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Abstract

Many methods for computing Jacobians (such as automatic differentiation and finite difference methods)

can be made more efficient given colorings of the lattice points of the plane, cylinder, or torus that assign

different colors to all vertices within some specified stencil. We give colorings for the � 4l � 3 � -point

star and the l � l square stencils (for all l) in the plane, on the cylinder and on the torus. We also

give colorings for the � 6l � 5 � -point star in � 3 and for the l � l � l cube in � 3 with periodic boundary

conditions in 0 and 1 dimensions. All colorings are shown to be optimal or near-optimal.
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Chapter 1

Introduction and Motivation

Many numerical methods require the evaluation of the Jacobian. The Jacobian is an M � N matrix J of

partial derivatives of a vector-valued function F :
� N �� � M . The Jacobian entry in row i and column j

is nonzero only if the ith component F � x � depends on x j .

The Jacobian is frequently computed using automatic differentiation [6] or approximated using finite

differences. These techniques are often necessary because the function F is available only in the form

of a computer program. Both approaches compute a set of directional derivatives of F . If we choose

the direction to be the unit vector e j in the jth coordinate direction we compute the jth column of J. By

taking the directions to be the standard basis of
� N , we can compute J using N directional derivatives

of F .

However, in many cases the Jacobian matrix is sparse. Assuming the sparsity pattern is known, the

ith and jth columns of J can be computed simultaneously whenever they are structurally orthogonal. A

pair of columns i and j of a matrix are structurally orthogonal if in each row of the matrix at most one

of the columns contains a nonzero entry.
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If columns i and j are structurally orthogonal, we compute them simultaneously by taking the deriva-

tive of F in the direction ei � e j. Then for each row k, at most one of Jki and Jk j is nonzero. This nonzero

entry is equal to the kth component of the derivative vector.

This idea can be extended to larger sets of pairwise structurally orthogonal columns. If columns

i1 � i2 � � � � � ip are structurally orthogonal, we can compute them simultaneously by taking the derivative

of F in the direction ei1 � ei2 ��������� eip . Again, for each row k, at most one column has a nonzero entry

in the kth row. This nonzero entry is equal to the kth component of the derivative vector.

We are now interested in partitioning the columns of J into structurally orthogonal sets. All the

columns in a set can be computed simultaneously. To minimize the cost of computing J, we must

minimize the number of sets in the partition.

It turns out to be more useful (and to offer better intuition) if we view the problem as points on

a torus, rather than columns of a matrix [8]. Rather than partitioning the columns into structurally

orthogonal sets, we speak of coloring the points on the torus so that no two points receive the same

color unless their corresponding columns in the Jacobian are structurally orthogonal. If we take the

points of the torus as a vertex set and add an edge between two points whenever their corresponding

columns are not structurally orthogonal, we have a standard graph coloring problem. Motivated by

viewing the problem as points on a torus, we also refer to the points by the more natural � i � j � to denote

the point in the ith row and jth column.

Unfortunately, finding an optimal coloring of a general graph is NP-complete. Therefore, research

has focused on approximation algorithms for graphs with random adjacency patterns [3, 2, 7] and opti-

mal (or near-optimal) algorithms for structured graphs [5].

We now examine the problem more in detail. We want to find the derivative of a function that maps

the surface of a torus to itself, F : T �� T . Since we don’t have an analytical form of the function, we
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(a) (b)

Figure 1.1: (a) The 5-point star stencil on the 5 � 7 torus. It is important to distinguish between the
torus and the jacobian. The Jacobian will be 35 � 35, since each point on the torus corresponds to a
column in the Jacobian. (b) The 3 � 3 square stencil on the 5 � 6 torus. The Jacobian for this torus will
be 30 � 30.

choose to approximate it at selected points. We select mn points in the shape of an m � n lattice on

the surface of the torus. In the Jacobian, each row and column corresponds to a sample point on the

torus. (This means that the Jacobian matrix, J, actually has dimensions mn � mn.) We refer to the point

corresponding to column (and row) i as point i. The derivative at a point can be approximated using the

value of the function at that point and at nearby points.

We use the term stencil to specify those points near point i which our approximation of the derivative

at i will depend on. Because we use the same stencil for every point on the torus, the sparsity pattern of

the Jacobian is very structured. In particular, Ji j is nonzero only if point i lies within the stencil of point

j. Thus, two columns are structurally orthogonal only if their corresponding points never lie in the same

stencil. Thus, the number of structurally orthogonal sets in the column partition must be at least equal

to the number of points in the stencil.

