying uppends on chromatic parameters for a family,
it suffices to restrict our attention to connected membethefamily.

Recall that the list chromatic number of a graph ichsosability and thaty; (H) < k is the meaning of
k-choosablelf a total graphT (G) is k-choosable, then we say thatis totally-k-choosable

In most cases, our algorithm will greedily color all but a fedges and vertices &; we generally call
this uncolored subgrapH. This and the requirement of coloring the “elements” of gobranotivate the
following definition.

For a graphG and a subgraphl, we abuse notation by writinG \ H to denote the set of elements®f
that are not elements &f; that is, the sefV(G) —V(H)) U (E(G) —E(H).
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For example, an edgev may be present i\ H even if one or both of the verticasandv are not
present. When we produce a “total” coloring f8f\ H, what we are actually doing is presenting a proper
coloring for an induced subgraph ©{G), the subgraph obtained by deleting the vertice$ @) that are
elements oH. Thus it would be a bit easier to be completely precise witmieology by discussing the
problem in the language f (T (G)) or i (S(G)?), but we prefer to stick with the language of vertices and
edges irnG, because this is the source of the problem and becauseegeaticl edges @ behave differently
when we talk about bounds in terms&(fG).

Juvan, Mohar, andkrekovski [32] showed that every graph with maximum deges totally-5-
choosable. Skulrattanakulchai and Gabow [40] used theeisdo show that in this case a proper total
coloring can be chosen from lists of size 5 in time that isdmim the number of vertices @&. We ex-
tend these ideas further, providing an algorithm whé6) > 3 that constructively chooses a proper total
coloring from lists of size &2(G) — 1 in linear time.

The best previous upper bound on the total choosabilit\{@) > 3 was| 3A(G) + 2], by Borodin et
al. [6]. WhenA(G) =4, our result improves the upper bound. W) € {3,5,6}, our algorithm matches
the best known bound. However, our algorithm is signifigasiimpler and runs in linear time, unlike the
algorithm of Borodin et al.

In Lemma 2.9, we greedily choose a total coloring for almdsekements ofG, from lists of size
2A(G) — 1. The remainder of the section is devoted to extending theing to the remaining elements of
G.

Lemma 2.9. If C is a cycle inG, thenG \ E(C) is totally-2A(G) — 1)-choosable. IG contains a vertex
withd(v) < A(G), orG contains an edge with multiplicity at least 3, th@iis totally-@A(G) — 1)-choosable.

Proof: Letk=A(G). Colors must be chosen so that elements adjace®(Gi¥ have distinct colors. Given
a target seRC V(S(G)), for x e V(S(G)) we definef(x) to be the distance fromto Rin §G), and we
choose colors for all elements 6f\ Rin decreasing order df.

The idea is to reackhaving previously colored fewer neighborsxih S(G)? than the number of colors
that are in the list available to Every element o¥ (S(G)) has at mostRneighbors ir§(G)? (a vertex ofG
can havek neighbors andt incident edges; an edge @fhas two incident vertices and up tk2 2 incident
edges).

For this reason, R+ 1 is a trivial upper bound oy (T(G)). To improve the bound tok2- 1, it suffices
to reserve two neighbors to be colored later. When we cgltite other vertices along a shortest path from
x to Rare not yet colored.

If f(x) > 2, then a shortest path ®has at least two elements afterand hence a list of sizek2- 1
suffices ai. Whenf(x) = 1, it suffices forx to have at least two neighbors i

Now consideiR = C. We havef(x) = 1 precisely wherx s a vertex ofC, andx has two neighbors in
E(C), as desired.

For the second statement, Rt= {v}, wherev is a vertex ofG with degree less thak or is a vertex
incident to an edge with multiplicity at least 3. We must ddas each edge incident tov (that is, those
with f(x) = 1) and alsov itself (f (v) = 0).
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If ds(v) < k, then the neighborhood & G)? of an incident edge has size at mokt-21, with v uncol-
ored, so the list of sizek2- 1 suffices. Furthermore, the neighborhoodsdfas size at mostk2- 2, so we
can choose a color farat the end.

Whenv is incident to a multiple edge with at least three copies, aa@éd these three edges as the last to
color beforev. We continue to have two uncolored neighbors until the lapyf the multiple edge. Since
the other copies are incident to it at both ends, it has at giost2 neighbors. Similarly, the vertexhas at
mostk — 2 neighbors irG and hence at mosk2- 2 in §(G)?. O

As mentioned earlier, we try to select colors greedily mguioward a remaining set elements where
special arguments will complete the coloring chosen fromlitts. LetH denote the remaining set of
uncolored edges and vertices. We abuse terminology byingfés it sometimes as a subgraph@®@fand
sometimes as a set of elements. In Lemmas 2.10 and 2.11, duahrj32] provided several choices fdr
and showed how to extend the coloringHdn each case.

For convenience, Juvan et al. defimgdfedgedo be edges with only one endpoint. We use this term to
describe an edge ¢f that has only one endpoint k. Like an edge, a halfedge needs a color; the difference
is that a halfedge il has only one endpoint iH, so it has at mogh(G) — 1 incident edges if.

Lemma 2.10. ([32]) LetH be a cycle with a halfedge attached to each vertek. isfa list assignment for
H such that

5, iftis an edge,
IL(t)| > < 4, iftisa vertex,
2, Iftis a halfedge,

thenH admits arn_-total-coloring.

We will show in Lemma 2.13 that a regular graghwith girth at least 5 contains an induced cycle
whose vertices have a system of distinct neibhbors off tleecyn this case, we will greedily color all the
elements ofs except for the cycle and the edges that match its verticdsesetneighbors. With the edges
of the matching treated as halfedges, we will apply Lemma & finish the coloring (the details appear in
Theorem 2.3.1).

The next two lemmas consider cases whsateas shorter cycles. In each case we find a small subgraph
H and greedily total-coloG \ H; Lemmas 2.11 and 2.12 extend the coloringsito

In Lemma 2.11 we refer tthick halfedges andhin halfedges. Both are halfedges as described above;
the only difference is that thick halfedges will receivedief size 3, whereas thin halfedges will receive lists
of size 2. Thick halfedges always appear in pairs; they deségghalfedges that are nonincidentHrbut
correspond to incident edges@®

Lemma 2.11. ([32]) LetH be isomorphic to one of the multigraphs in Figure 2.8. I§ a list assignment
for H such that

ift is an edge,
if t is a vertex,
if t is a thick halfedge
if t is a thin halfedge,

L=

N WS O
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Figure 2.5 (a) A double edge with each endpoint incident to a thick halfedge. (b) A 3-cycle with two vertices incident to thick
halfedges and a the third vertex incident to a thin halfedge. (c) A 4-cycle with two nonadjacent vertices incident to thick halfedges
and the other two vertices incident to thin halfedges.

thenH admits ar_-total-coloring such that the two thick halfedges receiigtintt colors.

In addition to these choices fbf that Juvan et al. used in their proof that graphs with maxirdenree 3
are totally-5-choosable, we need several additional esdic prove our generalization of their result. These
appear in the following lemma. It should be noted that theltder the double-edge here would seem to
imply the result for the double-edge in Lemma 2.11, wherdigit® on the halfedges are larger, but there the
colors on the halfedges are required to be distinct.

- A X

Figure 2.6. (a) A double edge with each endpoint incident to a thin halfedge. (b) A complete graph on 4 vertices. (c) A complete
bipartite graph with each vertex set of size 3.

Lemma 2.12. LetH beKy4, K33, or a double-edge with two incident halfedges (see Figue H.L is a list
assignment foH such that

5, iftisanedge,
IL(t)] > < 4, iftisa vertex, (2.1)
2, Iftis a halfedge,

thenH admits arn_-total-coloring.

Proof: We may assume that the given inequalities on the list sizlebvith equality; otherwise we discard
colors.

Suppose first thatl has two verticesv, v»), two edgesd;, ;) having them as endpoints, and half-edges
e; atvy; andes atvo. Since|L(v1)|+ |L(es)| > |L(e1)|, colors can be chosen foi ande, from their lists
so that at most one color is used frdrfe;). Hence we can color; andey leaving lists of sizes 2, 3,4 at
€3,V2, &, €1, respectively, and then extend the coloring in order todlesments.

ForH = K4, first greedily color the vertices in some order. Each eglgew has at least three colors in
its remaining listL'(e), since each edge lost at most one color to each endpoint. ¢bweot select distinct
colors from these lists, then by Hall's Theorem [52] on syseof distinct representatives there is a Set
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of edges inH such that JesL'(e)| < |S. Since|L'(e)| > 3 for all e, we have|S > 4. Among any four
edges ofK, there are two nonincident edges; call therande, in S Since|l'(e;) UL/ (&)] < | < 6,
edgese; ande, have a common available colar, Use colorc one; andey. This leaves at least two colors
available on each remaining uncolored edge, and these &ulges 4-cycle. Every cycle of even length is
2-edge-choosable (Erdds, Rubin, and Taylor [13]). Theeeefthe coloring extends to all &f.

ForH = K3z 3, first greedily color the vertices in some order. Each eglgew has at least three colors
in its remaining listL’(e). Every bipartite multigraptt is A(H)-edge-choosable (Galvin [18]). Therefore,
again the coloring extends to all bf. O

Our final lemma is structural. We will use it to obtain in anyltigraph G a subgraptd such that we
can extend a proper total coloring @f\ H chosen from lists of size/&G) — 1 to a proper total coloring of
G chosen from lists of that size.

We abuse terminology somewhat, accepting a double-edga daduced cycle” of length 2. If all
adjacent pairs occur as edges with multiplicity 3, then ot faere is no induced cycle.

Lemma 2.13. If G is ak-regular multigraph, then we can find in linear time an indlcgcle that has length
at most 4 or has no two vertices with a common neighbor off ylatec

Proof. If G has a multiple edge, then we can find one in linear time (dinsdixed). We accept two copies
of an edge as an induced cycle of length 2. Hence we may as$ate is simple.

Choose any vertex. Using breadth-first-search, find a shortest cyzliaroughv. By the choice of the
cycle, vertices o with a common neighbor outside must be adjacent or have another common neighbor
on D. With the common neighbor(s), they thus form a cyclé&inf length at most 4. If there is no pair of
vertices with such common neighbors, th2is the desired cycle. d

By combining Lemmas 2.9 through 2.13, we prove our main tesul

Theorem 2.14. If G is a multigraph with maximum degre®G), whereA(G) > 3, thenG is totally-
(2A(G) — 1)-choosable. Furthermore, given lists of se?gG) — 1, we can choose a proper total coloring
from the lists in linear time.

Proof: If Gis notA(G)-regular or contains an edge with multiplicity at least &rth.emma 2.9 completes
the proof. Hence we may assume tlis regular and has edge multiplicity at most 2.

Case 1 G has an edge uv with multiplicity 2$inceA(G) > 3, there are additional edges ande,
incident tou andv, respectively. We vieve; ande, as halfedges (thick if they have a common endpoint,
thin otherwise). The resulting subgraphis the first case in Figure 2.5 or Figure 2.6. G=be the 2-cycle
inH.

By Lemma 2.9, we can greedily col@\ E(C); hence we can also stop the process before col@ing
ande, and any oV (C). In order to apply Lemma 2.11 or Lemma 2.12 to complete therta, we must
check that each uncolored vertex, edge, and halfedgehias enough available colors remaining in its list.

Letk=A(G). A uncolored vertexy or v) is incident to at mosk — 3 colored edges and at mdst- 2
colored vertices. With an initial list of sizek2- 1, it thus has at least 4 remaining available colors. An
uncolored edge (one of ther edges) is incident to no colored vertices and to at rkesB8 colored edges
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at each endpoint. Hence it has at least 5 remaining avaitaites. A thin halfedged; or &) is incident
to one colored vertex; also it is incident to at mkst 1 colored edges at that end and at niost3 colored
edges at the other end. Thus a thin halfedge has at least thiegravailable colors. A thick halfedge has
one additional available color, since it is incident to thieen thick halfedge, which is uncolored.

Case 2 G has no multiple edge&ind an induced cycl€ as described in Lemma 2.13. Since Lemma 2.9
allows us to choose colors for a proper total coloringgfE (C), as in Case 1 we can stop the process before
coloring any ofV (C) and also leave one uncolored edge®fhcident to each vertex @.

We need lower bounds on the numbers of remaining availalitescm the lists for the uncolored ele-
ments. We have seen that wh@ns regular and simple, each element has exadtlgedghbors irl (G). To
haver colors remaining available from a list of siz&2 1, it suffices to have + 1 uncolored neighbors in
T(G). An edge ofC neighbors two edges &, two vertices ofC, and two half-edges. A vertex & has
uncolored neighbors of similar counts, but only one halfeedA half-edge neighbors one vertex and two
edges ofC. Hence the lists retain at least 5, 4, or 2 elements, respictiFurthermore, when two of the
half-edges are incident (hence thick), they have an additioncolored neighbor i (G) (each other) and
hence retain at least 3 available colors.

If the halfedges are non-incident, @rhas length at least 5, or there is at most one pair of incident
halfedges (nonconsecutive wh€rhas length 4), then we have guaranteed that the lists of namgaéavail-
able colors are large enough for Lemma 2.10 or Lemma 2.11damgtee completion of the coloring.

If V(C)| = 3, then the remaining case is that the three uncolored hygfetlave a common endpoint
u. After the initial phase, we erase the colorwnNow the uncolored grapH is K4. Each vertex or edge
neighbors 6 uncolored elementsTifG), so the remaining lists have size 5, and Lemma 2.12 comletes
coloring.

If V(C)| = 4, then the remaining cases are that two consecutive urecblmlfedges have a common
endpoint or that both pairs of opposite uncolored halfedge® a common endpoint. In the first case, we
have found a 3-cycle, and we use that cycl€asstead, applying one of the cases above.

In the second case, letandv be the two common neighbors for the pairs of halfedges (thegiatinct,
since otherwise consecutive halfedges have a common enfigéu andv are adjacent, thevi(C) U {u,v}
inducesKs 3. After the initial phase, we erase the colorstoandv. With H = K3 3, each uncolored vertex or
edge neighbors 6 uncolored element$ (&), so the remaining lists have size 5, and Lemma 2.12 completes
the coloring.

If uandv are not adjacent, then replaCewith the cycleC’ induced by(V (C) Uu) — {w}, wherew is a
vertex ofC not adjacent tai. Sinceuv ¢ E(G), we can choose one edge incident to each vert€x sb that
at most one pair of opposite incident edges has a common endgdis puts us in an earlier case, all of
which have been resolved.

O

2.3 List-coloring the Square of a Subcubic Graph

We study the problem of coloring the square of a graph. Ingbition, we only consider graphs with no
loops and no multiple edges. Since each component of a gaaphescolored independently, we also only
consider connected graphs. Téguareof a graphG, denotedG?, has the same vertex set@sand has an
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edge between two vertices if the distance between the@nismat most 2. We usg(G) to denote chromatic
numberG. We useA(G) to denote the largest degreeGn We say that a grap8 is subcubic ifA(G) < 3.

Wegner [50] initiated the study of the chromatic number fquares of planar graphs. This topic has
been actively studied lately due to his conjecture.

Conjecture. (Wegner [50]) LetG be a planar graph. The chromatic numgé®?) of G? is at most 7 if
A(G) =3, atmostA\(G) +5if 4 < A(G) < 7, and at most%j + 1 otherwise.

Thomassen [41] proved Wegner's conjecturef66) = 3, but it is still open for all values di(G) > 4.
The best known upper bounds are due to Molloy and Salavati88]. Better results can be obtained for
special classes of planar graphs. Borcelirl. [6] and Dvoraket al. [36] proved thaiy(G?) = A(G) + 1 if
G is a planar grapit with sufficiently large maximum degree and girth at least hatural strengthening
of this problem is to study the list chromatic number of thease of a planar graph.

Kostochka and Woodall [34] conjectured thatG?) = x(G?) for every graphG. Motivated by this
conjecture, we consider the problem of computin@?) whenG is subcubic. IfG is subcubic, then clearly
A(G?) < (A(G))?2 < 9. Itis an easy exercise to show that the Petersen graph @theubcubic grapi®
whose square is a complete graph. Therefore, by the listiogl version of Brook’s Theorem in [13], we
conclude that ifG is subcubic ands is not the Petersen graph, theriG?) < A(G?) < 9. In fact, we show
that this upper bound can be strengthened. We say that alsolgnaph isnon-Peterserif it is not the
Petersen graph.

Theorem 2.15. If G is a non-Petersen subcubic graph, tReiG?) < 8.

\%1
V1

Vg V2

Vg V2

V7 V3

" N

Vg V3

Ve

Vs

@) (b)

Figure 2.7. Two graphs, each on 8 vertices; each has Kg as its square. (a) An 8-cycle vi,Vp,...,Vg with “diagonals” (i.e. the
additional edges are VjVj14 for each i € {1,2,3,4}). This graph has girth 4. (b) This graph has girth 3.

Theorem 2.15 is best possible, as illustrated by the graphgure 3.2.2. The graph on the left has girth
4; the graph on the right has girth 3. The square of each gsalgh iThus, each graph has list-chromatic
number 8. In fact, there are infinitely many non-Petersemisib graphss such thai; (G?) = 8. LetH be
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the Petersen graph with an edge removed. NoteHRab Kg. Hence, any grapls which containsH as a
subgraph satisfieg (G%) > 8.

Throughout this discussion, we use the idea®fing a colorat a vertexv. By this we mean that we
assign colors to two neighbors wfn G2 but we only reduce the list of colors available at veniédoy one. A
typical example of this occurs wheris adjacent to verticeg, andv, in G2, v4 is not adjacent ta, in G,
and|L(v1)|+ |L(v2)| > |L(v)|. This inequality implies that eithdr(v;) andL(v2) have a common color or
that some color appearslirtv;) UL(v2) but not inL(v). In the first case, we save by using the same color on
verticesvy andv,. In the second case, we use a coloflivi) UL(v2)) \ L(v) on the vertex where it appears
and we color the other vertex arbitrarily.

We say that a grapB is k-minimalif G? is notk-choosable, but the square of every proper subgraph
of G is k-choosable. Aconfigurationin a graphG is an induced subgraph. We say that a configuration is
k-reducible if it cannot appear inkaminimal graph (we will be interested in the cdse 8).

2.3.1 Main results

We begin this section by proving several structural lemniegia8-minimal subcubic graphs. We conclude
by showing that ifG is a non-Petersen subcubic graph, tiRgiG?) < 8.

Lemma 2.16. If G is a subcubic graph, then for any edgewe havex (G?\ {u,v}) < 8.

Proof: For every vertexw other thanu andv, we define thalistance clas®f w to be the distance G
from w to edgeuv. We greedily color the vertices @2\ {u,v} in order of decreasing distance class. We
claim that lists of size 8 suffice. Note thit(w)| < 9 for every vertexw, which ensures that lists of size 10
suffices. If at least two vertices M(w) are uncolored when we colar, then having 8 colors in the list at
suffices.

Suppose thatv has distance at least 2 frofu,v}. Let x andy be the first two vertices aftew on a
shortest path i from wto {u,v}. Since verticex andy are in lower distance classes thanthey are both
uncolored when we colaw, as desired. v € Ng(u) UNg(V), thenu andv are uncolored when we coler.
Again a list of size 8 suffices. O

Lemma 2.16 shows that & is a subcubic graph, then lists of size 8 are sufficient torcallobut any
two specified adjacent vertices . Hence, ifH is any subgraph that contains an edge, then we can color
G?\V(H) from lists of size 8. The next lemma relies on the same ideaasna 2.16 but applies in a more
general context.

Given a graplG, a partial coloring of32, and an uncolored vertex we letexcesgv) = 141 (v) —m(v),
wherel (v) is the number of colors available in the listeafter the partial coloring andh(v) is the number
of uncolored neighbors of in G?. SinceA(G?) < 9 and we assign lists of size 8, always ex¢ess 0.
Intuitively, exces$v) measures how many colors we have “savedVpeolors are saved either from using
the same color on two neighborswbr simply because has fewer than 9 neighbors @?. For example,
if two neighbors ofv in G? receive the same color in the partial coloring, then exgess 1. Similarly, if
v lies on a 4-cycle or a 3-cycle, then excggs> 1 or excesdr) > 2, respectively. Vertices with positive
excess play a special role in finishing a partial coloring.
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Lemma 2.17. Let G be a subcubic graph, and lebe a list assignment fd@s with lists of size 8. Suppose
that G? has a partial coloring fromh. Suppose also that verticesandv are uncolored, are adjacent in
G?, and that exce$s) > 1 and exceds) > 2. If we can order the uncolored vertices so that each vertex
exceplu andv is followed somewhere by two adjacent vertice§f then the partial coloring extends to an
L-coloring of G?.

Proof: We will color the vertices greedily according to the ordeecRll that for each vertew, we have
IN(w)| < 9. Since at least two vertices M(w) will be uncolored when we colow (for w ¢ {u,v}), we

will have a color available to use am Sinceu andv are the only vertices not succeeded by two adjacent
vertices inG?, they must be the last two vertices in the order. Becausesgxge> 1 and excegy) > 2, we

can finish the coloring by greedily coloringand thenv. O

A simple but useful instance where Lemma 2.17 applies is viheruncolored vertices induce a con-
nected subgraph and verticeandv are adjacent and we can show that exgess 1 and excegy) > 2. In
this case, for the needed ordering it suffices to order thecesrby decreasing distance (within the subgraph)
from {u,v}. Whenever we say that we can “greedily finish a coloring”, vilelve using Lemma 2.17. Often,
we will specify an order for the uncolored vertices; when wendt give an order it is because they induce
a connected subgraph. The next two lemmas exhibit smallgumations where we can apply Lemma 2.17.

