We study bootstrap percolation, which is an example of a cellular automaton, sometimes called a 0-player game. We fix a positive integer k and start with a plane graph T, in which some faces are “infected”. Once a face is infected, it remains so forever. If a face, f, is uninfected, but has at least k infected neighbors, then f becomes infected. The percolation threshold is the largest integer k such that if we infect each face independently with probability $1/2$, then with probability at least $1/2$ eventually the whole graph becomes infected.

We consider bootstrap percolation in tilings of the plane by regular polygons. A vertex type in such a tiling is the (cyclic) order of the faces that meet a common vertex. Let \mathcal{T} denote the set of plane tilings T by regular polygons such that if T contains one instance of a vertex type, then it contains infinitely many instances of that type. We show that no tiling in \mathcal{T} has threshold 4 or more. Further, we show that the only tilings in \mathcal{T} with threshold 3 are four of the Archimedean lattices. Finally, we describe a large subclass of \mathcal{T} with threshold 2.

This is joint work with Neal Bushaw.