Goldfarb and Toint [5] give optimal colorings (a coloring is optimal if it is uses a minimum number

of colors) for a variety of sparsity patterns arising from the stencil-based discretization of partial differ-

ential equations on Cartesian grids. Goldfarb and Toint demonstrate that in many cases the size of the
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coloring need not be any larger than the size of the stencil. However, all of the cases they consider are

in the plane. This significantly simplifies matters, since it avoids difficulties with boundary conditions.

In this paper, we examine the problem for � 4l � 3 � -point star and square stencils, on both the torus

and the cylinder. We use the term m � n torus (cylinder) to mean the discrete torus (cylinder) with height

m and width n. For the cylinder, the height is the dimension that does not “wrap around.”

In three dimensions, we look at � 6l � 5 � -point star and cube stencils. We consider two cases. First,

we color the points of � 3, the three dimensional latice without wrap-around in any dimension. Second,

we color the points of � 2 � � m, a three dimensional lattice with wrap-around in a single dimension of

size m.

In Section 2, we cover a preliminary result which is helpful in constructing the colorings in Section

3. In Section 3, we present colorings for (4l � 3)-point and � 6l � 5 � -point star stencils and for square and

cube stencils. In Section 4, we present lower bounds and show that in all cases they are tight or nearly

tight for l � l square stencils and � 4l � 3 � -star stencils. We offer some concluding remarks in Section 5.
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Chapter 2

Preliminaries

The idea used in building all of the colorings in this paper is to partition the region to be colored into

smaller rectangles. We color each rectangle so that when the rectangles are assembled into the initial

region, the resulting coloring is valid. In general, we partition the region to be colored into rectangles

with two different heights and two different widths: h1 � w1, h2 � w1, h1 � w2 � and h2 � w2. In addition

to each coloring being valid for the specified stencil, these colorings also have the property that if two

rectangles with the same height are placed side by side, or two rectangles with the same width are placed

one atop the other, the coloring of this new larger rectangle is valid for the same stencil. To color a torus

with dimensions h � w, we will write h as a nonnegative integer linear combination of h1 and h2 and

write w as a nonnegative integer linear combination of w1 and w2. (Throughout this paper, the term

“linear combination” will mean linear combination with nonnegative integer coefficients.)

We want to know when an integer n can be written as a linear combination of two smaller integers p

and q. Define r � p � q � to be the smallest positive integer such that for all n � r � p � q � , n can be written as a

linear combination of p and q. The following lemma is a well-known result called Sylvester’s Theorem.

For the sake of completeness, we include a proof.
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Lemma 1 For any relatively prime positive integers p and q, r � p � q � � � p � 1 � � q � 1 � .

Proof Assume p � q. Let A ��� 0 � q mod p � 2q mod p � 3q mod p � � � � � � p � 2 � q mod p � � p � 1 � q mod

p � and B ��� � � p � 1 � � q � 1 � � mod p � � � p � 1 � � q � 1 � � 1 � mod p � � � p � 1 � � q � 1 � � 2 � mod p � � � � � � p �

1 � q mod p � . Then A � B ��� 0 � 1 � 2 � � � � � p � 2 � p � 1 � . Let Â � A � � � p � 1 � q mod p � and let B̂ � B � � � p �

1 � q mod p � . Then Â � B̂.

Fix an integer n in the range � p � 1 � � q � 1 ��� n � � p � 1 � q. Because Â � B̂, there exists 0 � l � p � 2

such that n 	 lq mod p. Since � p � 2 � q � � p � 1 � � q � 1 � , it is true that n � lq 
 0. Hence, if we write

n � kp � lq (where k and l are nonnegative integers), then k must be positive. Additionally, � p � 1 � q can

be written (trivially) as a linear combination of p and q. Thus, we have written p successive positive

integers each as a linear combination of p and q. Any larger integer can be written as one of these

integers plus a multiple of p. Hence, r � p � q ��� � p � 1 � � q � 1 � .

It is easy to see that � � p � 1 � � q � 1 � � 1 ��	 � p � 1 � q mod p. Since qi 
	 q j mod p when i 
� j and

0 � i � j � p � 1, we see that � p � 1 � � q � 1 � � 1 is not expressible as a linear combination of p and q. We

conclude that r � p � q � � � p � 1 � � q � 1 � . �

We say that a coloring (of a torus or the plane) is valid for a given stencil if under that coloring, no

two points in a copy of that stencil receive the same color. We say that a valid coloring (for stencil S) of

an h � w1 torus and a valid coloring (for S) of an h � w2 torus are vertically compatible, if when placed

side by side, the two form a valid coloring (for the stencil S) of the h � � w1 � w2 � torus. Analagously,

we define horizontally compatible colorings of h1 � w and h2 � w. When the meaning is clear, we will

refer to both vertically compatible and horizontally compatible simply as compatible. We also extend

these definitions to 3 dimensions in the obvious way.
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Chapter 3

Colorings

3.1 Square Stencils

The easiest coloring for the 3 � 3 square stencil, on an m � n torus with 3 � m and 3 � n, is given by

C � i � j � � � 3i � j � mod 9, as shown in figure 1.