Lemma 2.18. If G is an 8-minimal subcubic graph, thénis 3-regular.

Proof: If uis a vertex withd(u) < 2, andv be a neighbor ofl, then excedy) > 1 and excegsl) > 3. By
Lemmas 2.16 and 2.1%;(G?) < 8. O

Lemma 2.19. If G is an 8-minimal subcubic graph, th@has girth at least 4.
Proof: The vertices of a 3-cycle iG have excess at least 2. By Lemmas 2.16 and ¥1&?) < 8. O
Lemma 2.20. If G is an 8-minimal subcubic graph, th@has girth at least 5.

Proof. Suppose thaG is an 3-minimal subcubic graph having a 4-cycle, and_léte an 8-uniform list
assignment. Any vertex on a 4-cycle has excess at least/lieH on two 4-cycles, then excéss > 2; if u

is a neighbor ofr on a 4-cycle, then Lemmas 2.16 and 2.17 apply. Therefore, ayeassume that no vertex
lies on two 4-cycles.

Let C be a 4-cycle inG. Label the vertices o€ asvy, Vo, v3, V4. Recall thatG is 3-regular, by
Lemma 2.18. Let; be the neighbor ofi not onC. We may assume that these neighbors are distinct,
since otherwise eithegB contains a 3-cycle or some vertex lies on two 4-cycles. Ukiegpma 2.16, we
choose colors for all vertices except those on the 4-cydletlaeir neighbors; call this coloring LetL'(x)
denote the list of remaining colors available at each umediertexx.

Case 1: qui,vs3) = 3. Note that|L’(v;)| > 6 and|L'(u;)| > 2. We assume that equality holds far
(otherwise we throw away colors until it does), althoughmextessarily for the;; for example, ifd(ug, uy) =
2, then|L'(up)| > 3 and|L'(uz)| > 3. SincelL'(up)| + |L'(v3)| > |L'(v1)|, we can choose colay for u; and
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color ¢, for v3 so that|L'(v1) \ {c1,c2}| > 5. Since excegs,) > 1 and excegss) > 2, we can finish the
coloring by Lemma 2.17 (coloring greedily in the order us, Ug, V4, Vo, V1).

Case 2: dui,Vv3) < 3. Verticesu; andus must be adjacent; by symmetny andu, must be adjacent.
Now sinceu; andus are adjacent angh andu, are adjacent, we haVe'(v;)| > 7 and|L'(u;)| > 4 (we assume
that equality holds for thgs). Suppose that(u;,uy) = 3. SincelL’(up)| + L' (Up)| > 4+4> 7= |L'(v1)],
we can choose colar for u; and colorc, for u, such thatl’(v;) \ {c1,c,}| > 6. Since excess;) > 2 and
exces$vz) > 1, we can finish the coloring. Hence, we can assumedfiatuy) < 3.

V4 V3

Ug Us

Figure 2.8 A 4-cycle with vertices vy, Vo, V3, V4 and the adjacent vertices not on the 4-cycle: U1, Uy, Uz, Ug, respectively. In Case 2
of Lemma 7, we also assume that vertices U1 and U3 are adjacent and that vertices Uy and Uy are adjacent.

Observe thatiy, andu, cannot be adjacent, since therlies on two 4-cycles. Thusy andu, must have
a common neighbor. By symmetry, we can assumeuhahndus have a common neighbor. Sindéu;) =3
(and we have already accounted for two edges incident)toverticesus, Up, andus must have a common
neighborx. However, thenu,, us, andx form a 3-cycle. By Lemma 2.19, this is a contradiction. O

Lemma 2.21. If G is an non-Petersen 8-minimal subcubic graph, Betoes not contain two 5-cycles that
Share three consecutive vertices.

Proof. SupposeG is a counterexample. Taken together, the two given 5-cyoles a 6-cycle, with one
additional vertex adjacent to two vertices of the 6-cyclabél the vertices of the 6-cyclg,v»,...,vs and
label the final vertex;. Letv7 be adjacent te; andvs. We consider three cases, depending on how many
pairs of vertices on the 6-cycle are distance 3 apart. By Lardrh6, we color all vertices @2 except the
7ViS.

Case 1:Bothd(v2,vs5) > 3 andd(vs, ve) > 3. LetL’(v) denote the list of remaining colors available at
each uncolored vertex In this case|L'(v1)| > 5, |L'(v4)| > 5, [L'(v7)| > 5 and|L'(v2)| > 4, |L'(v3)| > 4,
IL"(vs)| > 4,|L'(ve)| > 4. We assume equality holds. We consider two subcases.

Subcase 1.18'(vo) NL'(vs) # 0 or L' (v3) NL'(ve) # 0. Without loss of generality, we may assume that
L’'(v2) NL'(vs) # 0. Color v, andvs with some colorc; € L'(v2) NL'(vs). Since|L'(v3) \ {c1}| + L' (Ve) \
{c1}| > |L'(v7) \ {c1}|, we can choose cola, for v and colorcs for vg such thafL’(v7) \ {c1,Co,C3}| > 3.
Greedily color the remaining vertices in the orderva, v7.

Subcase 1.2L'(vz) NL'(vs) = 0 andL’(v3) NL'(vg) = 0. Color vy, va, V7 SO that no two vertices among
V2,V3,Vs5, Ve have only one available color remaining. Call these neve liS{v). Note that|L”(v;)| +
IL”(vs)| > 5 and|L”(v3)| + |L”(ve)| > 5. Hence we can colark, v, Vs, V.
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Vg Us Vg Vg

Case 1l Case 2 Case 3

Figure 2.9, Lemma 8 considers two 5-cycles that share two consecutive edges. In Cases 2 and 3 of Lemma 8, we consider
additional adjacencies.

Case 2: Exactly one ofd(vz,Vvs) or d(vs,Ve) is 2. Without loss of generality, we may assume that
d(vz,vs5) > 3 andd(vs,Ve) = 2. Recall from Lemma 2.18 thd® is 3-regular. Letuy, us, andu; be the
vertices not yet named that are adjacenbtarss, andv;, respectively. We cannot haug = us, since we have
d(v2,Vs) > 3. Note thatd(uy,Vv4) > 3 unlessu, = uz. Similarly, d(us,v;) > 3 unlessus = u;. Moreover, we
cannot havel, = Uy or us = Uy, since this forms a 4-cycle. Henai{u,,v4) = 3 andd(us,v1) = 3. Uncolor
vertexu,. LetL’'(v) denote the list of remaining available colors at each vevte¥/e havellL'(v;)| > 6,
IL'(v2)| > 5,|L'(v3)| > 6, |L'(v4)| > 5, |L'(vs)] >4, |L'(Ve)| >5,|L'(v7)| > 5, and|L’(up)| > 2. We assume
that equality holds. We consider two subcases.

Subcase 2.1L'(uz) NL'(v4) # 0. Color u; andvs with some colorc; € L'(u) NL'(v4). Now choose
color ¢, for v, and colorcs for vs such thatL’(vs) \ {c1,¢z,¢c3}| > 4. LetL”(v) = L'(v)\ {c1,c2,c3}. The
new lists satisfyL” (v1)| > 3,|L"(v3)| > 4,|L"(v6)| > 2,|L"(v7)| > 2. Greedily color the remaining vertices
in the ordeny, Vg, V1, Va.

Subcase 2.2L'(up) NL'(v4) = 0. We have two subcases hereLlfv,) NL'(vs) # 0, then colorv, and
Vs with a common color, and then colog andv, to save a color at3. Now color the remaining vertices as
in Subcase 2.1. IE'(v,) NL'(vs) = 0, then coloru, andv, to save a color a#3. Now choose colors fovg
and forv; such that vertices, andvs each have at least one remaining color. Lé&fv) denote the list of
remaining available colors at each verteNote thatL”(v;)| > 2, |L"(v3)| > 3, and|L” (v2)| + |L"(v5)| > 5
sincel’(v2) NL'(vs) = 0. In each case, we can coler, v», V3, Vs.

Case 3:Both d(v2,vs5) andd(vs,Vs) are 2. Thens, andvs have a common neighbor, s&y, andvs
andvg have a common neighbor, say. Let uz, ug, andug be the third vertices adjacent ¥, vs, andvg,
respectively. We show that eitheéfv7,vg) = 3 ord(v7,vg) = 3 ord(vs,Ve) = 3. Note thad(v,vs) = 3 unless
uz7 = ug. Similarly, d(v7,Vg) = 3 unlessu; = ug andd(vs, Vo) = 3 unlessug = ug. However, we cannot have
U7 = Ug = Ug, SinceG is not the Petersen graph. Hence, by symmetry, assume;tiatis. Sod(v7,vg) = 3.

In this case, consider the two 5-cyclesv,vavavzvi andvovavavsvgVy; they share three consecutive vertices
such that when labeled as abal(®,, vs) = 3. Hence, the graph can be handled asincase 1 or2. [
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Lemma 2.22. If G is an non-Petersen 8-minimal subcubic graph, Betoes not contain two 5-cycles that
share an edge.

Proof. SupposeG is a counterexample. By Lemmas 2.18-2.20, we know @Gas$ 3-regular and that
0(G) > 5. Taken together, these 5-cycles form an 8-cycle, with acchbabel the vertices of the 8-cycle
V1,Vo,...,Vg With an edge betweew; andvs. By Lemmas 2.20 and 2.21, we know ttd{v,,vs) = 3.
Similarly, we know thatd(v4,vg) = 3. By Lemma 2.16, we color all vertices G except the 8/s. Let
L’(v) denote the list of remaining available colors at each vevteNote that|L'(v1)| > 6, |[L'(v2)| > 4,
IL'(v3)| > 3,|L'(va)| > 4, |L'(vs)| > 6, |L'(v6)| > 4, |L'(v7)| > 3, and|L'(vg)| > 4. We assume that equality
holds.

Case 1:There exists a colot; € L'(v4) NL'(vg). Use colorc; onvs andvg. Since|L'(v) \ {c1}| +
IL"(ve) \ {c1}| > |L'(vs) \ {c1}|, we can choose colar, for v, and colorcs for vg such that|L’(vs) \
{c1,C2,c3}| > 4. Now since exce$s;) > 1 and excegss) > 2, we can finish the coloring by Lemma 2.17.

Vg \Z1 Vo
V7 V3
Ve V5 V4
(a) (b)

Figure 2.1Q (a) Lemma 9 considers two 5-cycles that share an edges. (b) Lemma 10 considers a single 5-cycle.

Case 2: L(v4) NL'(vg) = 0. We can choose cola; for v, and colorc, for vg such that|L’(vs) \
{c1,c2}| > 5. Note that now excesg;) > 1. Now colorvz andv; arbitrarily with colors from their lists; call
themcs andcy, respectively. Sinck’(v4) NL'(vg) = 0, the remaining lists fov, andvg have sizes summing
to at least 4; call these lists’(v4) andL”(vg). If |[L”(v4)| > 3, then excessy) > |L”(v4)| — 1= 2, so by
Lemma 2.17 we can finish the coloring. Similarly|lif' (vg)| > 3, then excegss) > |L”(vg)| — 1= 2, so by
Lemma 2.17 we can finish the coloring. So assumel|ttdt,)| = |L”(vg)| = 2. Arbitrarily colorv; from its
list; call the colorcz. Sincel’(v4) NL'(vg) = 0, either|L”(va) \ {cs}| =2 or [L”(vg\ {c3}| = 2. In the first
case, excess,) > 2; in the second case, excégg > 2. In either case, we can greedily finish the coloring
by Lemma 2.17. O

Lemma 2.23. If G is an non-Petersen 8-minimal subcubic graph, (&) > 5.

Proof: SupposeG is a counterexample. By Lemmas 2.18-2.20, we know (as 3-regular and that
9(G) = 5. Letvivovavavsvy be a 5-cycle and lat; be the neighbor of vertex not on the 5-cycle.

By Lemma 2.16, we can greedily color all vertices exceptuiseandy;s. LetL’(v) denote the list of
remaining available colors at each vertexNote thatlL’(u;)| > 2 and|L’(v;)| > 6. We assume that equality
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holds for thev;s. By Lemma 2.21, we know tha{u;, Vi1 2) = d(u;,Vvi43) = 3 for all i (subscripts are modulo
5). By Lemma 2.22 we also know thdfu;,u; 1) = 3.

Case 1:There exists a colar; € L'(u;) NL'(v3). Usec; onu; andvs. Greedily color vertices, Us, Us;
call these colors;, c3, ¢4, respectively. NowL'(v1)\ {c1,C2}| =4, |L'(v2) \ {c1,C2,¢3}| > 3, and|L'(us)| >
2. We can choose colag for us and colorcg for v, such thatL’(vy) \ {c1,Cp,Cs5,C6}| > 3. Now greedily
color the remaining vertices in the ordey; vs, v1.

Case 2: There exists a colot; € L'(ug) NL'(uz). Use colorcy; onug andup. Now |L'(vs) \ {c1}| +
IL'(ug)| > |L'(v2) \ {c1}|, so we can choose colos for vs and colorcs for v3 so that excessg) > 2. Note
that excessf) > 1. Hence, after we greedily colog, we can extend the partial coloring to the remaining
uncolored vertices by Lemma 2.17.

Case 3: L(uj)NL'(Uiy1) =0 andL'(u) NL'(vi;2) = 0 for all i. By symmetry, we can assunaé&(u;) N
L'(vi+3) = O for all i. We now show that we can color each vertex with a distinctrc@appose not.

By Hall's Theorem [52], there exists a subset of the uncalorerticesV; such that| Uyey, L' (V)| <
V1|. Recall that|L'(u;)| > 2 and|L'(v;)| = 6 for all i. Clearly, 2< |V;| < 10. If V4] < 6, thenV; C
{ug,up, u3,us, us}. Any threeu;s contain a paiu;, uj..1; their lists are disjoint, sUyey, L' (V)| > L' (uj)| +
IL'(uj4+1)| > 4. If V4] =5, thenVy = {u1, U, U3, Us, us}. However, each color appears on at most &
hence Uyey, L' (V)| > 10/2=5. So sayV;i| > 7. The Pigeonhole principle implies th4dtmust contain a pair
Ui, Vi+2. Since listsl’(u;) andL’(vi2) are disjoint, we havéUyey, L' (V)| > |L' ()] + L' (Vis2)| = 2+ 6= 8.
Hence,|Vi| > 9. NowV; must contain a triples, ui;1,Vi3. Since their lists are pairwise disjoint, we get
| Uvev, L' (V)| > |L' ()] + L' (uix1)| + L' (Viy3)| = 2+ 2+ 6 = 10. This is a contradiction. Thus, we can
finish the coloring. O

Now we prove that ifG is 8-minimal, thenG does not contain a 6-cycle.

Lemma 2.24. If G is an non-Petersen 8-minimal subcubic graph, t{&) > 6.

Proof: Let G be a counterexample. By Lemma 2.23, we know t{&) > 5. Hence, a counterexample
must have girth 6. We show how to col@ from lists of size 8. First, we prove that H = Cg, then
X1 (H?) = 3. Our plan is to first color all vertices except those on tley@e, then color the vertices of the
6-cycle.

Claim: If H = Cg, theny; (H?) = 3.

Label the vertices, V2, V3, V4, Vs, Vg in succession. Ldt’(v) denote the list of available colors at each
vertexv. We consider separately the cases whéfe,) NL'(v4) # 0 and wherd.'(v;) NL'(v4) = 0.

Case 1:There exists a colar; € L'(v1) NL'(v4). Use colorc; onv; andvs. Note thatL’(vi) \ {c1}| > 2
for eachi € {2,3,5,6}. If there exists a coloc, € (L'(v2) NL'(v5)) \ {c1}, then use coloc, on v, andvs.
Now greedily colorvg andvs. So suppose there is no color (i (v2) NL'(vs)) \ {c1}. Colorvs arbitrarily;
call it color c3. Either |L'(v2) \ {c1,c3}| > 2 or |L'(vs) \ {c1,c3}| > 2. In the first case, greedily color
Vs, Ve, V2. In the second case, greedily colotvg, vs.

Case 2: I(v1)NL'(v4) = 0. By symmetry, we assumé(vz) NL'(vs) = 0andL’(v3) NL'(vg) = 0. Color
vy arbitrarily; call it colorc;. If there exists such thafL'(v) \ {c1}| = 2, then colon, from ¢z € L' (va) \
L’(vi); otherwise colow, arbitrarily. LetL”(vj) =L'(vj)\ {c1,c.} forall j € {2,3,5,6}. Note thaiL"” (v2)|+
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IL”(vs)| > 4 and|L”(v3)| + |L"(ve)| > 4. Also, note that there is at most oken {2,3,5,6} such that
IL”(k)| = 1. So by symmetry we consider two subcases.

Subcase 2.11"(vj)| > 2 for everyj € {2,3,5,6}. We can finish as in case 1 above.

Subcase 2.2[L"(v,)| = 1, [L”(v3)| > 2, |L”(ve)| > 2, and|L”(vs)| > 3. We color greedily in the order
V2, V3, Vg, V5.

This finishes the proof of the claim; now we prove the lemma.

Letu andv be adjacent vertices on a 6-cy€@eBy Lemma 2.16, color all vertices except the vertices of
C. Sinceg(G) = 6,C has no chords. Similarly, no two vertices@have a common neighbor not @ Note
that each vertex df has at least three available colors. Hence, by the Claim wéiiah the coloring. [

The fact thaty (Cg) = 3 is a special case of a theorem by Juvan, Mohar, $krekovski [32]. They
showed that for anl, if G = Cg, theny (G?) = 3. Their proof uses algebraic methods and is not construc-
tive. This fact is also a special case of a result by Fleiscland Steibitz [16]; their result also relies on
algebraic methods.

Lemma 2.25. LetC be a shortest cycle in an non-Petersen 8-minimal subcubjhgs. If u; andu, are
each distance 1 fro®, thenu; andu, are nonadjacent.

Proof: LetC be a shortest cycle i6. Lemma 2.24 implies thaV (C)| > 7. Letvy, vy, ..., Vi be the vertices
of C. Recall thatG is 3-regular. Leu; be the neighbor of; that is not onC. Suppose that there exigis
adjacent tayj. Letd be the distance from to v; along C By combining the path;u;u;v; with the shortest
path alongC from v; to vj, we get a cycle of length-8d < 3+ ||V (C|)/2| < |[V(C)|. This contradicts the
fact thatC is a shortest cycle ifs. d

[ Vi—1 Vi Vit Vit2 }

Ui—1 Ui Uit+1 Ui+2

Figure 2.11 In the proof of Theorem 1, we frequently consider four consecutive vertices on a cycle and their neighbors off the cycle.
We are now ready to prove Theorem 2.15.
Theorem 2.15. If G is an non-Petersen subcubic graph, the@?) < 8.

Proof. Let G be a counterexample. By Lemma 2.18, we know tRas 3-regular. By Lemma 2.24, we
know thatG has girth at least 7. L&® be a shortest cycle i. Letvy,Vvs,. ..,V be the vertices of. Let
u; be the neighbor of; that is not orC. LetH be the union of the;s and theu;s. By Lemma 2.16, we can
color G>\V(H). LetL/(v) denote the list of available colors at each verieNote that|L’(v;)| > 6 and
IL'(u)| > 2 for all i. We assume that equality holds.
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Claim 1: If we can choose coloe; for u; and colorc, for v 1 such that/L’(v) \ {c1,c2}| > 5 and
IL'(viz1) \ {c1,c2}| > 5, then we can extend the coloring to all®f.

Use colorse; andc; ony; andui, 1. Since|l’(ui—1)| =2 and|L'(vi12) \ {c2}| > 5and|L’(vi)\ {c1,Co}| >
5, we can choose colag for u;_; and colorcy for vi,» so that|L’(v;) \ {c1,C2,C3,C4}| > 4. Coloru, » arbi-
trarily. Now since excessi.1) > 1 and excesys;) > 2, we can greedily finish the coloring by Lemma 2.17.

Claim 2: If we can choose colar; for u; such thaiL’(v;) \ {c1}| = 6, then we can extend the coloring
to all of G.

Use colorc; ony;. Since|l’(ui—1)| =2 and|L’(vi+1) \ {c1}| > 5and|L’(vi_1) \ {c1}| > 5, we can chose
color ¢, for u_; and colorcs for vi; 1 such thafl’(vi_1) \ {c1,¢2,c3}| > 4. If ¢ = c3, then we use;, on
verticesu;_1 andvi,1; Now excesévi_1) > 1 and exceds;) > 2. So after we greedily colas 1, we can
finish by Lemma 2.17. Hence, we can assupe“ c3. Note that eithec, & L'(vi_1) orcz & L' (vi_j). If
c2 ¢ L'(vi_1), then use, onu;_1; now we can finish by Claim 1. Hence, we can assag L'(vi_1). Use
C3 onvi, 1, but don't colory;_;. Greedily coloru;, 1 andu;»; call these colorg, andcs, respectively. We
may assume thdt’(v;) \ {c1,c3,¢Ca}| = 4 (otherwise, we can finish greedily as above). We also knatv th
IL'(ui_1)| =2 and|L’(vi;2) \ {cs,cs,C5}| > 3. Hence, we can choose colgyfor u_; and colorcy for vi
such thaiL’(v;) \ {c1,¢3,C4,Cs,C7}| > 3. Now since exce$s_1) > 1 and exceds;) > 2, we can finish by
Lemma 2.17.

