Brooks’ Theorem states that if G is a connected graph with maximum degree Δ at least 3, then G can be colored with Δ colors. This result has been generalized to list-coloring and more general contexts. The square G^2 of a graph G is formed from G by adding an edge between each pair of vertices at distance two. When G has maximum degree Δ, it is easy to show that G^2 has maximum degree at most Δ^2; so Brooks’ Theorem implies that G^2 can be colored with Δ^2 colors.

Cranston and Kim conjectured that we can improve this upper bound by at least 1. Specifically, they conjectured that $\chi^\ell(G^2) \leq \Delta^2 - 1$ unless G is a Moore graph (here χ^ℓ denotes the list chromatic number). We prove their conjecture and survey some harder conjectures about coloring squares of graphs.

This is joint work with Landon Rabern.