This coloring is given by Goldfarb and Toint [5] and can easily be extended to the l � l square stencil

by setting C � i � j � � � li � j � mod l2. If we are coloring rectangles, rather than tori, this coloring suffices

for all m and n. However, for the torus, we require l � m and l � n. As a result, we look for valid colorings

for the l � l square stencil in instances when at least one of l 
 � m or l 
 � n is true.

�������������
�

4 5 6 7 8 0 1 2 3
7 8 0 1 2 3 4 5 6
1 2 3 4 5 6 7 8 0
4 5 6 7 8 0 1 2 3
7 8 0 1 2 3 4 5 6
1 2 3 4 5 6 7 8 0
4 5 6 7 8 0 1 2 3
7 8 0 1 2 3 4 5 6
1 2 3 4 5 6 7 8 0

��������������
�

Figure 3.1: A coloring of the 9 � 9 torus for the 3 � 3 square stencil.
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The colorings we use are similar to the coloring in figure 3.1. We define a general family of colorings

C � i � j � l � m � n � � � � li mod m � j � mod n �

Each time we use coloring C, the parameters l, m, and n remain fixed, while the parameters i and j vary

to indicate which entry is being colored. As we move to the right in a row, each entry is larger than

the previous entry by 1. Similarly, as we move downward in a column, each entry is larger than the

previous entry by l. As a result, the period of the coloring in the rows is n and the period in the columns

is gcd � l � m � . For Theorem 2 through Lemma 5, we consider the case where the height and width of the

torus are given by m � l2 � b and n � l2 � c, where b and c are at most l.

Theorem 2 If l2 � m � n � l2 � l, then C � i � j � l � m � n � is a valid coloring of the m � n torus for the l � l

square stencil.

Proof Since the tiling is periodic in both directions, it suffices to show that the coloring is valid for

the plane. If this coloring is invalid, there must be two entries � i1 � j1 � and � i2 � j2 � which lie within the

same l � l square and receive the same color, that is, � i1 � i2 � � l, � j1 � j2 � � l, and � li1 mod m � j1 � 	

� li2 mod m � j2 � mod n. Without loss of generality, assume li1 mod m � li2 mod m. Let

T � li1 mod m � li2 mod m � j1 � j2 and

U � li1 � li2 � j1 � j2 �

Since n � T and � n � T � 2n, we must have either T � 0 or T � n. Since � i1 � i2 � � l, we see that

� li1 mod m � li2 mod m ��� � li1 � li2 � li1 � li2 � m � . We conclude that U � � 0 � n � m � � m � n � . Since

� i1 � i2 � � l and � j1 � j2 � � l, we see that �U � � l2 � m � n. Since U � 0 implies that � i1 � j1 � � � i2 � j2 � ,

we must have U � n � m. Thus � i1 � j1 � is one of � i2 � 1 � j2 � � � i2 � j2 � n � m � , or � i2 � 1 � j2 � n � m � l � .
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The first two cases can be easily seen not to yield the same color on � i1 � j1 � and � i2 � j2 � . We need to

show that none of these last type of pairs receive the same color.

The key is to determine the difference � li1 mod m � li2 mod m � . Let N � li2 mod m. There are two

possibilities. Either there exists an integer g such that li2 � gm � l � i2 � 1 � , or there does not exist such

a g. If there does exist such an integer g, then li1 mod m � N � l � m. Then � li1 mod m � j1 � mod n �

� N � l � m � j2 � n � m � l � mod n � � li2 mod m � j2 � mod n � N � j2 mod n. Simplifying, this gives

n � 2m � 0 mod n. This is impossible, since l2 � m � n � l2 � l. Thus, there does not exist such an

integer g. The only possibility is then � li1 mod m � j1 � mod n � � N � j2 � mod n � � N � l � j2 � n �

m � l � mod n. This implies that n � m and thus that U � 0. We’ve already seen that this implies that

� i1 � j1 � � � i2 � j2 � . Hence, the tiling of the plane is valid, and so is the tiling of the torus. �

Corollary 3 If l � m and l � n, then C � i � j � l � l2 � l2 � is a valid l2-coloring of the the plane or the m � n

torus for the l � l square stencil.