Claim 3: If we can choose colar; for uj, 1 such thafL’(v;) \ {c1}| = 6, then we can extend the coloring
to all of G2.

Use colorc; onui 1. Sincell’(uj)| =2 and|L'(vi;2) \ {c1}| > 5and|L’'(vi+1) \ {c1}| > 5, we can choose
color ¢, for u; and colorcs for vi,» such thafL’(viy1) \ {c1,C2,¢c3}| > 4. Now we are in the same situation
as in the proof of Claim 2. I€, = c3, then we use colar, onu; andvi, and color greedily as in Claim 2. If
c2 ¢ L'(viz1) \ {c1}, then we use, onu; and we can finish by Claim 1. Hence we must heye L'(vi;1).
Usecz onL'(vi;2). Asin Claim 2, we havel’(v) \ {c1,c3}| > 5 and|L'(vi11) \ {c1,c3}| > 5. Hence, we
can finish as in Claim 2.

Remark: Claim 2 and Claim 3 imply that for everywe havel’(ui—1) UL'(u) UL (ui+1) C L'(w).
Furthermore, Claim 1 shows thit(u;) NL'(ui;1) = 0 for all i. To show that’(u;_1), L'(u;), andL’(ui11)
are pairwise disjoint we prove Claim 4.

Claim 4: If we can choose color; for u;_; and colorc, for uj1 such thafl’(v;) \ {c1,c2}| > 5, then
we can extend the coloring ®°.

Use colorc; on u;_3 and colorc, andu;.1. Since|l’(u;)| = 2 and|L'(vi;2) \ {c2}| > 5 and|L’(Vi+1) \
{c2}| > 5, we can choose colag for u; and colorc, for vi,» such thatl’(vii1) \ {C2,C3,Ca}| > 4. If c3 =4,
then we use colarz onu; andv; »; since exceds;1) > 1 and excesy;) > 2, we can finish by Lemma 2.17.
So eithercs ¢ L'(Vit1) orca ¢ L'(Viy1).

Supposecs ¢ L'(vi11). Usecz onu;. Since|l'(vi_1)\ {c1,c3}| >4 and|L'(uj12)| =2 and|L'(viy1) \
{c3}| > 5, we can choose colas for vi_; and colorcs for uj» such thatL’(vi11) \ {cz,C3,C5,C6}| > 4.
Now since excess;) > 1 and excess;;1) > 2, we can finish by Lemma 2.17.

Suppose instead thaj ¢ L'(vi11). Usecs onvi,,. Colorui,o andu; 3 arbitrarily; call these colors
cs andcg, respectively. Sincél’(u;)| = 2 and|L’(vi;3) \ {Cs,C5,C6}| > 3 and|L'(vi+1) \ {C2,Ca4,C5}| = 4,
we can choose cola; for u; and colorcg for vi,.3 such thatL’(viy1) \ {C2,¢C4,C5,C7,C8}| > 3. Now since
exces$v;) > 1 and excedsi,1) > 2, we can finish by Lemma 2.17.
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Claim 5: We can extend the coloring 82 in the following way. Color each; arbitrarily; letc(u;)
denote the color we use on eagh Now assign a color to eash from L'(u;) \ {c(u;)}.

For eachj, Claim 4 implies that'(u;_1), L’(u;), andL’(u;,1) are pairwise disjoint. Hence, eachre-
ceives a color notifc(uj—1),c(u;),c(uj+1)}. Similarly, sincel’(u;) is disjoint fromL’ (uj_2), L’ (uj_1), L’ (uj11),
andL’(uj2), vertexv; receives a color not ifc(vj_»),c(Vj—1),c(Vj+1),¢(vj+2)}. Hence, the coloring of
G? is valid. O

2.3.2 Efficient Algorithms

Since the proof of Theorem 2.15 colors all but a constant rsmbvertices greedily, it is not surprising
that the algorithm can be made to run in linear time. For cetepless, we give the details.

If Gis not 3-regular oG has girth at most 6, then we find a small subgriipfone listed in Lemmas 2.18-
2.24) that contains a low degree vertex or a shortest cytle.easy to greedily colo&?\V (H) in linear
time (for example, using breadth-first search). SiRcéas constant size, we can finish the coloring in
constant time.

Say instead that is 3-regular and has girth at least 7. Choose an arbitratgxgr Find a shortest
cycle throughv (for example, using breadth-first search); calCit Let H be C and vertices at distance 1
from C. We greedily coloiG?\ V (H) in linear time. Using the details given in the proof of Theur2.3.1,
we can finish the coloring in time linear in the sizetof

2.3.3 Future Work

As we mentioned in the introduction, Theorem 2.15 is bessipts since there are infinitely many non-
Petersen subcubic grapBssuch thai, (G?) = 8 (for example, any graph which contains the Petersen graph
with one edge removed). However, it is natural to ask whetiheresult can be extended to graphs with
arbitrary maximum degree. L& be a graph with maximum degré€G) = k. SinceA(G?) < k?, we imme-
diately get thai (G?) < k? + 1. If G2 # Ky2.. 1, then by the list-coloring version of Brook’s Theorem [13],
we havey (G?) < k. Hoffman and Singleton [26] made a thorough study of graphsith maximum
degreek such thaiG? = Kz, 1. They called thes&loore Graphs They showed that a unique Moore Graph
exists whem\(G) € {2,3,7} and possibly wheA(G) = 57 (which is unknown), but that no Moore Graphs
exist for any other value d&(G). (WhenA(G) = 3, the unique Moore Graph is the Petersen Graph). Hence,
if A(G) ¢ {2,3,7,57}, we know thaty; (G?) < A(G)?. As in Theorem 2.15, we believe that we can improve
this upper bound.

Conjecture 2.26. If G is a graph with maximum degre®G) = k and G is not a Moore Graph, then
X (G?) <k®—1.

Erd6s, Fajtlowitcz and Hoffman [14] considered gra@hwith maximum degreé such thaiG? = K..
The proved the following result, which provides evidencsupport of our conjecture.

Theorem. (Erd6s, Fajtlowitcz and Hoffman [14]) Apart from the cy€lg, there is no grapks with maxi-
mum degred& such thaG? = K.
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We extend this result to give a bound on the clique nunot{&?) of the square of a non-Moore graph
G with maximum degreé.

Lemma 2.27. If G is not a Moore graph an@ has maximum degrele> 3, thenG? has clique number
w(G?) < k?—1.

Proof: If Gis a counterexample, then by the Theorem of Erdds, Fafitavend Hoffman, we know that
G? properly contains a copy d¢f,.. Choose adjacent verticesandv; such thatvy is in a clique of sizek?
(in G?) anduis not in that clique; call the cliquel. Note that|N[v;]| < k?+ 1, so all vertices imN[v;] other
thanu must be inH. Label the neighbors af asvis. Note that ne; is on a 4-cycle. If so, thefN[vi]| < k?;
sinceu € N[vi] andu ¢ V (H), we get|V (H)| < k% — 1, which is a contradiction.

Note that each neighbor of a vertex(other thanu) must be inH. Since nov; lies on a 4-cycle, each
pairv;,v; haveu as their only common neighbor. So the and their neighbors (other thaparek? vertices
in H. Butu is within distance 2 of each of the&é vertices inH. Hence, addingi to H yields a clique of
sizek? 4 1. This is a contradiction. 0

We believe that Conjecture 2.26 can probably be proved usingrgument similar to our proof of
Theorem 2.15. In fact, arguments from our proof of Theoretd 2asily imply that ifG is a counterexample
to Conjecture 2.26, the@ is k-regular and hag(G) € {4,5}. However, we do not see a way to handle these
remaining cases without resorting to extensive case asdlykich we have not done).

Significant work has also been done proving lower boundg 68). Brown [8] constructed a grapB
with maximum degred andy (G?) > k> —k -+ 1 whenevek — 1 is a prime power. By combining results
of Brown [8] and Huxley [28], Miller andSirain [37] showed that for every> 0 there exists a constat
such that for everk there exists a grap® with maximum degreé& such thaty; (G?) > k? — c.k19/12+¢,

Finally, we can consider the restriction of Theorem 2.15lemar graphs. IiG is a planar subcubic
graph, then we know thag (G?) < 8. However, we don't know of any planar graphs for which tiight.
This returns us to the question that motivated much of tlesasch and that remains open.

Question 2.28. Is it true that every planar subcubic graplsatisfiesy (G?) < 7?
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Chapter 3
Discharging

Proofs of coloring results for planar graphs often procewtlictively; they show that each planar graph
contains some subgraph, such that given a coloring @&\ V(H), we can extend it to a coloring @. A
simple example of this is the proof that every planar grafiiéeoosable. Since the average degree of every
planar graplG is less than 6G must contain a vertex of degree at most 5. By the induction hypothesis,
G\ {v} is 6-choosable. Since vertehas at most 5 neighbors, we can extend the coloring. to

Rather than a single subgraph we often show thaG must contain at least one subgraph from some
set# . We call a subgraphl areducible configurationf we can show that a coloring @\ V(H) can be
extended td5. Usually, we split the proof of a coloring result into two glea: in the first phase we show
that every graph must contain some subgrépk # , in the second phase we show that each subgraph
H € # is a reducible configuration. In the first phase, we make notimref coloring, but instead prove
a structural lemma. The greatest difficulty when using thethrad is usually choosing the set of subgraphs
# . Determining this set is a process of trial and error; therea simple formula for success. However,
once we determine our set of subgraphsthere are powerful tools for proving that every graph cimista
some subgraphl € % ; the most common of these tools is called tiiecharging methad

In 1905, while working torward a proof of the Four Color Thewar, Wernicke proved the following
lemma. If a planar triangulation has minimum degree 5, theitlier has an edge with endpoints of degrees
5 and 6 or it has an edge with endpoints both of degree 5; w¢healedesired edges

We assign a chargg(v) = d(v) — 6 to each vertex. The sum of these chargég., d(v) — 6 equals
—12. Thus, if we redistribute the charges but do not changedbm, there must exist a vertex with negative
charge; this idea is the basis of the discharging method. gOak is to redistribute the charge so that any
vertex with negative charge is “near” one of the desired sd@ée redistribute charge by the following rule:
each neighbor of a 5-vertex gives a charge ( 1o the 5-vertex. We apply the rule once, at all vertices
simultaneously. After this “discharging,” we show that amgrtex with negative charge is adjacent to an
endpoint of a desired edge. After the discharging phase enetd the charge at a verteky " (v).

Note that during the discharging phase, the charge at axveatedecrease by at ma#v) /5. Thus, the
new chargau*(v) is at leastd(v) — 6 —d(v)/5 = 4d(v) /5 — 6; this charge is only negative fd(v) < 7, so
we consider 5-vertices, 6-vertices, and 7-vertices. lfvafex or 6-vertexu has negative charg€ (u), then
u must be adjacent to a 5-vertexsouvis the desired edge. If a 7-vertevhas negative charge, theamust
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be adjacent to at least 6 vertices of degree 5. Since the ggaplriangulation, two degree 5 neighbors
andw of vertexu must be adjacent to each other;)\awis the desired edge.

The proof of Wernicke’s lemma is a very simple example of ldisging. Usually the set of reducible
configurations is larger and the dicharging rules are momepdex. Additionally, we often assign charge to
the faces of a plane graph as well as the vertices.

3.1 Planar graphs with no triangles sharing an edge

All our graphs are finite and without loops or multiple eddgest G be a plane graph. We uggG), V(G),
F(G), A(G), andd(G) to denote the edge set, vertex set, face set, maximum degierinimum degree of
G, respectively. Where it is clear from context, we iseather tham\(G). We use ‘j-face” and ‘j-vertex”

to mean faces and vertices of degjed he degree of a fackis the number of edges along the boundary of
f, with each cut-edge being counted twice. The degree of affacel the degree of a vertexare denoted
by d(f) andd(v). We say a facd or vertexv is large whend(f) > 5 ord(v) > 5. We usdriangle to mean
3-face. We uséite to mean a subgraph @ formed by two 3-faces that share an edge. Wealsmento
mean vertex or face.

A proper edge-coloringdf G is an assignment of a label to each edge so that no two adjadget
receive the same label. We call these laloelors. A proper k-edge-colorings a proper edge-coloring that
uses no more thakicolors. Anedge assignmentik a function orE(G) that assigns each edge listL(e)
of colors available for use on that edge. Bredge-coloringis a proper edge-coloring with the additional
constraint that each edge receives a color appearing issigraed list. We say that a graghis k-edge-
choosabldf G has a propet-edge-coloring whenevet.(e)| > k for everye € E(G). Thechromatic index
of G, denotedy’(G), is the least integek such thatG is k-edge-colorable. Thkst chromatic indexof G,
denotedy| (G), is the least integek such thaG is k-edge-choosable. In particular, note tRdiG) < x| (G).
Probably the most fundamental and important result abauthinomatic index of graphs (without loops or
multiple edges) is:

Theorem 3.1. (Vizing’s Theorem; Vizing [44, 45] and Gupta [19])
X' (G) <A(G)+1.

Vizing conjectured that Theorem 3.1 could be strengthenegrbving the same bound for the list
chromatic index:

Conjecture 3.2. (Vizing's Conjecture; see [34])
X/ (G) <A(G)+1.

The most famous open problem about list edge-coloring id.tsteColoring Conjecture. Bollobas and
Harris [4] believed that Vizing's conjecture could be fuattstrengthened to give:

Conjecture 3.3. (List Coloring Conjecture; Bollobas and Harris [4])

Xi(G) =X(G).
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In 1995, Galvin proved that the List Coloring Conjecturerigetfor bipartite graphs [18]. Borodin [6]
showed that the List Coloring Conjecture holds for planaps withA > 14. Borodin, Kostochka, and
Woodall [5] improved this result to show that the List ColayiConjecture holds for planar graphs with
A >12. Apart from these results, the List Coloring Conjectuse proved very difficult. Fortunately, more
progress has been made on Vizing's Conjecture.

Vizing’s Conjecture is easy to prove whAK 2. In generaly;(G) < 2A — 1 by coloring greedily in an
arbitrary order. Harris [23] showed thatAf> 3, theny;(G) < 2A —2. This implies Vizing’s Conjecture
whenA = 3. Juvan et al. [32] confirmed the conjecture wien 4. Vizing’s conjecture was also established
for other special families of graphs, such as complete gr§p®| and planar graphs with > 9 [6]. Wang
and Lih [47] proved that Vizing’'s Conjecture holds for a @amgraphG whenA > 6 andG has no two
triangles sharing a vertex. Zhang and Wu [55] proved thaingiz Conjecture holds for a planar gragh
whenA > 6 andG has no 4-cycles. Results whAnr= 5 are weaker, since the structural hypotheses are more
restrictive. Zhang and Wu [55] showed that a planar gi@pé 6-edge-choosable whén=5 andG has no
triangles. Wang and Lih [46] showed that a planar gr&pk 6-edge-choosable whén= 5 andG has no
5-cycles.

We improve these results in several ways. In Section 2, weemstyuctural results for use in Section 3,
where we prove our two main results. We show that Vizing’s jEcture holds for a planar gragh when
G contains no kites anfl > 6. This is a strengthening of the result of Wang and Lih [44 #re result of
Zhang and Wu [55]. We also show that the List Coloring Comjectholds for a planar grapB whenG
contains no kites and > 9. Our method, like that of Wang and Lih [47], Zhang and Wu [%6]d Borodin
[6] is the discharging method. In Section 4, we prove Vizéngonjecture for a planar gragghwhenA =5
andG has no 4-cycles; we also prove Vizing’s Conjecture for aalaymaphG whenA = 5 and the distance
between any two triangles i@ is at least 2.

Proofs of coloring results for planar graphs often proceeddctively by showing the existence of certain
subgraphs with small degree-sum for the vertices, calligtht copies of these subgraphs. We prove and
use several such structural results. For example, we phatevery planar grap8 with A > 7 that contains
no kites has an edge whose endpoints have degree-sum aAm@stFor such a grapl, it follows easily
that Vizing’s Conjecture holds.

3.1.1 Structural lemmas

The proof of Wernicke’s lemma was a simple discharging autmour next example is more complex: it
assigns charge to both vertices and faces, and requiregerloase analysis. In that proof, we used Euler's
formula to conclude that our gragghmust contain one of the desired subgraphs. In this instaveassume
that our graphG does not contain any of the desired subgraphs; this leadsdnteadiction.

Let G be a plane graph. Rewrite Euler's Form{FdG)| — |E(G)|+ |V (G)| =2 as 2E(G)| — 4|V (G)| +
2|E(G)| —4|F(G)| = —8, and then as:

dv) -4+ Y (d(f)-4)=-8
veV(G) feF(G)

We want to prove that each planar gra@kwith no kites and maximum degree at least 7 contains a phaticu
type of subgraph. By assuming these subgraphs do not appeaeach a contradiction in the following
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manner. We assign to each elemant S an initial charge |{x) defined byu(x) = d(x) —4. We will
redistribute these charges in a way that preserves the saithtbé charges, and yet makes the new charge
K (X) nonnegative at every element. This produces the obviousathetion

05 TWK = W = YE®-4 =-8

Our rules for redistributing charges are designed to takeradge of the absence of the forbidden
subgraph(s). In the following theorem we forbid an edgevith d(u) +d(v) < A+ 2, and we also forbid
kites. Since each edgev satisfiesd(u) +d(v) > A+ 3, it follows that each neighbor of a 3-vertex is a
A-vertex. Similarly, sinces contains no kites, a vertexis incident to at mosd(v) /2 triangles.

Theorem 3.4. If graph G is planar,G contains no kites, an@ hasA > 7, thenG has an edgev with
d(u)+d(v) <A+2

Proof: AssumeG is a counterexample. For every edge G must haved(u) +d(v) > A+ 3> 10. Thus,
0(G) > 3. We use a discharging argument. We assign to each elenaeninitial charggu(x) = d(x) — 4.
We use the following two discharging rules, applied simméiausly at all vertices and faces in a single
discharging phase:

(R1) Each large vertexgives a charge of /2 to each incident triangle.
(R2) EachhA-vertexv gives a charge of /8 to each adjacent 3-vertex.

Now we show that for every element the new chaigés nonnegative.
Consider an arbitrary fack

e If d(f) =3, then sincal(u) +d(v) > 10 for every edgeiv, at least two of the vertices incident fo
are large. Thug*(f) > —1+2(1/2) =0.

e If d(f) >4, thenu*(f) =p(f) >0.
Consider an arbitrary vertex
e If d(v) =3, thenu*(v) = —1+3(1/3) = 0, since each neighbor ufis aA-vertex.
e If d(v) =4, thenu*(v) = u(v) =0.
e If d(v) =5, thenvis incident to at most 2 triangles, s(v) > 1—2(1/2) =0.

e If 6 <d(v) <A—1, thenvis incident to at mosti(v)/2 triangles. Thust'(v) > d(v) —4— @

3d(v)
T(—4>0.

Nl

e If d(v) = A, then lett be the number of triangles incident to For each triangle incident tg,
at most one of the vertices of that triangle has degree 3. ,Tihwsis incident tot triangles, then
K (v) >d(v) —4—t(%) —(d(v) —t)(%) = &3()") —4— L. Sincet < &2"), we gety*(v) > 7‘11(2") —4. This

expression is positive whet(v) > 7.
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We will use Theorem 3.4 to show that any planar gr&phith A > 7 that contains no kites i&\ + 1)-
edge-choosable. We would also like to prove an analogowdt festhe case\ = 6. To prove such a result,
we need the following structural lemma. We say that a triamgbftype(a, b, c) if its vertices have degrees
a,b, andc. Recall that a facd is largeif d(f) > 5.

Lemma 3.5. If graph G is planar,G contains no kites, anfi = 6, then at least one of the three following
conditions holds:

(i) G has an edgav with d(u) +d(v) <8.
(i) G has a 4-facevwxwith d(u) = d(w) = 3.

(i) G has a 6-vertex incident to three triangles; two of thesegiizs are of typ€6,6,3) and the third is
of type(6,6,3), (6,5,4), or(6,6,4).

Proof: AssumeG is a counterexample. For every edge G must haved(u) +d(v) > 9. Thus,5(G) > 3.
We use a discharging argument. We assign to each elen@minitial charggu(x) = d(x) — 4. We use the
following three discharging rules:

(R1) Each large facé gives a charge of /2 to each incident 3-vertex.

(R2) Each 5-vertex gives a charge of /2 to each incident triangle.

(R3) Each 6-vertex

e gives a charge of /B to each adjacent 3-vertex that is not incident to any laage.f

e gives a charge of 6 to each adjacent 3-vertex that is incident to a large face.

e gives a charge of /2 to each incident triangle that is incident to a 3-vertex dnaertex.

e gives a charge of /B to each incident triangle that is not incident to a 3-vedea 4-vertex.

Now we show that for every element the new chaigés nonnegative.
Consider an arbitrary fack

e If d(f) =3, then we consider two cases. flfis incident to a 3-vertex or a 4-vertex, thah(f) =
—1+42(1/2) = 0. If f is not incident to a 3-vertex or a 4-vertex, thenf) > —1+3(1/3) = 0.

e If d(f) =4, thenu*(f) =p(f) =0.

e If d(f) =5, thenu*(f) >1—-2(1/2) =0.

e If d(f) > 6, thenu'(f) >d(f)—4— 21 _3d0 450
Consider an arbitrary vertex

e If d(v) =3, then we consider two cases. Vis incident to a large face, thexi(v) > -1+ 1/2+
3(1/6) = 0. If vis not incident to a large face, theri(v) = —1+3(1/3) = 0.
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e If d(v) =4, thenuy*(v) = u(v) =0.
e If d(v) =5, theny*(v) >1—-2(1/2) =0.

e If d(v) = 6, then we consider separately the four cases wheréncident to zero, one, two, or three
triangles. Note that i is incident tat triangles, then the number of 3-vertices adjacentitoat most
(6—1).

o If visincident to no triangles, thau (v) > 2—6(1/3) = 0.

o If vis incident to one triangle, then we consider two casew.isdfadjacent to at most four 3-
vertices, theq*(v) > 2—(1/2) —4(1/3) > 0. If vis adjacent to five 3-vertices, then two of these
adjacent 3-vertices lie on a common face, together witlsince condition (ii) of the present
lemma does not hold, this face must be a large face*80 > 2—(1/2) —3(1/3) —2(1/6) > 0.

o If vis incident to two triangles, then we consider two cases: iff adjacent to at most three
3-vertices, thenu*(v) > 2—2(1/2) — 3(1/3) = 0. If vis adjacent to four 3-vertices, then two
of these adjacent 3-vertices lie on a common face, togetitrwv Since condition (ii) of the
present lemma does not hold, this face must be a large facg' (80> 2—2(1/2) —2(1/3) —
2(1/6) =0.

o If vis incident to three triangles, then we consider two cadest rhost one of the triangles is
type (6,6,3), thenpy*(v) > 2—3(1/2) —1/3 > 0. Furthermore, if two of the triangles incident
to v are type(6,6,3) but the third triangle is not incident to any vertex of degaéenost 4, then
e (v) =2-2(1/2) —2(1/3) — 1(1/3) = 0. If two of the triangles are of typg5, 6,3) and the
third triangle is incident to a vertex of degree at most 4ntbendition (iii) of the lemma holds.

0

We will apply Theorem 3.4 and Lemma 3.5 to get our first resodtus edge-choosability. To prove the
(A+ 1)-edge-choosability of a planar gra@that hasA > 6 and that contains no kites, we remove one
or more edges o6, inductively color the resulting subgraph, then extenddbkring toG. Intuitively,
Theorem 3.4 and Lemma 3.5 do the “hard work.” However, it it @dnvenient to prove the following
lemma, which we will apply to the subgraphs®that arise from this process.

Lemma 3.6. Let G be a planar graph that contains no kites. AIK 5, thenG has an edgeiv with
d(u)+d(v) < 8. If A= 6, thenG has an edgav with d(u) +d(v) < 9.

Proof: If A <4, then each edgaev satisfiesd(u) +d(v) < 2A < 8. In that case, the lemma holds trivially.
So we must prove the lemma for the cages 5 andA = 6. We handle both cases simultaneously with a
discharging argument. Assur@as a counterexample. For every edge G must havel(u) +d(v) > A+ 4.
Thus,8(G) > 4. We assign to each elemeaan initial charggu(x) = d(x) — 4. We use a single discharging
rule:

(R1) Every large vertex gives a charge of /2 to each incident triangle.
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Now we show that for every element the new chaigés nonnegative.
Consider an arbitrary fack

e If d(f) =3, thenf is incident to at least two large vertices,|$¢f) > —1+2(1/2) = 0.
o If d(f) >4, thenu*(f) =p(f)>0.
Consider an arbitrary vertex

e If d(v) =4, thenu*(v)

p(v) =0.
e If d(v) =5, theny*(v) >1—-2(1/2) =0.
e If d(v) =6, thenu*(v) >2—-3(1/2) > 0.

0

Theorem 3.7. If graph G is planar,G contains no Kites, anfl > 9, then at least one of the following two
conditions holds:

(i) G has an edgav withd(u)+d(v) <A+ 1.
(i) G has an even cyclawvows ... iy with d(w;) = 2.

Proof: AssumeG is a counterexample. For every edge G must haved(u) +d(v) > A+ 2. Thus,
0(G) > 2. Our proof will use a discharging argument, but first we shioat if G is a counterexample to
Theorem 3.7, thefs has more\-vertices than 2-vertices.

Let H be the subgraph d& formed by all edges with one endpoint of degree 2 and the athépoint
of degreeA. Form H from H by contracting one of the two edges incident to each vertedegfee 2
(recall that each neighbor of a 2-vertex(nis aA-vertex). Each 2-vertex it corresponds to an edge in
H and each vertex if corresponds to A-vertex inG. SoG has moreA-vertices than 2-vertices unless
ERIZVEL )

If |E(H)| > |V(H)], thenH contains a cycle. However, a cycle kh corresponds to an even cycle
VIWIVoW, ... kWi In G with d(v;) = 2. Such a cycle i satisfies condition (ii) and shows th@tis not a
counterexample to Theorem 3.7. $has more)-vertices than 2-vertices. We use this fact to design our
discharging rules.

We assign to each elemenan initial charggu(x) = d(x) — 4. In addition to the vertices and edges, we
create @ankthat can give and receive charge. The bank has initial clargs with the vertices and edges,
we must verify that the final charge of the bank is nonnegatiMe use the following three discharging rules:

(R1) EachA-vertex and A — 1)-vertexv gives a charge of /B to each adjacent 2-vertex or 3-vertex.
(R2) Each large vertexgives a charge of /2 to each incident triangle.

(R3) EachhA-vertex gives a charge 0f/3 to the bank.
Each 2-vertex takes a charge gf34from the bank.
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The only rule that effects the bank’s charge is (R3). Si@deas more\-vertices than 2-vertices, the bank’s
final charge is positve.

Now we show that for every element the new chaifjés nonnegative.
Consider an arbitrary fack

e If d(f) =3, then sincal(u) +d(v) > 11 for every edgei, at least two of the vertices incident fo
are large. Thugt'(f) > —-1+2(1/2) =0.

o If d(f) >4, thenu*(f) =p(f)>0.
Consider an arbitrary vertex
e If d(v) =2, theny'(v) = —2+2(1/3) +4/3=0.
e If d(v) =3, thenu*(v) = —1+3(1/3) = 0.
e If d(v) =4, theny*(v) = u(v) =0.
e If d(v) =5, thenvis incident to at most 2 triangles, s6(v) > 1—2(1/2) =0.

e If 6 <d(v) <A-2, thenvis incident to at mos@ triangles. Thugt*(v) > d(v) —4— @(%) =
w —-4>0.

e If d(v) =A—1, then lett be the number of triangles incident ¥o For each triangle incident tg
at most one of the vertices of that triangle has degree 3. ,Tihwsis incident tot triangles, then
W (v) > d(v) —4—t(d)— (@dv)—t)(d) = ZM _4_ L Sincet < I, we getpr(v) > Ld(v) — 4.

This expression is positive whetjv) > 8.

e If d(v) = A, then lett be the number of triangles incidentioFor each triangle incident tg at most
one of the vertices of that triangle has degree 3. Thus,isfincident tot triangles, thenu*(v) >
dv)—4—2—t(d) —(dv)—t) (%) = 2 _ 16 _ L sincet < |2 |, this expression is nonnegative
whend(v) > 9.

0

3.1.2 Application to Edge-Choosability

We now have the necessary tools to prove our two main results.

Theorem 3.8. Let G be a planar graph that contains no kitesA i 5, theny(G) < A+ 1. If A=5, then
X[(G) <A+2

Proof: Let G be a connected graph. Harris [23] and Juvan et al. [32] shahetdG is (A+ 1)-edge-
choosable whe = 3 andA = 4, respectively (even for nonplanar graphs). Thus, we oabdrto prove
the theorem wheh > 5. We consider separately the three cades5, A = 6, andA > 7. In each case
we proceed by induction on the number of edges. The theoréds havially if |E(G)| < 7. Note that if
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Figure 3.1 The ten remaining uncolored edges. The number at each vertex is the degree of that vertex in G. The number on each
edge is the number of colors available to use on that edge after we have chosen colors for all edges not pictured.

d(u) +d(v) <k, then edgeuv is adjacent to at most— 2 other edges. We use this fact frequently in the
proof.

Consider the cas®&(G) = 5. LetH be a subgraph db. SinceA(H) <5, Lemma 3.6 implies that has
an edgeuv with d(u) +d(v) < 8. By hypothesisy;(H —uv) < 7. Since edgewv is adjacent to at most six
edges irH, we can extend the coloring to edge

Consider the casA(G) > 7. LetH be a subgraph o6. SinceA(H) < A(G), Theorem 3.4 and
Lemma 3.6 together imply that has an edgavwith d(u) +d(v) <A(G) +2. By hypothesisy|(H —uv) <
A(G) + 1. Since edgelvis adjacent to at mo#¥(G) edges irH, we can extend the coloring to edge

Consider the cas&(G) = 6. LetH be a subgraph d&. By Lemmas 3.5 and 3.6, we know that one of
the three conditions from Lemma 3.5 holds fér We show that in each case we can remove some set of
edgesE, inductively color the graphi — E, then extend the coloring .

(i) If H has an edgeavwith d(u) +d(v) < 8, then by hypothesig (H —uv) < 7. Since at most 6 colors
are prohibited from use amv, we can extend the coloring tov.

(i) If H has a 4-faceivwxwith d(u) = d(w) = 3, then letc = {uv,vw,wx,xu}. By hypothesis((H —
) < 7. Since each of the four uncolored edgescohas at most 5 colors prohibited, there are at least
two colors available to use on each edgerof Since)|(c) = 2, we can extend the coloring to. (Itis
well-known for every even cycle thaty;(c) = 2, but for completeness note that we prove this in case (d)
of Lemma 3.10).

(i) If G has a 6-vertex incident to 3 triangles, two of tyje6, 3) and the third of typ€6, 6, 3), (6,5,4),
or (6,6,4), then we show how to proceed when the third triangle is {f6,4); this is the most restrictive
case. Le€ be the set of edges of all three triangles, plus one additeEd@ge incident to a vertex of degree
3in one of the triangles. By hypothesjg(G — E) < 7. We show that we can extend the coloring=to

The ten edges o are shown in Figure 3.1, along with the number of colors at#d to use on each
edge. We usé(e) to denote the list of colors available for use on edgafter we have chosen colors
for all the edges not shown in Figure 3.1. Sintég)| + |L(j)| > |L(h)|, either there exists some color
a € L(g)NL(j) or there exists some colore (L(g)UL(j))\L(h). If a € L(g)NL(j), we use colox on
edgegg andj. Otherwise there exists € (L(g)UL(j)) \ L(h). In this case, use colar ong or j, then use
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some other available color on whichevergoénd j is uncolored. In either case, we can now color the rest
of the edges in the ordee d,a, b, f,c,i,h.
This completes the proof for the ca&éG) = 6. O

Theorem 3.9. If G is planar,G contains no kites, anti(G) > 9, theny|(G) = A(G).

Proof: Since edges with a common endpoint must receive distinargol; (G) > A(G). So we need to

prove thaty|(G) < A(G). By induction on the number of edges, we prove th&t i a subgraph o6, then

X|(H) <A(G). Our base case is whéx{H) < 8. The result holds for the base case by Theorem 3.8.
Assume thaA\(H) > 9. By Theorem 3.7 at least one of the following two conditibitds:

(i) H has an edgavwith d(u) +d(v) <A(H)+1.
(i) H has an even cyclewvows, ... vilwg with d(v;) = 2.

Suppose condition (i) holds. By hypothesjg(H —uv) < A(G). Sinced(u) +d(v) <AH)+1<
A(G) + 1, we have at least one color available to extend the coldang.

Suppose condition (i) holds. Let be the even cycle. By hypothesjg(H — ¢) < A(G). After coloring
H — ¢, each edge of has at least two colors available. Since even cycles are@selble, we can extend
the coloring toc. d

3.1.3 Planar graphs withA(G) =5

Proving that a planar grap® with no kites satisfiex|(G) < A+ 1 seems to be most difficult when= 5.
This difficulty is reflected both in the results prior to thesger and in our results. We are unable to show that
a planar graplG with no kites and\ = 5 satisfie(; (G) < A+ 1. There are two types of weaker conjectures
that naturally come to mind. Either we can forbid additiosidbgraphs (such as a 4-face), or we can require
that any two 3-faces dB be further apart. Theorems 3.11 and 3.12 provide result®thf types. Before
proving these results, in Lemma 3.10 we show that the six gordtions in Figure 3.2 are reducible; that is,
if A =5 andG contains one of these configurations as a subgraph Glemnot be a minimal planar graph
that is not 6-edge-choosable.

In each of the six cases, we show how to choose colors for tgesedfG if one of the reducible
configurations is a subgraph &. Our plan is to choose colors for all edges@fthe graph formed by
deleting the edges of the reducible configuration, whichlmdone ifG is a minimal counterexample (i.e.
no counterexample has fewer edges), then to choose coloteda@dges of the reducible configuration.
(Usually this final step involves short case analysis.) Gamegal technique is to show that for some edge
ein the reducible configuration, either we can use the sarm@ ool two edges that are adjacenttor we
can use a color on some edge adjacemttmt is not inL(e). In the reducible configurations, the number at
each vertex is the degree of that vertexanthe number on each edge is the number of colors available to
use on that edge after we have chosen colors for all edges tiat reducible configuration.

Lemma 3.10. None of the six configurations in Figure 3.2 appear as subgrapany minimal planar graph
G that ha?h = 5 and is not 6-edge-choosable.
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Figure 3.2 Six reducible configurations. The number at each vertex is the degree of that vertex in G. The number on each edge is
the number of colors available to use on that edge after we have chosen colors for all edges not in the reducible configuration.

Proof: (a) Since|L(a)| + |L(d)| > |L(b)|, either there exists € L(a) NL(d) or there existax € (L(a) U
L(d)) \ L(b). Consider the first case. Useon edges andd, then color edges, ¢, andb, in that order.
Consider the second case. dfe L(a) \ L(b), usea on a, then color edges, c, d, andb, in that order.
Suppose instead thate L(d) \ L(b). (We assume that ¢ L(a).) If a € L(c), usea onc, then colore, a, d,
andb, in that order. Ifa ¢ L(c), usea ond, then colora, €, ¢, andb, in that order.

(b) Since|L(a)| + |L(e)| > |L(b)], either there exista € L(a) NL(e) or there existst € (L(a)UL(e))\
L(b). Consider the first case. ¢f ¢ L(d), use colora on edges ande, then color edges, d, andb, in
that order. Ifa € L(d), use colora on edgesa andd, then colorc, e, andb, in that order. Consider the
second case. b € L(a)\ L(b), usea on edgea, then colorc, d, e, andb, in that order. Suppose instead that
aelL(e)\L(b). If a € L(d), then usex ond, then colorc, a, e, andb, in that order. Ifa ¢ L(d), then usex
on g, then colorc, d, a, andb, in that order. Note that if we replace the 4-vertex in (b)hat3-vertex, no
fewer colors are available to use on edyso the new configuration is also reducible.

(c) The reducibility of configuration (a) implies the reduitity of configuration (c), since (c) is a sub-
graph of (a) and each of the edges in (c) has the same numbelocs available as the corresponding edge
in (a).

(d) If the lists of colors available on all four edges are filead, then we can alternate colors on the cycle
(i.e. use colo on edgesa andc and use colof on edgesd andd). If two lists differ, we may assume
(without loss of generality) that there exists= L(a) \ L(d). Use colora on edgea, then color edgeb, c,
andd, in that order. In fact, we have proved the stronger statéthabevery even cycle is 2-choosable.

(e) If L(a) = L(b), usea € L(g) \ L(a) on edgeg. The remaining 6-cycle is 2-choosable. So assume
L(a) # L(b). Choosex € L(b)\ L(a). If a ¢ L(g), usea onb, then color edges andd, in that order. The
remaining 4-cycle is 2-choosable. Similarlypife L(g) anda € L(d), usea on edged andd, then colorc.
Again, the remaining 4-cycle is 2-choosable. So assarad.(g) anda ¢ L(d). Usea on g, then colorb,

c, a, f, e andd, in that order.
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(f) Since|L(a)| +|L(c)| > |L(9g)|, either there exista € L(a) NL(c), or there existst € (L(a)UL(c))\
L(g). Consider the first case. Useon edgesa andc, then color edgeb, d, e, f, andg, in that order.
Consider the second case.dlfe L(a) \ L(g), usea on a, then colorb, c, d, e, f, andg, in that order. If
insteada € L(c) \ L(g), usea onc, then color, a, d, e, f, andg, in that order. O

In our proofs of Theorem 3.11 and Theorem 3.12, we would tikassume that any possible counterex-
amples to the theorems do not contain as subgraphs any obttiigwration in Figure 3.2. To allow this
assumption, in these proofs we argue abountimimal counterexample. After proving Theorem 3.11, we
learned that it is a special case of result due to Wang and48h however, for completeness, we include
our proof.

Theorem 3.11. If G is a planar graph with no 4-cycles ab{fG) = 5, thenG is 6-edge-choosable.

Proof: Let G be a minimal counterexample to the theorem. If there exists E(G) with d(u) +d(v) <7,

we can choose colors for the edges®¥f {uv} (sinceG is a minimal counterexample), then choose a
color for uv since at most 5 colors are prohibited by adjacent edges. fbnesach edgeiv, G must have
d(u)+d(v) > 8. In particular,d(G) > 3. We use a discharging argument. We assign to each vertexer f
x the initial chargqu(x) = d(x) — 4. We use the following discharging rules:

(R1) For each large fack

e transfer a charge of 1/2 frorhto each incident 3-vertex.

¢ transfer a charge of 1/4 frorto each incident 4-vertex that is incident to a triangle eeija
to f.

(R2) For each vertex of degree 4,

e transfer a charge of 1/4 fromto each incident5,4,4) triangle.
e transfer a charge of 1/2 fromto each incident4,4,4) triangle.

(R3) For each vertex of degree 5, transfer a charge of 1/2 freno each incident triangle.
Now we show that for every vertex and fageis nonnegative. Throughout the proof we implicitly use
the facts thaG has no 4-faces and th&does not have two adjacent 3-faces (which imply a 4-cycle).
Consider an arbitrary vertex

e If d(v) = 3, thenvis adjacent to at least two large facespstv) > —1+2(1/2) = 0.

e If d(v) = 4, then we consider three cases, depending on the triangieent tov. Note thatv is
incident to at most two triangles. Furthermorey i incident to at least one triangfe thenv is also
incident to two large faces that are adjacent teach of these large faces giwea charge of 1/4.

o If vis incident to no triangles, thau (v) = p(v) = 0.

o If vis incident to at least one triangle, butis not incident to a type (4,4,4), thari(v) >
0+2(1/4)—2(1/4) =0
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o If vis incident to a type (4,4,4) and also incident to anothengie that receives charge from
v (type (4,4,4) or (5,4,4)), thefs contains the reducible configuration in Figure 3.2(c). So
if v gives charge to a type (4,4,4), therdoes not give charge to any other triangle. Thus
H(v) =0+2(1/4) —1(1/2) =0.

e If d(v) =5, thenv is adjacent to at most two triangles (otherwiSecontains a 4-cycle). Hence
He(v) >1-2(1/2) =0.

Consider an arbitrary fack

e If d(f) =3, then sinced(u) 4+ d(v) > 8 for each edgeiv, there are five types of 3-faces we must
consider: (5,5,5), (5,5,4), (5,5,3), (5,4,4), and (4,4,4)
o If fistype (5,5%) (for some value oK), thenp*(f) > —1+2(1/2) =0.
o If fistype (5,4,4), thep(f) =—-1+1(1/2)+2(1/4) =0.
o If fistype (4,4,4), thep'(f) =—-1+3(1/2) > 0.

e If d(f) =4, then we contradict the present theorem’s hypothesightaintains no 4-cycles.
e If d(f) =05, then we consider three cases. Note that faissincident to at most two 3-vertices.

o If f is incident to no 3-vertices, then sin@does not contain the reducible configuration in
Figure 3.2(f), we may assume thhtgives charge to at most four 4-vertices. Thus$f) >
1-4(1/4) =0.

o If f is incident to one 3-vertex, theh is incident to at most two 4-vertices. Thus(f) >
1-1(1/2)—-2(1/4) =0.

o If fisincident to two 3-vertices, thehis incident to no 4-vertices. Thys(f)=1-2(1/2) =0.

e If d(f) > 6, then lett be the number of 3-vertices incident fo If a 3-vertex is incident tdf, the
clockwise neighbor of that 3-vertex along fatemust be a 5-vertex. Hence, ffis incident tot 3-
vertices, then the maximum number of 4-vertices incidertt ivd(f) — 2t. Sopy*(f) >d(f)—4—
t(1/2) — (d(f)—2t)(1/4) =3d(f)/4—4> 0.

O
Before we prove our final result, we introduce one more démit We say that vertices andw are
successivaeighbors ofv if w is the next neighbor of that we encounter when we startuaand proceed

in a clockwise (or counterclockwise) manner arowndn particular, each neighbor of a vertehas two
successive neighbors (with respect}o

Theorem 3.12. Let G be a planar graph with(G) = 5. If the distance between any two triangle<Grnis at
least 2, thel is 6-edge-choosable.
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Proof: LetG be a minimal counterexample to the theorem. If there exisesdgeuv with d(u) +d(v) <7,
we can choose colors for the edges®¥f {uv} (sinceG is a minimal counterexample), then choose a
color for uv since at most 5 colors are prohibited by adjacent edges. fbneach edgelv, G must have
d(u) +d(v) > 8. In particular,5(G) > 3. We use a discharging argument. We assign to each vertexer f
x the initial chargaqu(x) = d(x) — 4. We use the following discharging rules:

(R1) For each large fack, transfer a charge of 1/2 frorhto each incident 3-vertex.