Proof Set m � n � l2 in the previous theorem. Immediately, we see that the coloring is valid for an

l � l torus and the l � l square stencil. If a coloring is valid for a torus for a given stencil, that coloring

remains valid for that stencil if two copies of the torus are placed side by side or one atop the other. By

placing copies of the l � l torus next to and atop one another, we can construct an m � n torus. Thus, the

given coloring is valid for the m � n torus and the l � l square stencil. �

In the next two lemmas, we show that the colorings given for the smaller rectangles can indeed be

assembled to give larger colorings which are valid.

Lemma 4 If l2 � m � n1 � n2 � l2 � l, then C � i � j � l � m � n1 � and C � i � j � l � m � n2 � are vertically compatible

for the l � l square stencil.
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Proof Let t1 be an m � n1 rectangle colored by C � i � j � l � m � n1 � and let t2 be an m � n2 rectangle colored

by C � i � j � l � m � n2 � . The entries in a row of t1 are (beginning from the first column) x mod n1, � x � 1 � mod

n1, � x � 2 � mod n1 � � � � , where x � m. The entries in the same row of t2 are x mod n2, � x � 1 � mod n2,

� x � 2 � mod n2 � � � � . As a result, the colors from a row of t1 appear in the same order within that row of

t2. The difference is that since n2 � n1, there may be additional colors in t2. So in each row of t2, no

color is closer to the edge of t1 than it would be if t2 were replaced with a second copy of t1. Say v1 is an

entry in t1 and v2 is an entry in t2. If v1 and v2 receive the same color and lie in the same row, they are at

least as far apart as any two nearest entries in t1 that lie in the same row and receive the same color. �

Lemma 5 If l2 � m1 � m2 � n � l2 � l, the colorings C � i � j � l � m1 � n � and C � i � j � l � m2 � n � are horizontally

compatible for the l � l square stencil.

Proof Since li � m1 � m2 for all 0 � i � l, the first l rows of the two colorings are identical. Thus, the

colorings are compatible for the l � l square stencil. �

Finally, we bring together all of the pieces we have assembled. We prove that 1) any sufficiently

large torus can be partitioned into smaller rectangles, 2) those rectangles can be colored using few colors,

and 3) that the smaller colorings can be assembled to give a valid coloring for the torus.

Theorem 6 For all m � � l � 1 � l2 and n � l2 � l2 � 1 � , there is an � l2 � 2 � -coloring of the m � n torus

that is valid for the l � l square stencil.

Proof By Lemma 1 we find a1 � a2 � b1 � b2 ��� such that m � a1l � a2 � l2 � 1 � and n � b1 � l2 � 1 � �

b2 � l2 � 2 � . Using the linear combinations, we partition the m � n torus into rectangles of sizes h � w,

where h � � l � l2 � 1 � and w � � l2 � 1 � l2 � 2 � . From Theorem 2, we get colorings of tori with sizes h � w,

where h � � l2 � l2 � 1 � and w � � l2 � 1 � l2 � 2 � . Thus, they are valid colorings for the l � � l2 � 1 � and

l � � l2 � 2 � tori. Finally, we apply the appropriate coloring to each rectangle in the partition of the m � n
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�����������������
�

4 5 6 7 8 9 A 0 1 2 3
7 8 9 A 0 1 2 3 4 5 6
A 0 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 A 0 1
5 6 7 8 9 A 0 1 2 3 4
8 9 A 0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7 8 9 A
3 4 5 6 7 8 9 A 0 1 2
6 7 8 9 A 0 1 2 3 4 5
9 A 0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9 A 0

������������������
�

�����������������
�

4 5 6 7 8 9 A B 0 1 2 3
7 8 9 A B 0 1 2 3 4 5 6
A B 0 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 A B 0 1
5 6 7 8 9 A B 0 1 2 3 4
8 9 A B 0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7 8 9 A B
3 4 5 6 7 8 9 A B 0 1 2
6 7 8 9 A B 0 1 2 3 4 5
9 A B 0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9 A B 0

������������������
�

���������������
�

4 5 6 7 8 9 A 0 1 2 3
7 8 9 A 0 1 2 3 4 5 6
A 0 1 2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 A 0 1 2
6 7 8 9 A 0 1 2 3 4 5
9 A 0 1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9 A 0 1
5 6 7 8 9 A 0 1 2 3 4
8 9 A 0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8 9 A 0

����������������
�

���������������
�

4 5 6 7 8 9 A B 0 1 2 3
7 8 9 A B 0 1 2 3 4 5 6
A B 0 1 2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 A B 0 1 2
6 7 8 9 A B 0 1 2 3 4 5
9 A B 0 1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9 A B 0 1
5 6 7 8 9 A B 0 1 2 3 4
8 9 A B 0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8 9 A B 0

����������������
�

Figure 3.2: The colorings of four rectangles used to construct a coloring of the torus for the � 4l � 3 � -
point star stencil. The colorings shown are from Theorem 11, when l � 3.

torus. The resulting coloring uses at most l2 � 2 colors and is valid for the m � n torus as guaranteed by

Lemmas 4 and 5. �

Our technique can be used to get an even better bound for coloring the cylinder. A coloring of a torus

with any height can be used to color a cylinder, since we need not worry about boundary conditions in

the height dimension. If we use the coloring for a torus with height l, then we only need to use the l � l

and l � � l2 � 1 � rectangles. The result is a coloring with l2 � 1 colors.