(R2) For each vertex of degree 5,

e transfer a charge of 1/3 fromto each adjacent 3-vertex that is not incident to any large
face.
¢ transfer a charge of 1/6 fromto each adjacent 3-vertex that is incident to a large face.

(R3) For each vertex of degree 5 that is not incident to any triangle,

e transfer a charge of 1/6 fromto each adjacent 4-vertex that is incident to a triangle.
e transfer a charge of 1/6 fromto each adjacent 5-vertex that is incident to a triangle
unless both successive neighborsvafwith respect tov) are 3-vertices.

(R4) For every vertex of degree 4 or 5, after all other applicable rules have begfieal transfer
any positive charge remainingato its incident triangle (it is incident to a triangle).

Now we show that for every vertex and fggeis nonnegative. We frequently make use of the following
fact. If vertexv is incident to trianglel, no neighbor of/ is incident to any triangle other than We refer
to the neighbors of that are not incident td asoff-triangle neighbors.

Consider an arbitrary fack

e If d(f) =3, we do a case analysis based on the degrees of the vertgdsnintof.

o If fisatype (4,4,4), let be a 4-vertex orf. Each off-triangle neighbor of must be a 5-vertex
(sinceG does not contain the reducible configuration in Figure 3)2{thus,v receives a charge
of 1/6 from each of its off-triangle neighbors apt{ f) = —1+6(1/6) = 0.

o If fisincident to a 5-vertex, we consider the case later, whenomsider all 5-vertices.
o If d(f) =4, theny*(f) =p(f) =0.
e If d(f) =05, thenf is incident to at most two 3-vertices. Thuy f) >1—2(1/2) =0.
e If d(f) > 6, thenu*(f) >d(f)—4—(d(f)/2)(1/2) =3d(f)/4—4>0.
Consider an arbitrary vertex
e If d(v) = 3, then we consider two cases.

o If vis notincident to any large face, thefn(v) = —1+43(1/3) = 0.
o If visincident to a large face, theri(v) > —1+ (1/2) 4+ 3(1/6) = 0.

e If d(v) =4, theny*(v) = u(v) =0.

45



e If d(v) =5, then we do a case analyis depending on the type of triangigent tov, with a separate
case if no triangle is incident ta At the same time that we show thait(v) > 0 we will also show
thaty*(f) > O for the trianglef incident tov.

o If vis not on any triangle, then we consider four cases deperatirtgpw many 3-vertices are
adjacent tov.

« If vis adjacent to at most one 3-vertex, theiv) > 1—4(1/6) —1(1/3) =0.

x If vis adjacent to two 3-vertices, we consider two cases. Ifloe3-vertices are succesive,
then they both lie on a large face (sinGedoes not contain the reducible configuration in
Figure 3.2(d)), sq*(v) > 1—5(1/6) > 0. If the two 3-vertices are not successive, then let
u be the neighbor of between the 3-vertices. fis a 5-vertex, thep*(v) > 1—2(1/3) —
2(1/6) = 0. If uis a 4-vertex, then one of the 3-vertices adjacent maust be incident to
a large face (sinc& does not contain the reducible configuration in Figure 3)2(€hus
H(v) > 1—-4(1/6) - 1(1/3) =0.

x If vis adjacent to three 3-vertices, then two 3-vertices mustuseessive. Sinc& does
not contain the reducible configuration in Figure 3.2(dgsta 3-vertices must lie on a large
face. Squ*(v) > 1—4(1/6) —1(1/3) =0.

x If vis adjacent to at least four 3-vertices, then each 3-vesgtéxcident to a large face, so
K (v) >1-5(1/6) > 0.

o If visincident to a triangle, we consider four cases dependingttetherv is incident to a type
(5,5,5), (5,5,4), (5,5,3), or (5,4,4).

In each of the cases below, fetbe a 5-vertex, incident to a triangle We show that in each case
p*(v) > 0 andy*(f) > 0. Our calculations oft* (v) are beforev transfers any charge to(but after all other
applicable rules) and thus represent the chargevttransfers tof .

Case (5,5,5)If f is a type(5,5,5), we show thav transfers a charge of at least 1/3ftoand thugu*(f) >
—1+3(1/3) = 0. If vis adjacent to at most two 3-vertices, therv) > 1—2(1/3) = 1/3. If vis adjacent
to three 3-vertices, then each adjacent 3-vertex has at8xvas a successive neighbor. Si&eoes not
contain the reducible configuration in Figure 3.2(d), eaale@ex adjacent te is incident to a large face
(and thus receives only a charge of 1/6 fremSopu*(v) > 1—3(1/6) > 1/3.

Case (5,5,4):If f is a type(5,5,4), then letw be the 4-vertex incident té and letx be the off-triangle
neighbor ofw that is incident to a face (call ) that is incident tor. We show that the charge received by
from v andx totals at least 1/2. Sinckis incident to two 5-verticegs*(f) > —1+2(1/2) = 0. We consider
three cases. N is adjacent to at most one 3-vertex, thév) > 1—1(1/3) > 1/2. If vis adjacent to three
3-vertices, then each adjacent 3-vertex must be incidemtame face, sp*(v) > 1—3(1/6) =1/2. If vis
adjacent to two 3-vertices, then we consider two sub-cdsegher adjacent 3-vertex is incident to a large
face, thery*(v) > 1—1(1/3) — 1(1/6) = 1/2. If each adjacent 3-vertex is not incident to a large fdoent
lety be the 3-vertex that is adjacentvi@nd that is incident td. Sincef is not a large face or a triangle,
f must be a 4-face. Singeis a 3-vertex (and is adjacent xp, x must be a 5-vertex. Hence,receives a
charge of 1/6 fronx. Sincep(v) > 1—2(1/3) = 1/3, the total chargé receives fronmv andx (via w) is at
least ¥3+1/6=1/2.
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Case (5,5,3):If f is a type(5,5,3), then we show that transfers a charge of at least 1/2 ftand thus
e (f) > —142(1/2) = 0. Letw be the 3-vertex on the triangle; we consider two casesisliihot adjacent
to any 3-vertices besides, thenp*(v) > 1—1(1/3) > 1/2. If vis adjacent to a 3-vertex besides then

v is adjacent to exactly one 3-vertex, anis not adjacent to any 4-vertices (sinGedoes not contain the
reducible configuration in Figure 3.2(b)); we consider twb-sases. Ifv is incident to a large face, then
WE(v) > 1—1(1/3) — 1(1/6) = 1/2. If wis not incident to a large face, then létbe the 4-face that is
incident to bothv andw. Let x be the other neighbor off on f and lety be the other neighbor of on

f. Bothx andy are 5-vertices. To see this, note tlyatannot be a 3-vertex, sin€g does not contain the
reducible configuration in Figure 3.2(d) agdannot be a 4-vertex sinads not adjacent to any 4-vertices.
So by (R3)y gives a charge of 1/6 ta Thus,u*(v) >1+1/6—2(1/3) =1/2.

Case (5,4,4)If f isatype(5,4,4), then we consider two caseswvlis adjacent to no 3-vertices, themives
acharge of 1 td, sopy"(f) > —1+1=0andy*(v) =1—1=0. If vis adjacent to at least one 3-vertex, then
we show that always gives a charge of at least 1/3Ftave consider two sub-casesVlis adjacent to at most
two 3-vertices, thep*(v) > 1—2(1/3) =1/3. If vis adjacent to three 3-vertices, then each 3-vertex must be
incident to a large face, $6 (v) > 1—3(1/6) > 1/3. SinceG does not contain the reducible configuration in
Figure 3.2(a), all off-triangle neighbors of the two 4-vegs incident tof must be 5-vertices. Each of these
four 5-vertices gives a charge of 1/6 to one of the 4-vertisest"(f) > —1+4(1/6) 4+ 1(1/3) = 0. O

3.2 Planar subcubic graphs with large girth

In this section we use discharging to prove upper boundsehsiichromatic numbers of squares of planar
graphs with large girth. More precisely, givinwe seek the smallest threshold on the girttGahat will
guarantee tha®? is k-choosable.

Define a graplt to bek-minimal if G? is notk-choosable, but the square of every proper subgrag of
is k-choosable. Aconfigurationis a graph that may arise as an induced subgragh dfet a configuration
bek-reducibleif it cannot appear in &minimal graph (we will be interested in the cages 6 andk = 7).

As a further refinement, we say that a configuration’ise@lucibleif it cannot appear in a 6-minimal
graph with girth at least 7. Note that wh&r> 4, ak-minimal subcubic graph contains no 1-vertex (if
ds(x) = 1 andG is k-minimal, thendgz (x) = dg(y) < 3, wherey is the neighbor ok in G; sinceG? — x =
(G —x)? whendg(x) = 1, we can choose colors f¢6 \ {x})? from its lists and have a color remaining
available inL(x) to complete a proper coloring &?). Therefore, we assume henceforth ®as) > 2.

The definition ofk-minimal requires thatG — S)S is k-choosable wheneve C V(G), but it does not
require the stronger statement i@t — S is k-choosable > — S may have edges withihg(S) that do
not appear iG — S)2. This is a subtle but important distinction. To avoid trabive will consider only
reducible configurations! such thatG?\V (H) = (G\V(H))?. Otherwise, we may face difficulties as in
the next paragraph.

Here we give a fallacious proof that(G?) < 7 for every subcubic planar gra@with girth at least 6.
A vertex of degree at most 2 forms a 7-reducible configuratid®, since it has degree at most 6G@3. Let
G be a 7-minimal subcubic planar graph with girth at least 6éerig\planar graph with girth at least 6 has
a vertexv of degree at most 2 (by Lemma 1.2). If we can choose coloGfoy {v}, then we can extend
the coloring tov. Unfortunately k-minimality only implies that we can choose colors {@ — v)2, not for
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G? —v, which may have one additional edge joining the verticemdw of Ng(v). Hence we cannot apply
the induction hypothesis.

In Section 3.2.1 and Section 3.2.2 we obtain girth threshéidd 7-choosability and 6-choosability of
the square of a subcubic planar graph. The outlines of theptaofs are very similar. In each, we obtain
four reducible configurations (forbidden kaminimal graphs with appropriate girth). With= 7 when
k =7 andg = 9 whenk = 6, we show that mge) > % for ak-minimal graph that avoids the reducible
configurations. On the other hand, the well-known lemma voegut as Lemma 1.2 states that ri@g <

2

9—92. The contradiction prohibite-minimal graphs and proves the theorem.

3.2.1 Planar subcubic graphs with girth at least 7

We now prove thag| (G?) < 7 whenG is a subcubic planar graph with girth at least 7. As obserbeve
it suffices to obtain four 7-reducible configurations sucht tevery subcubic grap8 with mad G) < 1—54
contains at least one of them.

Lemma 3.13. The following configurations aré-reducible (they cannot appear infaninimal subcubic
graph).

Configuration 1: two adjacent 2-vertices.

Configuration 2: two 2-vertices with a common neighbor of degree 3.

Configuration 3: two adjacent 3-vertices having distinct 2-vertices agmeors.

Configuration 4: a 3-vertex whose neighbors all have degree 3 and havedi&tvalent neighbors.

Proof: Configuration 1: Letv; andv, be two adjacent 2-vertices, and lét= G — v —v,. By the min-
imality of G, H2 has a proper coloring from any lists of size 7. We have col@techost five vertices of
Ngz(Vi), for eachi. Hence we can choose colors fradrfv;) andL(v2) in turn to extend the coloring tG2.

Configuration 2: Let v; andv, be 2-vertices with a common neighborof degree 3, and letl =
G — {v1,V»,u}. AgainH? has a proper coloring from its lists. We have colored at most fertices in
Ngz2(vi) and at most five vertices iNgz(u). Choosing colors for the remaining vertices in the onder, v»
allows us to extend the coloring @&?.

Configuration 3: Let u; andu, be adjacent 3-vertices having distinct neighbarsindv, of degree 2,
respectively, and lel = G — {vi,V2,ur,u2}. Again H? has a proper coloring from its lists. For each of
the four remaining vertices, we have colored at most fouhefvertices in its neighborhood M. If we
complete the coloring in the ordei, u»,v1, Vo, then when we reach each vertex, we have colored at most
six vertices in its neighborhood @2, and a color remains available in its list.

Configuration 4: Let w be a 3-vertex have neighbous, up, andus of degree 3, adjacent to distinct
verticesvy, V2, andvs of degree 2, respectively. Lek = G — {v1,V,, V3, U, Up, U3, W}. Again H? has a proper
coloring from its lists. Fow, u;, orv;, we have colored at most three vertices, four vertices, wrvertices
from its neighborhood G2, respectively. We choose colors for eagland therw and then eack;. When
we reach each of these vertices, we have colored at mostrigegein its neighborhood i62, and a color
remains available in its list. O
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Lemma 3.14. Let G be a minimal graph such thgt(G?) > 7. Forv € V(G), let My(v) andMa(v) be
the number of 2-vertices at distance 1 and distance 2 framG, respectively. I is a 3-vertex, then
2M1 (V) +Mgy(v) < 2. If v is a 2-vertex, the@M1 (V) + Mz (v) = 0.

Proof. A 7-minimal graph cannot contain one of the four 7-reducdadefigurations obtained in Lemma 3.13.
We show that ifG has a vertex such that the quantity\2; (v) + Mz(v) is larger than claimed, the@ con-
tains such a configuration.

If vis a 2-vertex andM1(v) + Mz (v) > 0, thenG contains Configuration 1 or Configuration 2. Hence
2M1 (V) + M3 (v) = O for every 2-vertew. If vis a 3-vertex, them(v) > 1 yields Configuration 2. If
Mi(v) = 1 andM;(v) > 1, thenG contains Configuration 3. f1;(v) = 0 andM;(v) > 3, thenG contains
Configuration 4. Hencel2; (v) + M(v) < 2. O

Theorem 3.15. If G is a subcubic graph withlad(G) < 1—54, theny (G?) < 7.

Proof: Let G be a minimal counterexample to the theorem. By Lemma 3.1¢h 8avertexv satisfies
2M1(v) + Mgz (v) < 2 and each 2-vertexsatisfies #1(v) + M2(v) = 0. We show that these bounds require
madG) > 1—54. We use discharging to average out the vertex degreesgdisé degree “assigned” to 2-
vertex until every vertex is assigned at least3.4The initial chargeu(v) for each vertex is its degree. We
use a single discharging rule:

R1: Each 3-vertex giveg to each 2-vertex at distance 1 and givggo each 2-vertex at distance 2.

Let u*(v) be the resulting charge &t Each 2-vertex has distance at least 3 from every other tBxelf
d(v) = 2, we therefore havg*(v) = 2+ 2(2) +4(s5) = % Since My (V) + My(v) < 2 whend(v) = 3, we
obtain p*(v) = 3— My (v) — AMp(v) = 3— 5(2M1(v) + Ma(v)) > 3— £ = ¥ in this case. Since each
vertex now has charge at Ie%t the average degree is at Ie@%la contradiction. O

Corollary 3.16. If G is a planar subcubic graph with girth at least 7, tRei6?) < 7.

Proof: Lemma 1.2 yields mgd&) < 1—54. By Theorem 3.15, this implies that(G?) < 7. O

3.2.2 Planar subcubic graphs with girth at least 9

We now prove thai (G?) < 6 whenG is a subcubic planar graph with girth at least 9. Recall that a
configuration is 6reducible if it cannot appear in a 6-minimal graph withlgat least 7. As observed above,
it suffices to obtain a set of 8educible configurations such that every subcubic gfaptith mad G) < 1—54
contains at least one of them.

Note that adjacent vertices of degree 2 form a reducible gordtion, since deleting them from & 6
minimal graph leaves a grap such thaiH? is 6-choosable, and for each of the deleted vertices only fou
neighbors inG? are colored when colors are chosen g from its lists. Hence we may assume ti&has
no adjacent 2-vertices.

We will prove that also the four configurations shown in FagiB.3a, 3.3b, 3.4a, and 3.4b arfe 6
reducible. We begin with a definition: fis a 3-vertex, then we say thais of class iif v hasi neighbors
of degree 2.
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Uy U3 Uy Ug
Vi V2 \41 U3z V2
up Ug Uz
(@) (b)
Figure 3.3 Two 6'-reducible subgraphs. (a) Two adjacent class 2 vertices V1 and V». (b) A class 3 vertex V1 and a class 2 vertex Vs
at distance 2.

Lemma 3.17. Adjacent class 2 vertices, with their incident 2-neighbéwsm a6'-reducible configuration,
shown on the left in Figure 3.3.

Proof. Letv; andv, be adjacent class 2 vertices. luigtandu, be the other neighbors ef, and letus and
us be the other neighbors . LetH = G — {vy,V»,us, Uz, U3, U }. By the minimality ofG, H2 has a proper
coloring from any lists of size 6. We have colored three eegiofNg2(u;) and two vertices oNg(v;) for
eachi and j. SinceG has girth at least 7, each of andu, has distance 3 from each of andu,. For each
remaining vertex, letL’(x) be the list of remaining available colors»at

We havelL’(u;)| > 3 and|L’(vj)| > 4 for eachi and j; by discarding colors if necessary, we may assume
equality. These sizes are not quite big enough to color gyeieda specified order. However, we can choose
a color forv, that leaves three colors availableuat After assigning this color te,, we have three available
colors remaining at each af andvs, but only two at each ofuy, us,us}. By choosing colors at vertices in
the orderus, us, Vo, U, U1, we complete the extension to hrcoloring of G2. O

Lemma 3.18. A configuration that consists of two 3-vertices with a commeighboru of degree 2, plus
all their incident 2-vertices, i -reducible if one of the 3-vertices is class 3 and the othaiadss 2 or
class 3. (This configuration is shown on the right in Figui&)3Furthermore, it5 is any graph containing
this configuration andl is a 6-uniform list assignment such that — u has anlL-coloring, thenG? has
L-colorings in whichu has distinct colors.

Proof: Letv; andv, be such 3-vertices, withs being their common neighbor. Lat andu, be the other
neighbors of; (having degree 2). Lety be another 2-vertex adjacento LetH = G — {v1, V2, U3, Uz, U3, Us }.
By the minimality of G, H? has anL-coloring. LetL’(x) denote the list of remaining available colors for
eachx in V(G) —V(H). Note that|L'(up)| > 3, |L'(wp)| > 3, |L'(u3)| > 5, |L'(us)| > 2, [L'(v1)| > 4, and
IL'(v2)| > 2. We may assume that equality holds for each. (Stdes girth at least 7, note thaj has
distance at least 3 from eachwf, u,, andv;.)

Since|L’(v1)| = 4 and|L’(u1)| = 3, we can choose for, a colorcin L'(v;) —L'(u;). Next choose a
color for v, and then forus. At this point, {us,uy,u;} remain to be colored, with remaining lists of sizes
2,2, 3, respectively. We can use either remaining colougand then choose colors fag andu;. We have
produced_-colorings having distinct colors as. O

We use the terni -configurationto denote the configuration consisting of a class 1 vertexcadiit to
two class 2 vertices, plus all the 2-vertices adjacent tedhlree. ArH-configuration is shown on the left
in Figure 3.4).
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Up ©) Us
V1 V2 .V3
Uo us ©) Ug
. Us

Figure 3.4. An H-configuration and a Y -configuration; both configurations are 6 -reducible. (a) An H-configuration: a class 1 vertex
Vo is adjacent to two class 2 vertices v1 and v3. (b) A Y-configuration: a class 1 vertex Vs is adjacent to a class 2 vertex v3 and a
class 1 vertex V4, and is distance two from a class 3 vertex V.

Lemma 3.19. An H-configuration i’ -reducible.

Proof: Let G be a 6-minimal graph, and lek be a 6-uniform list assignment f@. Let vy, Vs, Vv3,Uy, Uy,
Uz, Uyg, Us be the vertices of aRl-configuration inG as labeled in Figure 3.4). L&t be the subgraph d&
obtained by deleting the vertices of the configuration. By hinimality of G, H? has anL-coloring. Let
L’(x) denote the list of remaining available colors for each unieal vertexx in G. Note that/L'(u;)| > 3,
IL"(v1)| > 4, |L'(v3)| > 4, and|L'(v2)| > 5. We may assume that equality holds. Sificév,)| > |L'(u3)|,
we can choose fov, a colorc in L'(vz2) — L'(uz). This reduces the lists other thaf(uz) by 1, but the
remaining lists are big enough to choose colors for verticéise orderu;, Uy, vy, Uz, V3, Ug, Us. This extends
theL-coloring toG2. O

We use the terny -configurationto denote the configuration consisting of four 3-vertiogss, va, vy
and their adjacent neighbors of degree 2, where the classles 8-vertices are,3,2,1, respectively, with
V3, Vo, V4 forming a path in order andg, having a common neighbor with. The configuration is shown on
the right in Figure 3.4.

Lemma 3.20. A Y -configuration i€’ -reducible.

Proof: Let G be a 6-minimal graph, and ldt be a 6-uniform list assignment f@. Letvy, v, V3, V4, Uy, Uy,
Us, Us, Us, Ug be the vertices of ab-configuration inG as labeled in Figure 3.4). Let = G— {v1,u, Uy, U3}.
By the minimality of G, H? has anL-coloring. Note that the four uncolored vertices form a wtign G2.
LetL’(x) denote the list of remaining available colors for each um@al vertexxin G. EachL’(x) has size
at least 3. Furthermore, the coloring extends td.amloring of G? unless the remaining lists all have size
3 and are equal.

Note that after verticeg,, u;, Up, andus are deleted, the subgraph induced by vertigess, va, Uy, Us,
andug is the same subgraph shown to Bedducible in Lemma 3.18. By Lemma 3.182 has a recoloring
such thatv, gets a different color than it currently has. Under this tedog of H2, the lists of available
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colors forvs, ug, Uy, andus are no longer identical. Hence, the recoloringfextends to ah.-coloring of
G2 O

Theorem 3.21. If G is a subcubic graph withlad(G) < %3 and girth at least 7, theq (G?) < 6.

Proof: Let G be a 6-minimal graph. As in Theorem 3.15, it suffices to show thab i€ontains none of
the B-reducible configurations in Lemmas 3.17, 3.18, 3.19, 003tBenMad(G) > %3. Again we use a
discharging argument with initial charge equal to degres adfjust the charge so that each vertex retains
charge at Ieasﬁ;. We use three discharging rules.

R1: Each 3-vertex give§ to each adjacent 2-vertex.
R2: Each class 0 vertex givéﬁto each adjacent 3-vertex.

R3: Each class 1 vertex give}sto each adjacent class 2 vertex and gi%ds each class 3 vertex at
distance 2.

Let ux (v) denote the resulting charge at vertex

We observed that &-6ninimal graph has no adjacent 2-vertices. Therefarg)) = 2+ 2(2) = 2 when
d(v) = 2, and hence it suffices to consider 3-vertices.

If vis class 0, thep (v) = 3—3(3) = £.

If vis class 2, then by Lemma 3.17 verteis adjacent to a class 1 vertex or a class 0 vertex (a class 3
vertex is not adjacent to another vertex of degree 3). Hah@e = 3—2(2) +1 = &,

If vis class 3, then by Lemma 3.18 each 3-vertex at distance 2 Wwr@ma class 1 vertex. Hence
wv)=3-35+3;=4%

Finally, letv be class 1. By Lemma 3.19,is adjacent to at most one class 2 vertex (and no class 3
vertex). Alsov is distance 2 from at most one class 3 vertex. Hergiges away% to its neighbor of degree
2 and3 to each of at most two vertices of degree 3. Hepide) > %8 unlessv is adjacent to one class 2
vertexw, has distance 2 from a class 3 vertexand does not receiv# from its other neighboy of degree
3. Hencey cannot be class 0; it must be class 1. This leaves us Witle@nfiguration, wherg; = x, vo = v,
vz = w, andvy = y. By Lemma 3.20( contains no such configuration. d

Corollary 3.22. If G is a planar subcubic graph with girth at least 9, tRei6?) < 6.

Proof: From Lemma 1.2, we see thistad(G) < 8. By Theorem 3.21, this implies thgt(G?) <6. O

3.2.3 Efficient Algorithms

The proofs of Theorems 3.15 and 3.21 are examples of a laage of discharging arguments that convert
easily into linear-time algorithms. The algorithm for eamnsists of finding a reducible configuratiéh
(7-reducible for Theorem 3.15 and-@ducible for Theorem 3.21), recursively colori®f \V(H), then
extending the coloring t&?. To achieve a linear running time, we need to find the rededabhfiguration

in amortized constant time. We make no effort to discoverojtemal coefficient on the linear term in the
running time; we only outline the technique to show that tigedthm can be made to run in linear time.
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First we decompos&, by removing one reducible configuration after another; whe remove a
configuration fromG, we add it to a listA (of removed configurations). After decomposi@gwe build the
graph back up, adding elementsfAfn the reverse of the order they were removed. When we adddrack
element ofA, we color all of its vertices. In this way, we eventually reds, with every vertex colored. We
call these two stages the decomposing phase and the relguitiase. Rebuilding takes constant time per
configuration. We must show how to find configurations to reendwring the decomposing phase.

Our plan is to maintain a lisB of reducible configurations. We begin with a preprocessihgsp, in
which we store irB every reducible configuration in the original graph. Usimgte force, we can do this
in linear time, since we have only a constant number of rdaeicionfigurations, each configuration has
bounded size, and each vertex appear in at most a constabenofireducible configurations.

When we remove a reducible configuratidrfrom G, we may create new reducible configurations. We
can search for these new reducible configurations in constaa, since they must be adjacentHo We
add each new reducible configurationBoln removingH, we may have destroyed one or more reducible
configurations irB (for example, they may contain verticestdj. We ignore the destroyed configurations
in B. At every point in timeB contains all the reducible configurations in the remainirapl, along with
possibly many “destroyed” reducible configurations.

Therefore, when we choose a configuratldrfrom B to remove from the remaining graph, we must
verify thatH has not been destroyed. Hf has been destroyed, then we discard it and proceed to the next
configuration inB. We will show that the entire process of decomposth@and buildingA) takes linear
time. (However, during the process, the time required to diparticular configuration to add fomay not
be constant.)

Theorems 3.15 and 3.21 guarantee that as we decordiseB will never be empty. Our only concern
is that perhap8 may contain “too many” destroyed configurations. It suffimeshow that throughout both
the preprocessing phase and the decomposing phase, onBaa tiumber of configurations can be added
to B. In the original graplG, each vertex can appear in only a constant number of re@ucdrifigurations;
hence, in the preprocessing phase, only a linear numbedo€itde configurations are addedBo

During the decomposing phase, if we remove a destroyed ewmafign fromB, we discard it without
adding any configurations ®. If we remove a valid configuration froB, we add only a constant number of
configurations td. Each time we remove a valid configuration fr@ywe decrease the number of vertices
in the remaining graph; hence we remove only a linear numbelia configurations fronB. Thus, during
the decomposing phase, we add only a linear number of coafigns toB. As a result, the decomposing
phase runs in linear time.

During the rebuilding phase, we use constant time to add fguoation back, and constant time to
color the configuration’s vertices (we do this using the lethat proved the configuration was reducible).
List A contains only a linear number of configurations, hence, gbeailding phase runs in linear time.

Since the preprocessing phase, decomposing phase, anldiirgbphase all run in linear time, our
complete algorithm runs in linear time.
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Chapter 4
(7,2)-edge-choosability of cubic graphs

Question 4.1. What is the minimum integar such that if we give lists of sizeto the edges of a 3-regular
graph, then we can choose sublists of size 2 so that the sulgifsncident edges are disjoint?

A graph is(r,s)-edge-choosablé whenever each edge is given a listrafolors, we can choose a sublist
of scolors for each edge so that incident edges receive digabiists. Given a grapB and an integes, it
is natural to ask for the minimumsuch thaG is (r,s)-choosable.

In a Problem of the Month, Bojan Mohar asked what the minimmumsuch that every 3-regular graph
is (r,2)-edge-choosable. He conjectured that every 3-regulaihgsaf¥,2)-edge-choosable and suggested
the Petersen graph as a candidate for a counterexample.

It is not difficult to show that every 3-regular graph is (8e2lge-choosable, using a generalization of
Brooks’ Theorem. Tuza and Voigt [43] proved that: If a cortedographG is not complete and not an odd
cycle, thenG is (A(G)m, m)-vertex-choosable for ath> 1. Since the line graph of a 3-regular graph has
maximum degree 4, every 3-regular graph is (8,2)-edgeszine.

It is also not difficult to construct a 3-regular graph thahe (6,2)-edge-choosable. Fo@Gby sub-
dividing an edge oK4. We see by inspection th& is not (6,2)-edge-colorable and thus is not (6,2)-
edge-choosable. Hence, any 3-regular graph that confiamot (6,2)-edge-choosable. As a result, the
conjecture that every 3-regular graph is (7,2)-edge-ciidesis sharp if true.

In this section, we show that every 3-edge-colorable gragi,2)-edge-choosable and that the Petersen
graph is (7,2)-edge-choosable. Ellingham and Goddyn [i@ved that planad-regulard-edge-colorable
multigraphs ared-edge-choosable (thus planar cubic graphs are (6,2)-eugesable). Recently, Haxell
and Naserasr [24] showed that the Petersen graph is (6g2rawosable. Showing that lists of size only
6 suffice is a stronger result. However, both papers use tba-Aarsi Theorem and thus provide only
existence proofs. Here we give a simple algorithm for chap#iie colorings from lists of size 7.

Each edge of a 3-regular graph is incident to four other ed@ass, we could have as many as eight
restrictions on the colors we choose for an edge. Our mamigi® show that we can choose colors for two
of these incident edges, while only increasing the numbeelefant restrictions by one.
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4.1 The Key Lemma

Our main lemma is a generalization of the well-known resdR][that even cycles ar€m, m)-edge-
choosable. To understand the following proof, it may be wis&f consider the case whdh is an even
cycle. In general, howevel need not be a matching.

Lemma4.2. LetA={aj,ay,...,a} be a matching anB = {by,b,,... b} be an edge set such thatis

incident toa; anda; 1, but not incident to any other edgeAn(the subscript indices are viewed modl)o

Let the list assigned to edgebel (e), with all the lists having the same size. It is possible toasgoone
color for each edge o from its list so that at most one color lirfhy) is used org; anda; 1.

Proof: We will choose a coloc(e) for each edge in AUB.

If the lists for all edges WU B are identical, then use the same color on each edde Ibfthe lists are
not all identical, then lists differ for two successive eslgethe alternating lishy, b1, a2, b, ... an, by, We
may assume that these aeandby,.

Choosec(ay) ¢ L(by). If c(a1) ¢ L(b1), then we have the freedom to choa$e,) from L(ay) arbitrarily.

If c(aq) € L(b1) NL(ap), then letc(ay) = c(ay). Finally, if c(a;) € L(b;) — L(a2), then we can choose
c(ag) € L(a2) —L(b1). In each case, at most one of the colors chosen for the edgesla, incident tob;
isinL(by).

Continue in the same manner choosing colors for edges, . . . a,, S0 that at most one color froh{by;)
is used org; anda; 1. Finally, alsob, has at most one color prohibited, sirg@) ¢ L(by). O

Corollary 4.3. [42] Even cycles aré2m, m)-edge-choosable.

Proof. Partition the edges of the cycle into two matchingsndB. Simultaneously choose one color for
each edge oA as guaranteed by Lemma 5.5. Repeat this sigjmnes. (Each time we repeat this step, it
may be necessary to restrict the size of some lists by 1, saliists have equal sizes.) At this point, each
edge ofB has at leasin available colors. O

It is not immediately obvious that Lemma 5.5 can be used tegemything more than Corollary 4.3.
Its power lies in choosing the edge sAtandB cleverly.

Theorem 4.4. Graphs that are 3-edge-colorable are (7,2)-edge-chamsabl

Proof:. Let G be a 3-edge-colorable graph. It is straightforward to adgesdand vertices t@ to form a
cubic graph that is 3-edge-colorable. We may thus assum&tisacubic and 3-edge-colorable, since every
subgraph of a (7,2)-edge-choosable graph is (7,2)-edgeseble.

LetJ, K, andL be the three color classes that partitl6(G). Since the graph is cubic, the color classes
have the same size. We apply Lemma 5.5 twice. First apply Lafmm withd asA andK asB. At this
point, we have choosen one color for each edgé. ofhe lists of colors remaining available have size at
least 6 for edges af andK and size at least 5 for edgeslaf Now apply Lemma 5.5 witld asA andL as
B. (Since the lemma requires that all list sizes be the sarbéraaily restrict the lists on edges thandL
to sets of size 5 before applying the lemma.) After doing, this have chosen two colors for each edgé in
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but no colors for any edge i or L. Each edge oK andL has at least four colors remaining available in its
list. Since the edges & andL form vertex-disjoint even cycles, we may apply Lemma 4.3achecycle to
complete the selection of the coloring. d

We can use the ideas in Theorem 4.4 to prove that many othehgeae (7,2)-edge-choosable.

A snarkis a bridgeless 3-regular graph with edge-chromatic nurbegirth at least 5, and cyclic-
connectivity at least 4. Snarks first became of interestumecthe 4 Color Theorem is equivalent to the fact
that there are no planar snarks. They remain of interestusecaany important conjectures are known to
be true if and only if they are true for snarks.

Theorem 4.5. If a 3-regular grapl has girth at least 5 and has an edgesuch that \ {u,v} is Hamilto-
nian, therG is (7,2)-edge-choosable.

Proof: The ideas in this proof are similar to those used to provefeatge-colorable graphs are (7,2)-edge-
choosable. To understand the proof, it may be convenienbrisider the Petersen graph (shown below),
which is the simplest class 2 graph to which the theorem egpli

Letas,ay,...,a,_2 denote the edges of the Hamiltonian cycléah {u,v}. Letb; denote the edge that
is incident tog; anda; 1. Note that ofterb; = b; for i # j; in fact, each edge not on the Hamiltonian cycle is
labeled as two distindt; except for edgeiv and the four edges incident tv. Let p andq be the subscripts
of the bjs incident to vertexu and letr ands be the subscripts of thas incident to vertex; assume that
p < gandr < s(also assumg < s).

If L(ay) = L(by) =L(a1) for all i, then by transitivity, the lists on all edges are the samehah case
we can use colors 1 and 2 on all the; Then we are done, since the Hamiltonian cycle has listizefs
and is (4,2)-edge-choosable. So assume that not all tealistthe same.

We may assume that an pair of incident edgeandb; have distinct lists; by renaming the edges, we
may assume thdt(a;) # L(b;). Choosec(b;) ¢ L(a;); removec(b;) from L(az) (if c(by) ¢ L(az), then
remove an arbitrary color frorh(az)). We also must remove(b;) from the lists on other edges incident
to edgeby; so if edgeb, is also edged;, then we also remove(b;) from L(a;) andL(aj;1). Now since
IL(b2)| = 7 and|L(az)| = 6, we can choose(b,) ¢ L(ay). After we removec(b,) from L(az), we have
|L(bs)| > |L(ag)|. Continuing like this, we always havk(b;)| > |L(a)| at the time we choose(b;). The
two possible exceptions to this are- g andi = s; this is because our choice fofby) reduced the size of
L(bg) but not the size of (aq), similarly c(by) reduced|L(bs)| but not|L(as)|. When we need to choose
c(bg), we do so arbitarily (we will save a color on edagglater). When we need to choosgbs), we choose
arbitarily fromL(bs) \ L(uv) (this is possible because at this pdintbs)| = 6 and|L(uv)| = 4, since we have
removedc(by), c(by), andc(by) from L(uv)). After we have chosen one color for each etigave choose
a second color each fdx; andbs. SinceG has girth at least 5, note theq — 1) ¢ {p,r,s}; thus, we have
already chosen two colors for edgg 1. This means thal (aq)| = 4, but|L(bg)| = 5; so we can choose a
second color foby, this one fromL(by) \ L(ag). Similarly, we can choose a second color Iy this one
from L(bs) \ L(by). At this point, |L(uv)| = 2, so we choose two colors for edge. Next, we choose a
second color for each dif, andb;. Each edge on the Hamiltonian cycle has four colors avai|aa we can
finish the coloring since even cycles are (4,2)-edge-chiesa O
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Figure 4.1 The Petersen Graph on the torus with one crossing.

Corollary 4.6. All snarks on at most 24 vertices are (7,2)-edge-choos&uegre the double star snark,
the Szekeres snark, the Goldberg snark, the Watkins snadeslers 42 and 50, and all cyclically 5-edge-
connected snarks of order 26.

Proof. Cavicchioli et al. give drawings of all snarks on at most 24tiges (there are 67 such non-
isomorphic snarks) as well as all cyclically 5-edge-comegcnarks of order 26. Their drawings are de-
signed to illustrate that the snarks are almost Hamiltgribahthey also make it easy to see that each snark
satisfies the hypotheses of Theorem 4.5. Each of the othetssligted in the theorem also has an edge
such thaG \ {u,v} is Hamiltonian. O

In fact, we do not know of any snarks that do not satisfy theotlypses of Theorem 4.5. This leads us
to conjecture the following.

Conjecture 4.7. Every snarks has some edgev such thaG\ {u,v} is Hamiltonian.

If true, this conjecture implies that all snarks @ve2)-edge-choosable.

4.2 2-sum-chromatic number

We would like to show that many more 3-regular class 2 grapb$7a2)-edge-choosable. Our plan is to
generalize the technique we used to show that 3-regulas tlgsaphs ar€7,2)-edge-choosable. Initially,
we consider 3-regular graphs with a 1-fackér We will choose colors for the edges M so that we save
colors on the edges in the 2-fact®(G) \ M. As in the proof of Theorem 4.4, we will aim to save an average
of one color per edge of the 2-factor. SinGas not class 1, the 2-factor will contain odd cycles. It isyeas
to see that odd cycles are n@t,2)-edge-choosable (since they are (t2)-edge-colorable). Thus, we
consider list size assignmeritgor the cycleCy, such thaCy is (f,2)-edge-choosable and the sum of the list
sizes is 4. Since the line graph of a cycle is isomorphic to the cycleassgn lists to and choose colors for
the vertices of the cycle (rather than the edges). For a gBaphe write Xs¢(G,2) to denote the minimum
sum of list sizesf such thaG is ( f,2)-choosable; we call this the 2-sum-chromatic numbe®.of
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Lemma 4.8. The 2-sum-chromatic number Bf is 4k — 2.

Proof: To prove the upper bound, ldtvi) =2 and f(v;) = 4 for alli > 1. We greedily choose colors
for the vertices in order of increasing subscript. We resthé lower bound as follows. Given a list size
assignment on a pathP, if the sum of the list sizes is at most 4 3, thenP is not( f,2)-choosable. We
prove the lower bound by induction on the number of vertioghé path with list sizes either 2, 5, or 6. For
the base case, assume that no vertices have list sizes %;3has, at least three vertices have list size 3.

Suppose that two successive vertices with list size 3 araratga by an even number of vertices (say
2l) with list size 4, then we assign the li§a, b, c} to the vertices with list size 3 and the lisy, b, c,d} to
the vertices with list size 4. Each of the colad, andc can appear on at mok#- 1 of these vertices and
colord can appear on at mokvertices; since 3 + 1) +1 < 2(2| 4 2), the path is not f, 2)-chooable.

Suppose instead that each pair of successive verticesigtigidze 3 are separated by an odd number of
vertices with list size 4. Let;, up, andus be the vertices with list size 3. Assign tl, Uy, andus the lists
{a,b,c}, {b,c,d} and{a,c,d} respectively; assign the ligg,b,c,d} to all other vertices (say there ark 2
of them). Colorsa, b, andd can each appear on at mbst 1 vertices; colorc can appear on at mokt 2
vertices. Since@+1) +1+2 < 2(I + 3), the path is not f, 2)-choosable.

Now consider the inductive step. If some verteas list size 6, then we consider the two pd#)sand
R, that result by deleting. Note that 6+ (4ky — 2) + (4ko — 2) = 4(ky + ko + 1) — 2 = 4k — 2; so eitheR,
has list size sum at mosk#— 3 or B, has list size sum at mosk#— 3.

If some vertexu has list size 2, again we consider the two pdhs, andP, that result by deleting.
Now however, we decrease by 2 the list size of each neighbar Nbte that 2+ ((4k; — 2) + 2) + ((4ky —
2)+2) = 4(ky + ko +1) — 2; so again, one of the resulting paths must have list sum size at mosn4- 3.

Suppose instead that every vertex has list sum size 3, 4,By the pigeonhole principle, two vertices
with list size 3 must be separated only by vertices with lige gl; call these vertices; andu,. By the
argument above, these vertices must be separated by an odeenaf vertices with list size 4. We assign
the list {a,b,c} to u; and the list{a,b,d} to up, and we assign the lista,b,c,d} to all other vertices.
Observe that the only valid coloring from this list uses esandb on bothu; andu,. Contract the path
from u; to u, down to a single vertex and assign it the st b}. Thus, the original path is onlyf,2)-
choosable if this new path {§’,2)-choosable. Hence, we induct as above when a vertex hadsizksof
2. O

The proof of the lower bound in the previous lemma allows ugite a linear-time algorithm to de-
termine if a pathP is (f,2)-choosable whenever the list size sumfois 4k — 2. When the path is not
(f,2)-choosable, our algorithm constructs a list assignnhesiich that? is not (L,2)-colorable and also
gives a proof of this fact.

Theorem 4.9. Given a pathp and a list size functiom such that the list size sum4k— 2, we can determine
in linear time whethePy is (f,2)-choosable.

Proof:. Our proof follows closely the proof of the lower bound in threeydous lemma.
If a vertexv has list size 6, theR is (f,2)-choosable if and only if each of the paths formed by deleting
v from B are (f,2)-choosable. Suppose the paths have lengitendk,. By Lemma 4.8, we know that
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the paths must have list size sums at le&st-42 and 4, — 2, respectively. Sinceld —2+ 4k, —2+6 =
4(k; + ko 4+ 1) — 2, we see that these bounds each hold with equality; so weedday induction.

If a vertexv has list size 2, we assign it the cola@sandb, and also assign these colors to each of its
neighbors. The path is (f,2)-choosable if and only if each of the paths formed by deletifrpm P are
(f,2)-choosable when the list size of each neighbov isfdecreased by 2; again we proceed by induction.