Theorem 7 There is an � l2 � 1 � -coloring of the m � n cylinder for the l � l square stencil when n �

� l � 1 � l2.
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3.2 Star Stencils

Now we give colorings for the torus that are valid for the � 4l � 3 � -point star stencils. To prove this, we

show that the colorings are valid for the l � l square stencil, the � 2l � 1 � � 1 rectangle stencil, and the

1 � � 2l � 1 � rectangle stencil.

If m � l2 � l2 � 1 � and n � � l2 � 1 � � l2 � 2 � , then by Lemma 1 we can partition the torus into rectangles

of the four sizes � l2 � b � � � l2 � c � where b � � 1 � 2 � and c � � 2 � 3 � . We use the colorings for each of

these rectangles that are valid for the l � l stencil that are given in Theorem 2. When the colorings for

these rectangles are combined, we get a coloring for the torus. Call this coloring Ĉ and call the partition

into rectangles P.

Lemma 8 The coloring Ĉ is valid for the l � l square stencil.

Proof This follows immediately from Theorem 2 and Lemmas 4 and 5. �

Lemma 9 The coloring Ĉ is valid for the � 2l � 1 � � 1 rectangle stencil.

Proof If Ĉ were invalid for the � 2l � 1 � � 1 stencil, there would exist two points � i1 � j � and � i2 � j � in the

same � 2l � 1 � � 1 stencil that receive the same color. We show that is impossible.

We can assume that � i1 � j � and � i2 � j � lie in different rectangles in P, since it is easy to see that

different entries within the same column of a rectangle receive different colors. We consider the entries

of column j modulo l. As we move down a column we encounter in succession all the entries that lie

in the same equivalence class. Additionally, we encounter the entries in the same equivalence class in

increasing order. That is, as we move down a column of height l2 � b, we encounter l blocks of entries,

where each block consists of entries which lie in the same modulo class ( mod l). Each block of entries

is of length l or l � 1. The only exception is that beginning at the top of a column, we may be part way
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through a block. The preceding portion of this block will appear at the bottom of the column, so that

when viewed as a torus, the block appears whole and in order.

The important insight is that for a fixed column, each rectangle in the partition P has the same

first l entries in that column. As we move down the column, we must cross a boundary between two

rectangles. Both the rectangle above the boundary and the one below it have the same first l rows. This

means that as we cross the boundary from one rectangle to another, all the blocks are whole and in order.

The column of each rectangle contains l � 2 of these blocks (If l � 1 the lemma is trivial). If two entries

receive the same color, they must be in different blocks, and there must be at least one additional block

between them. This means that the second one must appear at least 2l positions after the first. �

Lemma 10 The coloring Ĉ is valid for the 1 � � 2l � 1 � rectangle stencil.

Proof If Ĉ were invalid for the 1 � � 2l � 1 � rectangle stencil, there would exist � i � j1 � and � i � j2 � that

lie in the same 1 � � 2l � 1 � rectangle. Either both points are colored using the same coloring (i.e. in the

partition they lie within rectangles of the same size), or they are colored using two different colorings.

First, we assume they are colored using the same coloring. However, we know that within a row, each

coloring is cyclic with period l2 � c. In addition, we know that each color appears only once every

l2 � c entries. Thus, if � i � j1 � and � i � j2 � receive the same color, they must be at a distance of at least

l2 � c � 2l � 1.

Now consider the case where � i � j1 � and � i � j2 � are colored using different colorings: � i � j1 � is colored

by C1
� C � i � j � l � l2 � b � l2 � 2 � , and � i � j2 � is colored by C2

� C � i � j � l � l2 � b � l2 � 3 � . Say � i � j1 � receives

color d1. If both points were colored with the same coloring, the next occurence of color d1 to the right

of � i � j1 � would be at � i � j1 � l2 � c � . However, the first appearance of a color in each row of coloring

C2 appears no closer to the boundary between colorings C1 and C2 than if we were to continue using
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C1 (see Lemma 4). As a result, no two copies of the same color can appear in the same row less than

l2 � c � 2l � 1 positions apart. �

Theorem 11 If m � l2 � l2 � 1 � and n � � l2 � 1 � � l2 � 2 � , then there is a � l2 � 3 � -coloring of the m � n

torus that is valid for the � 4l � 3 � -point star stencil.