If each vertex oF has list size 3, 4, or 5, then by the pigeonhole principle, Yexticesu; andu, each
have list size 3 and the list size of each vertex between tetn(@and there are an odd number of vertices
between them); denote the vertices betwagandu, by vi,Vo,..., Vo 1. In the proof of Lemma 4.8, we
showed how to assign lists so that the only valid coloringsube colorsa andb on bothu; andu,. In
that case, the path idf, 2)-choosable only if each of the paths formed by deleting eesti; throughu,
(inclusive) are(f,2)-choosable when we decrease by 2 the list size of the neigldfar, andu,. Given
any listL, we can choose a colej for v; that is not present at;; deletec; from the list atv,. Now we can
choose a color fovs that is not present ab, etc. Eventually, we choose a color for vertex, ; that is not
present at/y; however, this reduces the list sizewuatto two, so we choose two colors fag. This in turn
reduces the list size fag 1 to one. Working backwards from the greatest index to the leassee that all
the remaining choices are forced, but that the path betweandu; is indeed( f,2)-choosable. O

We are more interested in the 2-sum-chromatic number ofyitle than of the path; however, Lemma 4.8
is useful, since it gives the lower bound df-4 2 on the 2-sum-chromatic number of the cyCle It is easy
to prove an upper bound of ok®4n the 2-sum-chromatic number Gf; so we want to improve the lower
bound. We introduce the idea of run to improve this lower labun

Given a list assignmerit, we define aun to be a maximal path (or cycle) such that each vertex has a
common color. If a patR is a run for colorc, then at mostk/2]| vertices of can receive coloc; if a color
c appears at each vertex ©f, then at mostn/2| vertices ofCy can receive coloc. For a list assignment
L, lets(L) denote the sum over all runs of the maximum number of verfitéise run that can receive the
color of the run.

Lemma 4.10. Given a list assignmeitt, if S(L) is less thar2n, then the cycl€, is not(L,2)-colorable.

Proof: If a cycleC, is (L,2)-colorable, then in total tha vertices receive 2 colors. If the sum over all
runs of the maximum number of vertices in the run that canivedie color is less thann2thenC, is not
(L,2)-colorable. O

Lemma 4.11. LetC, be an odd cycle. Ldt be a list assignment. If the same two colors appear at each
vertex ofC, and each other run has even length, tBgis not(L,2)-colorable.

Proof: This is a direct application of Lemma 4.10. The maximum nuntdfe/ertices that can receive one
of the two colors that appears everywhere|is/2| = n— 1. Since each other run has even length, the sums
of the contributions of all the other runs will Ime Thus, then vertices can be assigned at mast-21L colors.
HenceC, is not(L,2)-colorable. O

Lemma 4.12. If a cycleCy is (f,2)-choosable and the list size sum fofs less tharik, then each vertex
receives a list of size 3, 4, or 5; furthermore, between eaohvertices with lists of size 3 some vertex has
list size 5.
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Proof: Suppose thaty is (f,2)-choosable and the list size sumfofs at most 4 — 1 and that some vertex
v receives a list size of 6. The cyd is (f,2)-choosable only if the patR_; formed by deletings is
(f,2)-choosable; however, the list size sumfofor this path is at most(& — 1) — 3. By Lemma 4.8, the
pathP_; is not (f,2)-choosable, so the cyclg is not (f,2)-choosable. Suppose instead that a vewtex
receives a list of size 2; the argument is analgous. We deletel decrease by 2 the list size of each of its
neighbors. Again, the resulting path is riét 2)-choosable, so neither is the original cycle.

If there exist two vertices; andu, with lists of size 3 and all vertices between them have lissae 4,
we assign lists in the following way. If the number of verdeetweeny; andu; is even, assigia, b, c} to
u; andu, and assiga, b, c,d} to each vertex between them; by Lemma 4.10, the path &rpta u; is not
(L, 2)-colorable. If the number of vertices betwegnandu, is odd, assig{a,b,c} to u;, assign{a,b,d}
to u; and assig{a,b,c,d} to each vertex between them:; it is straightforward to vetfiigt the only valid
color of the path fromu; to u, uses colors andb on both vertexu; and vertexu,. Thus, we can proceed as
if the path fromu; to u, were replaced by a single vertex with list, b}. Above, we showed that the cycle
is not( f,2)-choosable for such a function O

From the previous lemma, we conclude thagifis (f,2)-choosable for a list size functiohwith list
size sum less tharkdthen f assigns each vertex a list size of 4 except for possibly ortex;evhich may
receive a list size of 3. Ikis even, the cycl€ is (f,2)-choosable for such a functioin we omit the proof,
since the result will be of little use to us in the applicattor{7,2)-edge-choosability. Since an odd cycle is
not (4,2)-colorable, it is easy to see that the for ddgks(C«) = 4k. Now we consider for whicH with list
size sum 4 the cycleCy is (f,2)-choosable.

Lemma 4.13. Suppose we are given a cy€g and a list size functioh such thatf has list size surdk. If
any vertex has list size 2 or 6, or if two vertices have lises3zand each vertex between them has list size 4,
then we can determine wheth@gis (f,2)-choosable in linear time.

Proof: If a vertexu has list size 2 or 6, we delete vertaxand proceed as in the proof of Theorem 4.9. If
verticesu; andu, each have list size 3 and all vertices between them havedestiswe delete the path from
u; to up and proceed as in Theorem 4.9. O

For every list size assignmerit with list size sum & we can determine in linear-time thd,?2)-
choosability of a cycl€, unless each list size is 3, 4, or 5 and the vertices with ltssB and 5 alternate
as we proceed around the cycle. We call such a fundtiaell-formed Our next few lemmas and theorems
work toward a linear-time algorithm to determine whethegeeis (f,2)-choosable given a well-formed
function f.

Since the 3s and 5s must alternate, it is convenient to Yiew a series of blocks, wherébockis a 3,
followed by O or more 4s (sag 4s), followed by a 5, followed by 0 or more 4s (shyls); frequently we
include the initial 3 of the next block, but we never choosmifor it or decrease its list. We are mainly
concerned with the parity @& andb; thus, we consider four types of blocks: odd/odd, even/evdd/even,
and even/odd. We use the testning to denote the list sizes of one or more adjacent verticesatieatot of
the form of one of these blocks. We also need a means to ddmaiterie or two colors have already been
chosen for a vertex; thus, if a vertex has a remaining listz&f csand already has one or two colors chosen,
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we denote the vertex byor ¢, respectively. We begin by proving that for a certain cladssioctions f, the
cycleCy is not( f, 2)-choosable; then we prove that for all well-formed functidreside this class, the cycle
Cxis (f,2)-choosable.

Theorem 4.14. If C, is an odd cycle andl consists only of odd/odd blocks and odd/even blocks, @heis
not(f,2)-choosable.

Proof: Given the list size for each vertex, we construct allituch thatC, is not (L, 2)-colorable. We
construct one list for an odd/odd block and another list foodd/even block. Finally, we show that if each
block of the cycle receives the list of the appropriate tthenC, is not(L, 2)-colorable. To prove this, we
use Lemma 4.10.

Suppose that an odd/odd block consists of ore43, one 5s4s (where ands are odd); we assign the
following lists: the first 3 receive$a, b, c}, the firstr 4s receive{a,b,c,d}, the 5 receivega, b, c,d, e}, and
the lasts4s receive{a, b, c,e}. Suppose that an odd/even block consists of ond$8, one 5u 4s (wherd is
odd andu is even); we assign the following lists: the first 3 receifad, c}, the firstt 4s receive{a, b, d, e},
the 5 receiveda,b,c,d, e}, and the lasti 4s receive{a, b, c, e}.

To apply Lemma 4.10, we must verify two facts: 1) some two rolppear at each vertexGf and s)
every other run has even length. It is easy to see that calarglb appear at every vertex. Every run of
color e is of length 1+r or length 1+t; sincer andt are odd, these runs have even length. Every run of
color 4 is of length & s or lengtht + 1+ u; these lengths are always even. Note that every run of color
starts at an odd/even block and ends at an odd/even blockoSephat a run of colarhasl odd/odd blocks
between its starting and ending block. The length of the sutvid +1(1+a+ 1+ b) + 1; this length is
even. Thus, we can apply Lemma 4.10; so the theorem holds. O

Corollary 4.15. If C, is an odd cycle andl consists only of odd/odd blocks and even/odd blocks, @en
is not(f,2)-choosable.

Proof: If we relabel the vertices @, in counterclockwise order (rather than clockwise), thenetven/odd
blocks become odd/even blocks (and odd/odd blocks remaidfodd blocks); hence, the result follows
immediately from Theorem 4.14. O

In fact, the list size assignment functions in Theorem 41id @orollary 4.15 are the only well-formed
list assignment function$ such that a cycl€, is not( f,2)-choosable. We prove this in the next theorem.

Theorem 4.16. If f is a well-formed list size assignment function andloes not meet the hypothesis of
Corollary 4.15, the®, is (f,2)-choosable.

Proof: A good stringis a string that begins with23and ends with a disjoir23 such that when the lists of
the first and las® vertices are each reduced by one color we can succesdfiaifyse all the necessary colors
for all the vertices between them.

Claim 1. We can transform a block of the form @#)*5(44)*43 (odd/odd) into a string of the form
3(33)".
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Letvy,vo,...,Vokr1 be the first path of vertices with lists of size 4. lvgtbe the initial vertex with list
size 3 and letry 2 be the vertex with list size 5. Sindgvy) > f(w), we can choose a colaj for v; that
does not appear ap. We may assume that appears at vertexp, and hence using; at v, reduces the
number of colors available a. Now, sincef(v3) > f(v2) — 1, we can choose a color feg that does not
further reduce the number of colorswat Proceeding in this manner, we eventually reach a block ef th
form 33(33)*4(44)*43. In the same way, we begin at the end of the block and workrbthe middle-
choosing a color for the next to last vertex that does not apgkethe last vertex, etc. Ultimately, we reach
a block of the form 833)*.

Claim 2. We can transform a block of the form{81)*5(44)*3 (even/even) into a good string of the
form 3(22)*4(22)*3.

We begin the same way as in Claim 1, by choosing a color foexest that does not appear &.
Eventually, we reach the form(33)*5(33)*3. Now we choose one color each for the two neighbors of the
vertex with list size 5 such that its list is reduced by at nums; this gives the form(33)*22422(33)*3. Now
we work out from the center vertex; at each step we chooseoaforla vertex with no color chosen, so that
the list of colors on its neighbor nearer the center does eotedise. Eventually, we react3)*4(22)*3.

If the lists on the initial and fina2 are each reduced by one color, we color greedily from battstart and
end of the string; thus, this string is good.

Claim 3. We can transform a string of the form @1)*5(44)*3(44)*54(44)*3 (an odd/even block
followed by an even/odd block) into a good string of the fori&33)*2*3.

We choose a color for each neighbor of a vertex with list siz® 3hat none of the lists of size 3 are
reduced; moving away from the lists of size 3 (as in Claims d 2n we eventually reach a string of the
form 33(33)*43(33)*4(33)*33. Now we choose a color for the first vertex with list size atttoes not
appear on the neighbor that follows it; similarly, we choaseolor for the last vertex with list size 4 that
does not appear on the neighbor that preceeds it. This givestiing of the forni33)*3233(33)*323(33)*.
Again we choose a color for the neighbor of the first vertehigt size 2 that does not appear on that vertex;
similarly for the last vertex with list size 2. Proceedingward, we reach the form2§22)*33(33)*32(22)*3.

If the lists on the initial and fina? are each reduced by one color, we color greedily from batistart
and end of the string; this gives us the foﬁ’f?3(33)*2i')*. By repeatedly choosing a color for the first
vertex with list size 3 that does not appear on its preceedéighbor, we reach the forr22*320*. Now
we choose a color for each neighbor of the vertex with list 850 that we reduce its list by at most 1; then
we greedily finish the coloring. Hence, the strir@g( 2)*33(33)*32(22)*3 is good.

Claim 4. We can transform a string of the forn{43!)*54(44)*3(44)*45(44)*3 (an even/odd block
followed by an odd/even block) into a good string of the forgi(®+*2*3. We begin in the standard way,
choosing a color for each neighbor of a 3 that does not appetwad 3; working away from the 3s, we even-
tually reach 833)*43(33)*33(33)*4(33)*3. Now we choose a color for the first 4 that does not appear on
its preceeding neighbor; working to the right, we reach tiloving form 3(33)*32(22)*22(22)*4(33)*3.
Now we choose a color for the last 4 that does not appear ongétesding neighbor; working to the left,
we reach the following form (33)* 200+ 2(33)*3. Finally, we choose a color for each neighbor ¢ that
do not appear on th2; working outward, we reach the forn2®0*2*3. It is easy to see that this is a good
string. If the lists on the initial and fin& are each reduced by one color, we color greedily from bath th
start and end of the string; thus, this string is good.
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Claim 5. If one or more odd/odd blocks are adjacent to any of the stninglaim 2, Claim 3, or Claim
4 (or inserted between the odd/even and even/odd blockedittimgs in Claim 3 or Claim 4) the adjacent
odd/odd blocks can be absorbed during the transformatiat;is, the odd/odd blocks become part of the
resulting good string.

We first transform the odd/odd block to a string of the forfﬁ@*. The key realization is that during
the transformation processes for the strings in Claims 2nd,4, we pass through a pattern that includes
a string of the forn(33)* adjacent to the transformed odd/odd block; from this pomtwe continue the
transformation as though the transformed odd/odd blochiisqgd the block being transformed.

Claim 6. If a block of the form 3444)*5(44)*3 (an odd/even block) follows immediately after a good
string, then the odd/even block can be absorbed into theedatg good string.

By working from the outer 3s in toward the 5, we reach the gtB8(33)*4(33)*3. Choose a color for
the 4 that does not appear on its succeeding neighbor, thenbaok to the left iteratively choosing a color
for a vertex with no colors choosen that does not appear suiseeding neighbor; this yields the form
32*3(33)*3. Choose a color for the first 3 that does not appear of that preceeds it (from the preceeding
good string). This reduces its succeeding neighboritprew we proceed greedily to the right. This yields
the form00*22*3; it is easy to see that this is a good string.

Claim 7. We can first transform (or absorb) all blocks into good ssirtgen we can finish choosing 2
colors for each vertex.

If L contains any odd/even or even/odd block, we assume witlisst of generality thalt contains
odd/even blocks (and possibly also even/odd blocks). titetg, we apply Claims 1, 2, 3, 4, 5, and 6; our
goal is to transform (or absorb) every block into a good gtridote that by Claim 6 (and symmetry), if
an even/odd block immediately preceeds a good string, thekldan be absorbed into the string. Suppose
that after all possible transformations (and absorbtidngpntains at least one good string and at least one
block that is untransformed. L&be the first block following a good string that cannot be tfamsed (or
absorbed) into a good strinB;must be an even/odd block. As we proceed around the cycleBrame must
only encounter even/odd blocks and transformed odd/odtkbl¢(for otherwise we could transforBiinto
a good string); however, eventually we reach a good strilgisTwe can absorb the block prior to the good
string into the good string. This contradicts our assunmptitat we had made all possible transformations
and absorbtions.

Suppose instead that after all possible transformatioms #@sorptions), no good string exists; we con-
clude that. consists entirely of odd/odd blocks and odd/even blocks¢hmvas prohibited by hypothesis.

Now we assume thdt has been transformed into a series of good strings.vibet a vertex with list
size 3 between two good strings; latbe the last vertex of the preceeding good string and,lée the first
vertex of the succeeding good string. Choose a colov that does not appear on vertex Letw; be the
last vertex at the end of the good string containinglet x andw, be the vertices followingv;. Choose a
color for x that does not appear aw. We assume that the colors we picked ¥andx reduced the lists of
colors available om, andwy, respectively. By the definition of good block, we can finisloasing colors
for all of the vertices betweem, andw;. In fact, when we choose colors for all of these vertices sémond
colors for verticesr andx are forced; this in turn forces the final colors for verticggandw,. By repeating
this process at each vertex between good strings, we elgrthaose colors for the entire cycle. O
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Theorem 4.17. Given a list assignmerit with list size surmén, the cycleC,, is (f,2)-choosable unless there
exists a list assignmehtthat satisfied such that eitheg(L) is less thar2n or whenL is restricted to some
pathP the suns(L) (restricted td%) is less thar2k.

Proof: In each case that we prové& is not ( f,2)-choosable for a given list size assignment functfon
we constructed a list assignmdntsuch thatC, is not (L,2)-colorable. To prove the present theorem, we
must simply verify that each sudh satisfies the present hypothesis; since this process ighdfoaward
(but tedious), we omit the details. d

In fact, we believe this theorem can be generalized signifigawe end with the following conjecture.

Conjecture 4.18. Given a list assignmerit with list size sun?lIn, the cycleC, is (f,|)-choosable unless
there exists a list assignménthat satisfied such that eithes(L) is less tharn or whenL is restricted to
some pathp the suns(L) (restricted td™) is less thar2lk.

It is straightforward to verify that Conjecture 4.18 holdseml = 1; Theorem 4.17 proves the cdse 2.

64



Chapter 5

Antimagic Labeling

Problems in graph labeling differ from problems in graphociolg in two important ways. First, “labeling”
usually means that the function on the elements receivingidas injective. Given this, the labels are auto-
matically distinct, and the normal coloring constraints eplaced by relationships among the labels. This
leads to the second difference, which is that the consriimblve arithmetic computations with numerical
values of the labels.

The most famous graph labeling problem may be the “Gracefé Tonjecture”. Here the vertices of an
n-vertex tree must be assigned the labels 1 thraugth that then — 1 differences between labels at adjacent
vertices are the numbers 1 throughin 1964, Kotzig conjectured that every tree has such ailapeihich
later came to be known agyaaceful labeling Many other problems of vertex labeling have been introduce
over the years; all seem to be quite difficult. Gallian [17]im&ins a dynamic survey of results on graph
labeling problems; as of 2007, it has more than 800 refesence

In this chapter, we study a problem of edge-labeling. Fowenience, then, we formally define a
labeling of a graphG to be a bijection fronE(G) to the sef{1,...,|E(G)|}. A vertex-sunfor a labeling is
the sum of the labels on edges incident to a vevtexe also call this thesum at v A labeling isantimagic
if the vertex-sums are pairwise distinct. A graplaigimagicif it has an antimagic labeling.

The term “antimagic” is motivated by the use of “magic” to ddéise a labeling whose vertex-sums
are identical (strictly speaking, “magic” requires onlstifict positive integer labels, not necessarily the
consecutive smallest ones). This term in turn arises fraratitient notion of a “magic square”, in which
numbers are entered in a square grid so that the sums in egcbach column, and each main diagonal are
the same. Magic labelings were introduced by Sedlacel@81Gallian’s survey also presents the known
results on magic and antimagic labelings. Most of the resdtablish that various special families of graphs
have various types of magic or antimagic labelings.

Hartsfield and Ringel [20] introduced antimagic labelingd 990 and conjectured that every connected
graph other thalK; is antimagic. The most significant progress on this probkemresult of Alon, Kaplan,
Lev, Roditty, and Yuster [1], which states the existence obastantc such that ifG is ann-vertex graph
with 8(G) > clogn), thenG is antimagic. Large degrees satisfy a natural intuitiore tiore edges are
present, the more flexibility there is to arrange the labets@ossibly obtain an antimagic labeling.
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Alon et al. also proved thds is antimagic whed\(G) > |V (G)| — 2, and they proved that all complete
multipartite graphs (other thak,) are antimagic. Hartsfield and Ringel proved that pathsesyavheels,
and complete graphs are antimagic. Gallian’s survey ligstether results on antimagic labelings as such;
other work studies other variations of the concept, lalgeliith additional constraints, etc.

In this chapter, we show that every regular bipartite grapith(degree at least 2) is antimagic. Our
proof relies heavily on the Marriage Theorem, which states ¢very regular bipartite graph has a 1-factor;
see Chapter 1. By induction on the vertex degree, it folldves & regular bipartite graph decomposes into
1-factors. Recall thatlafactor is ak-regular spanning subgraph, so the union of laiyfactors is &-factor.
Throughout this chapter, we refer to the partite sets of iengbipartite graph a& andB, each having size
n.

With respect to a given labeling, two verticegnflictif they have the same sum. We view the process
of constructing an antimagic labeling as resolving the &ptital conflict” for every pair of vertices. We will
label the edges in phases. When we have labeled a subset@ddhs, we call the resulting sum at each
vertex apartial sum

Our general approach is to label all but a single 1-factohabthe partial sums iA are multiples of 3,
while the partial sums iB are non-multiples of 3. At this stage no vertexfotonflicts with a vertex oB.

We then label the final 1-factor with reserved labels thatnanétiples of 3 so that we resolve all potential
conflicts withinA and withinB. Before we begin the general approach, we observe two faatddgether
show that 2-regular graphs are antimagic.

Fact 5.1. [20] Every cycle is antimagic.

Proof. Assign the labels to edges a31..,n,n—1,...,4 2 in order around an-cycle (if nis odd; other-
wise,n andn— 1 are switched in the middle. The sums ar8,4.., 10,6, 3; that is, the sums of consecutive
odd integers are even multiples of 2, while the sums of cans&ceven integers are odd multiples of Z]

Fact5.2. If G1 andG, are each regular antimagic graphs, then the disjoint unfoB,oand G, is also
antimagic.

Proof: IndexG; andG; so that vertices iB; have degree at least as large as thosgin_etm; = |E(Gy)].
Place an antimagic labeling dB;, using the firstm; labels. LabelG, by addingm; to each label in an
antimagic labeling 06G.

Translating edge labels by, addsmyk to the sum at each vertex &, so the new labeling aB, has
distinct vertex sums. Hence there are no conflicts withinand no conflicts withinG,. There are also
no conflicts between a vertex {B; and one inG,, since each vertex-sum {B; is less tham;k and each
vertex-sum inG; is greater thamyk. O

More generally, given any labeling of a regular graph, agdire same amount to each label does not
change the pairs of vertices that conflict. Fact 5.1 and Fadntmediately yield:

Corollary 5.3. Every simple 2-regular graph is antimagic.