Proof This follows immediately from Lemmas 8, 9, and 10. �

3.3 Three Dimensional Stencils

There is also some interest in the three dimensional version of the problem. In the three-dimensional

case, the lattices we are interested in are � 3 and � 2 � � m. We are motivated to look at colorings of these

lattices for the l � l � l cube. We also consider colorings of � 3 for the � 6l � 5 � -point star. Apart from

the 7-point star considered by Goldfarb and Toint [5], the author is not aware of any treatment of these

cases in the literature.

The intution for Theorem 12 is as follows. We assume that two points receive the same color under

the specified coloring. We proceed to show that they cannot lie inside the same � 6l � 5 � -point star

stencil. Because we are giving a single coloring for all of � 3 (and not considering boundary conditions

for discrete tori) there are no issues of compatibility between different colorings.

Theorem 12 Define the coloring C � i � j � k � l � � � i � l2 j � � l2 � 1 � k � mod � l � l � 1 � � 1 � . C � i � j � k � l � is a

valid � l � l � 1 � � 1 � -coloring for � 3 for the � 6l � 5 � -point star.

Proof If the coloring is invalid, there are two points p1
� � i1 � j1 � k1 � and p2

� � i2 � j2 � k2 � that receive

the same color and lie within the same copy of a � 6l � 5 � -point star stencil. The points of a star differ in

only one coordinate from the center of the star, so if p1 and p2 lie in the same star, at least one coordinate

of p1 and p2 must be the same. Let M � l � l � 1 � � 1.
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First, consider the case where two coordinates are the same. We simplify the expression � i1 �

l2 j1 � � l2 � 1 � k1 � 	 � i2 � l2 j2 � � l2 � 1 � k2 � mod M by substituting in two of the three equalities: i1
� i2,

j1 � j2, and k1
� k2. Depending on which two of the three equalities we assume to be true, we get one

of three possibilities: i1 	 i2 mod M, l2 j1 	 l2 j2 mod M, or � l2 � 1 � k1 	 � l2 � 1 � k2 mod M. Since 1 � l2 �

and � l2 � 1 � are all relatively prime to M, we see that either M � � i1 � i2 � � M � � j1 � j2 � � or M � � k1 � k2 � .

However, we know that � i1 � i2 � � 2l � 1, � j1 � j2 � � 2l � 1, and � k1 � k2 � � 2l � 1. Thus, if p1 and p2

lie insid the same stencil and receive the same color they agree in exactly one coordinate.

Consider the case where exactly one coordinate of p1 and p2 is identical. Then � i1 � i2 � � l, � j1 �

j2 � � l, and � k1 � k2 � � l and one of the following:

� i1 � l2 j1 � 	 � i2 � l2 j2 � mod M

� i1 � � l2 � 1 � k1 � 	 � i2 � � l2 � 1 � k2 � mod M

� l2 j1 � � l2 � 1 � k1 � 	 � l2 j2 � � l2 � 1 � k2 � mod M

We rewrite these as follows:

� i1 � � l � 1 � j1 � 	 � i2 � � l � 1 � j2 � mod M

� i1 � lk1 � 	 � i2 � lk2 � mod M

� � l j1 � k1 � 	 � � l j2 � k2 � mod M

The third equation follows by multiplying through by � l � 1 � . Those equations then imply (respectively)

that one of the following is true:
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M � � i1 � i2 � � l � 1 � � j1 � j2 � �

M � � i1 � i2 � l � k1 � k2 � �

M � � k1 � k2 � l � j1 � j2 � �

In each case (making use of � i1 � i2 � � l, � j1 � j2 � � l, and � k1 � k2 � � l), we see that the quantity M is

supposed to divide has absolute value less than M. This implies that each quantity must be 0 and hence

that � i1 � j1 � k1 � � � i2 � j2 � k2 � . This is a contradiction. Hence, the coloring is valid. �

Now we turn our attention to the l � l � l stencil. Because we want to color � 2 � � m, we need to

give a coloring for all of the l3 � l3 � � l3 � b � three dimensional cylinders (0 � b � l), rather than just the

l3 � l3 � l3 three dimensional torus. The proof takes the same form as before. We assume there are two

points that lie within a stencil and receive the same color, then eventually reach a contradiction. Define

the coloring C � i � j � k � l � b � � � � l2i � l j � mod l3 � k � mod � l3 � b � .

Theorem 13 If 0 � b � l, then C � i � j � k � l � b � is a valid coloring of the l3 � l3 � � l3 � b � three-dimensional

cylinder. C � i � j � k � l � b � uses l3 � b colors.

Proof If the coloring is invalid, there are points p1
� � i1 � j1 � k1 � and p2

� � i2 � j2 � k2 � that receive the

same color and lie inside the same l � l � l cube. As a result, p1 and p2 satisfy constraints (3.1) and

(3.2) below:

� i1 � i2 � � l � � j1 � j2 � � l � � k1 � k2 � � l (3.1)

� � � l2i1 � l j1 � mod l3 � � k1 � 	 � � l2i2 � l j2 � mod l3 � k2 � � mod � l3 � b � � (3.2)
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Without loss of generality, assume � l2i1 � l j1 � mod l3 � � l2i2 � l j2 � mod l3. Let T � � � l2i1 �

l j1 � mod l3 � � l2i2 � l j2 � mod l3 � � k1 � k2 � � . Then T is divisible by l3 � b and � � l3 � b � � T �

2 � l3 � b � . In particular, T � � 0 � l3 � b � . Let U � l2 � i1 � i2 � � l � j1 � j2 � � � k1 � k2 � . Then U �

� 0 � � l3 � l3 � b � b � . Making use of (3.1), we see that �U � � l3. If the right side is 0, we immedi-

ately get � i1 � j1 � k1 � � � i2 � j2 � k2 � . This leaves only the case U � b. To have a solution other than

� i1 � j1 � k1 � � � i2 � j2 � k2 � , we need 0 � b. Again using (3.1) and the fact that b � l, we see that the

only possible solutions are

l2i1 � l j1 � l2i2 � l j2 k1
� k2 � b � i �

l2i1 � l j1 � l2i2 � l j2 � l k1
� k2 � � b � l � � ii �

We need to show that none of these pairs of points actually receive the same colors. It is easy to see

that no pair of points satisfying � i � receives the same color.

Consider pairs of points satisfying � ii � . The key is to determine the difference � l 2i1 � l j1 � mod l3 �

� l2i2 � l j2 � mod l3. Let N � � l2i2 � l j2 � mod l3. There are two possibilities. Either there exists a

positive integer d such that l2i2 � l j2 � dl3 � l2i2 � l j2 � l, or there does not exist such an d. If there

does not exist such an d, then � l2i1 � l j1 � mod l3 � N � l. This leads to � N � k2 � mod � l3 � b � �

� N � l � k2 � b � l � mod � l3 � b � . This implies that b 	 0 mod � l3 � b � . However, since 0 � b � l, this

is a contradiction. Hence, there must exist such an integer d.

Consider � ii � when there exists a positive integer d such that l2i2 � l j2 � dl3 � l2i1 � l j1. Then

� l2i1 � l j1 � mod l3 � N � l � l3. This leads to � N � k2 � 	 � N � l � l3 � k2 � b � l � mod � l3 � b � . Sim-

plifying, we get l3 	 b mod � l3 � b � . However, 0 � b � l, so we reach a contradiction. Hence, there are

no pairs of points receiving the same color and also satisfying constraint � ii � . Thus, there is no pair of
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points � i1 � j1 � k1 � � � i2 � j2 � k2 � receiving the same color and also lying inside the same l � l � l cube. As a

result, the coloring is valid. �

Corollary 14 There exists a l3-coloring of � 3, which is valid for the l � l � l cube.

Proof Set b � 0 above. Then the coloring above is for a l � l � l cube and uses l 3 colors. It is easy to

see that this coloring also works for the points of � 3. �

Lemma 15 Define the colorings C1
� C � i � j � k � l � b1 � and C2

� C � i � j � k � l � b2 � . If 0 � b1 � b2 then C1

and C2 are compatible.

Proof Analagous to rows and columns, we define towers to be the set of lattice points for which i � j

are fixed and k varies. Under C1, as k increases in a tower, we get the repeating sequence 0 � 1 � 2 � � � � � l3 �

b1 � 2 � l3 � b1 � 1. Under C2, as k increases in a tower, we get the repeating sequence 0 � 1 � 2 � � � � � l3 � b2 �

2 � l3 � b2 � 1. The key insight is that in a tower, under C2, no color is closer to the boundary between

C1 and C2 than if we were to continue using C1. Say we have one point � i1 � j1 � k1 � , colored by C1, and

another point � i2 � j2 � k2 � , colored by C2, which make the colorings incompatible. Instead of changing

from C1 to C2 at the boundary between them, we could continue using C1 for all the points and find a

point � i3 � j3 � k3 � , which makes C1 incompatible with itself. Since C1 is not incompatible with itself, C1

and C2 must be compatible. �

Theorem 16 Say l and m are positive integers that satisfy m � l3. Define q to be the least nonnegative

integer for which m can be written as a linear combination of l3 � l3 � 1 � � � � � l3 � q � 1 � l3 � q. There is

an � l3 � q � -coloring of � 2 � � m, which is valid for the l � l � l cube.