We will consider odd and even degree separately. AlthougbgBtar graphs are easy, the general
construction is a bit more complicated for even degree thandd degree.
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5.1 Regular bipartite graphs with odd degree

We have observed thatlaregular bipartite graplc decomposes into 1-factors. We can combine these
1-factors in any desired fashion. In particular, wHeis odd and at least 5, we can decomp@to a

(2l 4+ 2)-factor and a 3-factor, whete> 0. Our aim will be to combine special labelings of these twaides

to obtain an antimagic labeling &. The caseék = 3 is handled separately; we do this before the general
argument.

Theorem 5.4. Every 3-regular bipartite graph is antimagic.

Proof: SinceG has 3 edges, we have the same number of labels in each congruerssencbdulo 3. For
convenience, we use the teijpabelsto designate the first positive integers that are congruentjtmodulo
3, wherej € {0,1,2}.

Decomposes into a 1-factorH; and a 2-factoH,. We will reserve the O-labels fdi;. We will label
H, with the 1-labels and 2-labels so that the partial sum at axthx ofA is 3n. We do this by pairing each
1-labeli with the 2-label 8 —i. These pairs have summ3at each vertex of\, we use the two integers in
some pair. Subsequently, every assignment of 0-labéts toelds distinct vertex-sums withiA.

We have assigned a pair of labels at each verteX iof H,, but we have not decided which edge gets
which label. Next we try to make this choice so thatHp the partial sums at vertices & will not be
multiples of 3. In each component Bib, we will fail at most once.

Let C be a cycle that is a componentld$. We have a 1-label and a 2-label at each verteX.oAs we
follow C, if we have a 1-label and then a 2-label at a verteXAofthen the next vertex ok should have a
2-label followed by a 1-label (and vice versa), since the sfitwo 1-labels or two 2-labels is not a multiple
of 3. If [V(C)NA|is even, then we succeed throughoutVifC) N A| is odd, then at one vertex &fin B we
will have a 1-label and a 2-label. Call such a verteBdiad A cycle inH, only has a bad vertex only if it
has length at least 6, so at mog8 vertices inB will be bad. Letm be the number of bad vertices.

To avoid conflicts between vertices Afand bad vertices d, we will make the vertex-sum at each bad
vertex smaller than at any vertex Af Furthermore, we will make the partial sumsHa at these vertices
equal. Consider the 1-labels and 2-labels from 1 through-3; group them into pair$ and 3n— j. The
sum in each such pair ig18 which is at mosh. Allocate the pairs foH, to vertices ofA so that at each bad
vertex ofB, the labels are the small elements from pairs in the origgaaing and form a pair with surm3
in this most recent pairing.

Now we need to labdH;. We must achieve three goals: resolve all conflicts amongdalod vertices in
B, resolve all conflicts among the bad verticeBirand resolve all conflicts betweénand the bad vertices
in B.

We consider the last goal first. For every assignment of 8l4ato H,, the vertex-sums i\ will be
{3n+3,3n+6,...,6n—3,6n}. To ensure that the vertex-sums at the bad verticd will be less than
3n+ 3, we use the smallest O-labels at the bad vertices. Since #re at mosh/3 bad vertices, every
O-label at such a vertex is at mast Thus, every sum at a bad vertex is at mast\&hich is less thanrg
Furthermore, the sums at bad vertices angp8us distinct 0-labels; hence they are distinct, which cletes
the second goal.
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For the first goal, lebs, by, bs, ... denote the good vertices Bfin order of increasing partial sum from
H, (there may be ties). We assign the remaining O-labels tosedfd; at by, by, ... in increasing order.
Since the 0-labels are distinct, this prevents conflictsragitbe good vertices iB. d

For larger even degree, we will construct an antimagic labdtom special labelings of two subgraphs.
Like the labeling we constructed for 3-regular graphs, ttst kbeling will have equal sums at verticesfof
but this time we guarantee that all sums at verticeB afe not congruent modulo 3 to the sums at vertices
of A.

Lemma5.5. If G is a(2l + 2)-regular bipartite graph with parts andB of sizen, thenG has a labeling
such that the sum at each vertextois some fixed value and the sum at each vertex®ifs not congruent
tot modulo 3.

Proof: As remarked earlier, we can decomp@to a 4-factorHy and a 2-factoH,. Letm= (2l +2)n;
thusm s the largest label. Since is even, we can partition the labels 1 throughnto pairs that sum
to m+ 1. With m+ 1 = 2a(mod3), each pair consists of two elements in the same congruease aka
modulo 3 or elements in the two other congruence classes|lm8diCall thesdike-pairs and split-pairs
respectively.

At each vertex oA, we will usel of these pairs as labels Hy. Thus each vertex & will have partial
sum (m+ 1)l in Hy; we will assign the pairs so that the partial sumdiare not congruent tém-+ 1)I
modulo 3. We use the pairs in which the smaller label rangas ft toln. Note thatHy decomposes into
even cycles (for example, we can takelZfactors two at a time to generate 2-factors whose unibtyis

For each cycle in the decomposition la, into even cycles, at vertices &fwe use pairs of labels of
the same type: all like-pairs or all split-pairs. When usapijt-pairs, we assign the labels so that the same
congruence class modulo 3 is always first. If we have all fikés or all split-pairs, this ensures that at each
vertex ofB, each cycle contributes an amount to the sum that is congto@a modulo 3. There is at most
one cycle where we are forced to use both like-pairs and ggirs. Letx andy be the vertices oB where,
in this cycle, we switch between like-pairs and split-paifg each vertex oA, the partial sum irHy is
(m+1)l. At each vertex 0B, exceptx andy, the partial sum is congruent {1+ 1) modulo 3.

On H,, we use the remaining pairs of labels so that we mdd 1 to each partial sum i, but what
we add to each partial sum Biis not congruent tan+ 1 modulo 3. If we can do this (and treatandy
specially), then the sum at each vertex@okill be (m-+1)(l 4+ 1), while at each vertex d8 the sum will be
in a different congruence class modulo 3 from+ 1)(l +1).

On each cycle, we use the pairs of labels that contain thdeshahused labels. Thus, every third pair
we use is a like-pair; the others are split pairs. We begih wiike-pair and alternate using a like-pair and a
split-pair until the like-pairs allotted to that cycle archausted. For the remaining split-pairs, we alternate
them in the form(a+ 1,a+ 2) followed by (a+ 2,a+ 1); in this way the sum of the two labels used at any
vertex ofB is not congruent to2modulo 3. If no like-pair is available to be used on the cyttien the cycle
has length 4 and we label it with split-pairs in the foten+ 1,a+ 2), (a+2,a+ 1), and the same property
holds.

One or two cycles i, may contain the verticesandy, where the sum iy differs by 1 from a value
congruent tqm+ 1)I modulo 3. Suppose that the sumdHp atx andy are(m+ 1)I +t; and(m+ 1) +t,.
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We want the sum atin H; to be either 2—t; + 1( mod 3) or 2a—t; + 2. Similary, we want the sum &tin
H, to be in{2a—t, + 1,2a—t, + 2}. The more difficult case is whenandy lie on the same cycle iHl,.
However, given the realization that we have two choices éaicthe sums (modulo 3) atandy, it is not
difficult to adapt the labeling given above for cycles-f so that it applies in the current case as well.

At these vertices we want the contribution fréta to be congruent to&2modulo 3. We deal with these
first and can then make the argument above for the remainidg<sy If x andy lie on a single 4-cycle,
then we use two like-pairs or two split-pairs ordered as- 1,a+ 2),(a+ 1,a+2). ***We must make
sure that this does not leave an odd number of split-pairsrierordinary cycle.*** If one or both ok and
y lie on a longer cycle, then at each we put edges from two l&espor from two split-pairs ordered as
(a+1,a+2),(a+1,a+2). The remaining pairs, whether they are like-pairs or g@irs as we allocate
them to this cycle, can be filled in so that like-pairs are rmtsecutive anywhere else and neighboring
split-pairs alternate their “orientation”.

Thus the labeling oH, enables us to keep the overall sum at each verteB aifit of the congruence
class of(m+1)(l +1) modulo 3. O

Lemma 5.6. If G is a 3-regular bipartite graph with palsandB, whereB = {by,... by}, thenG has a
labeling so that at eadf the sum i3n+ 3i, and for each exactly one vertex i\ has sun8n+ 3i.

Proof: Decomposés into three 1-factorsR, S andT. In R, use label B— 2 on the edge incident to; let
g be the other endpoint of this edge. $huse label 8+ 3 — 3i on the edge incident tg;; call the other
endpoint of this edgl{. In T, use label B— 1 on the edge incident tgj; call the other endpoint of this edge
a/. Note that each 1-factor received the labels from one camgei class modulo 3.

The partial sum ifSUT at each vertex oB is 3n+ 2. Hence, the sum dg for all of G is 3n-+ 3.
Similarly, the partial sum ilRU Sat each vertex oA is 3n+ 1. Hence, the vertex-sum &tis 3n+3i. [

Theorem 5.7. Every regular bipartite graph of odd degree is antimagic.

Proof:. LetG be aregular bipartite graph of degiteelrheorem 5.4 is the cake= 3. Fork > 3, letk=21+5
with | > 0, and decompose the gra@finto a(2l 4 2)-factorH’ and a 3-factoH. LabelH’ asin Lemma 5.5;
this uses labels 1 througl 4+ 2)n. Add 3n to each label, leaving labels 1 throughf8r H. Each vertex-
sum increases byrQwhich is a multiple of 3, so the congruence properties akethin Lemma 5.5 remain
true for the new labeling.

Let b; denote the vertices d in order of increasing partial sum id’. LabelH as in Lemma 5.6.
Because all the partial sums kh are multiples of 3, the labeling dfi’ resolves each potential conflict
between a vertex oA and a vertex oB. Because thd; are in order of increasing partial sum ki, the
labeling ofH resolves all potential conflicts withiB. Similarly, since the labeling afl’ gives the same
partial sum to all vertices oA, the labeling oH resolves all potential conflicts withif.

We have checked that the labeling is antimagic. O

5.2 Regqular bipartite graphs with even degree

Lemma 5.8. Letn be a positive integer. M is even, then we can partitiofl,2,...,3n} into triples such
that the sum of each triple 81+ 3 or 3n. If n is odd, then we can partitiofi, 2, ...,3n} into triples such
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that the sum of each triple 80 or 3n. Furthermore, each triple consists of one integer from @astiue
class modulo 3.

Proof: Supposen is even. We partition the labels into triples such that tha sfi each triple is eitherr8
or 6n-+ 3. Consider the tripleé3n— 3i + 3,3n—3i +2,6i — 2) and(3i,3i —1,3n—6i + 1) for 1 <i < n/2.
Triples of the first type sum tor6t+ 3 and triples of the second type sum to 3

Supposen is odd. We patrtition the labels into triples such that the @freach triple is either 3 or
6n. Consider the triple$3n—3i +3,3n—3i+ 2,61 —5) for 1 <i < [n/2] and(3i,3i —1,3n—6i + 1) for
1<i < |n/2]. Triples of the first type sum torGand triples of the second type sum ta 3 O

Theorem 5.9. Every regular bipartite graph of even degree at least 8 imangic.

Proof: We decomposé& into two 3-factors and &2 + 2)-factor; call thes&ss, Hz, andHy ,», respectively.
We labelH, > as in Lemma 5.5, using all but th@ 6mallest labels. This resolves every conflict between a
vertex ofA and a vertex oB.

We partition the label§3n+1,3n+2,...,6n} into triples as in Lemma 5.8. 183, at each vertex of
we will use the the three labels of some triple. To ensureuheat each vertex @ is O( mod 3, we do the
following. Partition the 3-factor into three 1-factors; \Wee O-labels on the first 1-factorrhod 3 labels
on the second 1-factor, andrdod 3 labels on the third 1-factor.

Now consider the partial sums in the uniontdfi . » andGg; let b; denote the vertices @ in order of
increasing partial sum. Labkl; as in Lemma 5.6. This resolves every conflict between twadogsrtin the
same part. Hence, the labeling is antimagic. d

Lemma 5.10 is very similar to Lemma 5.8. Lemma 5.10 servesdhee role in the proof of Theorem 5.9
that Lemma 5.8 does in the proof of Theorem 5.11.

Lemma 5.10. Let n be a positive integer. Léfl be the set of positive labels less thémthat are not 0
modulo 4, i.e.H = {1,2,3)5,6,...,4n—2,4n—1}. If n is even, then we can partitidth into triples such
that the sum of each triple is eithén— 2 or 8n+ 2. If n is odd, then we can partitiod into triples such
that the sum of each triple is eithém— 2 or 8n— 2. Furthermore, each triple consists of integer from each
nonzero residue class modulo 4.

Proof: Supposen is even. We have triples of the for(8i — 3,4n—4i +2,4n— 4i + 3), with 1 <i < n/2,
and triples of the forn{4n—8i +1,4i — 6,4i — 5), with 1 <i <n/2. Itis easy to see that triples of the first
form sum to &+ 2 and that triples of the second form sum to-42. It is straightforwad to verify that these
triples partitionH.

Supposen is odd. We have triples of the for@i — 7,4n— 4i +2,4n— 4i + 3), with 1 <i < [n/2], and
triples of the form(4n—8i +5,4i —2,4i — 1), with 1 <i < |n/2]. Itis easy to see that triples of the first
form sum to & — 2 and that triples of the second form sum to-42. It is straightforwad to verify that these
triples partitionH. d

Theorem 5.11. Every 6-regular bipartite graph is antimagic.
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Proof: Throughout this proof we assunmas odd. The argument is analagous wimes even, so we omit
the details. We decomposginto a 3-factor, a 2-factor, and a 1-factor. We label the@dawith the labels
that are less thamdand are not 0 modulo 4, so that the partial sum at each vertBxs0®( mod 4 and the
partial sum at each vertex éfis 4n— 2 or 81— 2. To do this we partition the labels for the 3-factor into
triples as specified in Lemma 5.10.

At each vertex ofA, we use the three labels in some triple. More exactly, we mi@ose the 3-factor
into three 1-factors; we usg thod 4 labels on the first 1-factor, use @od 4 labels on the second 1-
factor, and use@mod 4) labels on the third 1-factor. This ensures that the partiai at each vertex d is
2(mod 4.

We label the 2-factor with the label$14- 1 through &, so that the partial sum at each vertexfois
10n+ 1 and the sum at each vertex Bfis # 10n+ 1(mod 4). To do this, we partition the labels for the
2-factor into pairs that sum to h@- 1. We consider the labels in each pair modulo 4. We have twestyb
pairs: (1,2) pairs and 3,0) pairs (sincen is odd).

We want to avoid using two labels at a vertex@ithat sum to 8mod 4). We choose the pairs of labels
to use on each cycle arbitrarily, except that each cycle msestt least ongl, 2) pair and at least ong3, 0).
We first use all th€1,2) pairs, alternating them d4,2),(2,1),(1,2),(2,1),..., then use all th¢3,0) pairs,
alternating them ag3,0), (0,3),(3,0),(0,3),.... As long as we use at least ofit 2) pair and ong3,0)
pair on each cycle of the 2-factor, we have no problems. Sircase at least on,2) pair and ond3,0)
pair on each cycle of the 2-factor, we are able to avoid vesters inB that are congruent to(3nod 4.

Now we consider partial sums in the 5-factor that is alreatheled. The partial sum at each vertexdof
is 4n— 2 or & — 2. The partial sum at each vertex®fs not congruent to 2 modulo 4. The labels we will
use on the final 1-factor are all multiples of 4. So, regasit#fhow we label the final 1-factor, no vertex in
A will conflict with any vertex inB. We call a vertex imA smallif it's partial sum in the 5-factor is@d— 2;
otherwise, we call ibig. It is clear that regardless of how we label the final 1-fgctar big vertex will
conflict with another big vertex; similarly, no small vertexl conflict with a small vertex. Observe that the
largest possible sum at a small vertex is-42+ 4n = 8n— 2. The smallest possible sum at a big vertex is
8n—2+4 =8n+2. Hence, no small vertex will conflict with a big vertex. Thuse choose the labels for
the final 1-factor to ensure that no two verticeBinonflict.

Let b; denote the vertices @ in order of increasing partial sum in the 5-factor. In the findactor, we
use label #at vertexi. This ensures that vertex-sumsBrare distinct. Thus, the labeling is antimagicl]

The proof for 4-regular graphs is more complicated than foedular graphs. In the 6-regular case, we
labeled the 2-factor to ensure there were no conflicts betaeg vertex inrA and any vertex ifB; we labeled
the 1-factor and the 3-factor to ensure there were no canflietween two vertices in the same part. The
proof for 4-regular graphs is similar, but since we have @ss P-factor, we cannot ensure that all vertex-
sums inB differ modulo 4 from the vertex-sums W So similar to the 3-regular graphs, we introdgo®d
andbadvertices inB. We handle bad vertices in a similar way to the case of the8kae graphs.

Theorem 5.12. Every 4-regular bipartite graph is antimagic.

Proof: Throughout this proof we assunmdés odd. The argument is analagous wimeis even, so we omit
the details. We decomposginto a 3-factor and a 1-factor. We label the 3-factor withiHabels, 2-labels,
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and 3-labels that are less tham 40 that the partial sum at each vertexBat 4n— 2 or 81— 2. To do this,

we partition the labels for the 3-factor into triples as $fped in Lemma 5.10. At each vertex iy we will

use the three labels of a triple. Consider a verteR:af its partial sum in the 2-factor is(2nod 4), then we

call the vertexbad otherwise, we call igood We assign the labels of each triple to the edges at a vertex of
A to minimize the number of bad verticesi Initially, we only assign to each edge an equivalence class
1(mod 4, 2(mod 4), or 3(mod 4). This determines which vertices Biare bad. We will then assign the
labels to edges to minimize the largest partial sum at a badxwefB. Since the bad vertices Biwill have
vertex-sums in the same equivalence class (modulo 4) asetiexysums M, to avoid conflicts we will
ensure that the vertex-sum at every bad vertex is smallarttieasmallest vertex-sum B

We begin by decomposing the 3-factor into three 1-factorse l&del each edge in the first 1-factor
with a 1, each edge in the second 1-factor with a 2, and eacahiad@e third 1-factor with a 3. However,
this makes every vertex iB bad. To fix this, we consider the 2-factor labeled with 1s asidspecifically
consider a single cycle in this 2-factor. Select a verteA oh the cycle, then select every second vertex of
Aalong the cycle; at each of the selected vertices, swap lieésld and 2 on the incident edges. If the cycle
has length divisible by 4, then all of its vertices are nowdyolf the length is not divisible by 4, then one
bad vertex will remain. Note that a cycle has a bad vertex dnitg length is at least 6. So, at most3
vertices are bad. We now reduce the number of bad verticdgefuas follows.

If a vertex is bad, consider the incident edge labeled 3, hactge labeled 2 that is adjacentArto
this first edge; these two edges fornbad path We will swap the two labels on a bad path to reduce the
number of bad vertices. Consider the graph induced by bdspasich component is a path or a cycle. In
a path component, we swap the labels on every second badtipiatfixes all the bad vertices. We handle
cycle components similarly, although in each cycle one letbx may remain (similar to the previous step).
Thus, after this step, at most3 of the previously bad vertices remain bad. So, at mg8tvertices remain
bad. We also need to verify that when we swap the labels on adithdno good vertex becomes bad.

If a good vertex has partial sun{®od 4), we call itheavy if it has partial sum tmod 4), we call it
light. Before we swap the labels on any bad path, the triple of $aipeident to a light vertex i1, 1, 3);
the triple incident to a heavy vertex (8,2,3). Thus, we do not swap any labels incident to a light vertex.
However, the labels incident to a heavy vertex could bec@r& 3) or even(3,3,3). In each case though,
the vertex remains good.

Finally, if any vertex inA is adjacent to two or more bad vertices, we swap the labeltsandident
edges to make each vertex good. Thus, we have at mi@dbad vertices and each vertexAris adjacent
to at most one bad vertex. Now we assign the actual labelstedbes (rather than only the equivalence
classes) so that the partial sum at each bad vertex is smalls#ign the/9 smallest {mod 4 labels to
be incident to the bad vertices; the largest is less tim(8.4Similary, we assign the/9 smallest 2mod 4
labels to be incident to the bad vertices; again the largdsts than d/9. Each time we assign a label, we
also assign the other labels in its triple. Since eag@ 4) label is in a triple with the 8mod 4 label
one greater, the/9 smallest 8Bmod 4 labels are already assigned. So we assign the mExsmallest
3(mod 4 labels to be incident to the bad verties; the largest of thedsels is less thanr§9. Finally, we
will assign then/9 smallest 0mod 4) labels to be incident to the bad vertices. Thus, the largasex-sum
at a bad vertex is less thar48/9) + 8n/9 < 3n. Hence, no bad vertex will conflict with any vertexAn
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To ensure that no two bad vertices conflict, we assign thédabéhe final 1-factor in order of increasing
partial sum at the bad vertices. After we assign all the Bbatident to the bad vertices, we assign the
remaining labels incident to the good vertices, again ireoaf increasing partial sum iB. This ensures
that no two good vertices conflict. If the partial sum at aererdfA is 4n— 2 we call itsmall otherwise we
call it big. After we assign the labels on the final 1-factor, the smigfiessible vertex-sum at a big vertex is
(8n—2) +4=8n+2; the largest possible sum at a small vertedis— 2) +4n = 8n—2. So no small vertex
conflicts with a big vertex. Additionally, all the small ver-sums are distinct; so are the large vertex-sums.
Thus, the labeling is antimagic. O
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