Proof Following the ideas of Theorem 6, we partition � 2 � � m into copies of � 2 � � bi, where bi can

differ in different copies but l3 � bi � l3 � q for all copies. We color each copy of � 2 � � bi using the
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coloring given by Theorem 13. By the Lemma 15, these colorings are compatible, so the total coloring

is valid. �

Corollary 17 Let l and m be positive integers such that m � l3 � l3 � 1 � . There is an � l3 � 1 � -coloring

of � 2 � � m, which is valid for the l � l � l stencil.

Proof This follows from the Theorem 16 and Lemma 1. �
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Chapter 4

Lower Bounds

We give lower bounds which prove that the colorings for the square and cube stencils are either optimal

or within one color of being optimal.

Theorem 18 Any valid coloring of the m � n torus for the l � l square stencil requires l 2 � 1 colors

unless l � m and l � n.

Proof Consider an m � l sub-cylinder (the dimension of size m is the one that wraps around). Say our

coloring uses at most l2 colors. By the pigeon-hole principle, there is some color class of size at least

� m � l
l2 � �

� m
l � . However, a color class can have size at most � m � l

l2 � � � m
l � (since two entries in the same

color class must be at least l rows apart). If l � m, these quantities are equal. Otherwise, we need at least

l2 � 1 colors. An analagous argument can be made to show that we need l � n. �

Slight variations of this proof lead to the following theorems.

Theorem 19 Any coloring of the m � n cylinder, that is valid for the l � l square stencil requires l 2 � 1

colors unless l � n.
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Figure 4.1: The proof of Theorem 21 for l � 5.

Theorem 20 Any coloring of � 2 � � m, that is valid for the l � l � l cube requires l3 � 1 colors unless

l � m.

Now we give a bound on the number of colors needed for star stencils.

Theorem 21 If m � n 
 l, we need at least l2 � 1 colors to color an m � n rectangle, such that no two

points with the same color lie in a (4l � 3)-point star.

Proof It is easy to see that no vertices in a l � l square can receive the same color. We begin by coloring

these all different. For ease of reference, we will refer to the vertices as entries of a m � n matrix, where

ai j denotes the vertex in the ith row and jth column.

The only colors available to color column l � 1 are those used in column 1. To color � 1 � l � 1 � � � 2 � l �

1 � � � � � � � l � l � 1 � , we must use each color in the set � 1 � kl : 0 � k � l � exactly once. Since � 1 � 1 � � 1,

we see that � 1 � l � 1 � 
� 1. So there exists i with 2 � i � l and � i � l � 1 � � 1 (one of the entries denoted

by + in the diagram). The only colors available to color row l � 1 are those used in row 1. To color

� l � 1 � 2 � � � l � 1 � 3 � � � � � � � l � 1 � l � (those entries denoted by * in the diagram) we must use every color in

the set � 2 � 3 � � � � � l � exactly once. However, this leaves no color for � l � 1 � 1 � . Color 1 cannot be used,

since � 1 � 1 � � 1 and all other colors are already assigned to some � i � j � with 2 � i � l � 1 and 1 � j � l.

Thus, we need an additional color for � l � 1 � 1 � , so at least � l � 1 � 2 � 1 colors are required. �

Theorem 22 The coloring given for the � 6l � 5 � -point star is assymptotically best possible.
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Proof Every (axis-aligned) cross-section of the coloring for the � 6l � 5 � -point star must be a valid

coloring for the � 4l � 3 � -point star. Thus, we have a lower bound of l2 � 1 colors. We use l � l � 1 � � 1

colors. The ratio of upper and lower bound is � 1 � 1
l � 1 � , which approaches 1 as l gets large. �
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Chapter 5

Conclusion

We have given colorings that are valid for the (4l � 3)-point star and the l � l square stencils (for all l)

in the plane, on the cylinder and on the torus. On the torus, we have proved that the colorings given for

the � 4l � 3 � -point star are within at most 2 colors of optimality. On the cylinder, they are within at most

1 color of optimality. In the plane all star colorings given are optimal. On the torus and the cylinder, we

have given colorings for the square stencils that are within at most 1 color of optimality. The colorings

for square stencils in the plane are optimal.

We have given colorings for the l � l � l cube stencils for � 3 and � 2 � � m. Both are optimal. We

have also given colorings of � 3 for the � 6l � 5 � -point star, which are assymptotically best possible.
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