
Survival Analysis: Introduction

Survival Analysis typically focuses on time to event data.

In the most general sense, it consists of techniques for positive-

valued random variables, such as

• time to death

• time to onset (or relapse) of a disease

• length of stay in a hospital

• duration of a strike

• money paid by health insurance

• viral load measurements

• time to finishing a doctoral dissertation!

Kinds of survival studies include:

• clinical trials

• prospective cohort studies

• retrospective cohort studies

• retrospective correlative studies

Typically, survival data are not fully observed, but rather

are censored.
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In this course, we will:

• describe survival data

• compare survival of several groups

• explain survival with covariates

• design studies with survival endpoints

Some knowledge of discrete data methods will be useful,

since analysis of the “time to event” uses information from

the discrete (i.e., binary) outcome of whether the event oc-

curred or not.

Some useful references:

• Collett: Modelling Survival Data in Medical Research

• Cox and Oakes: Analysis of Survival Data

• Kalbfleisch and Prentice: The Statistical Analysis of

Failure Time Data

• Lee: Statistical Methods for Survival Data Analysis

• Fleming & Harrington: Counting Processes and Sur-

vival Analysis

• Hosmer & Lemeshow: Applied Survival Analysis

• Kleinbaum: Survival Analysis: A self-learning text
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• Klein & Moeschberger: Survival Analysis: Techniques

for censored and truncated data

• Cantor: Extending SAS Survival Analysis Techniques

for Medical Research

• Allison: Survival Analysis Using the SAS System

• Jennison & Turnbull: Group Sequential Methods with

Applications to Clinical Trials

• Ibrahim, Chen, & Sinha: Bayesian Survival Analysis
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Some Definitions and notation

Failure time random variables are always non-negative.

That is, if we denote the failure time by T , then T ≥ 0.

T can either be discrete (taking a finite set of values, e.g.

a1, a2, . . . , an) or continuous (defined on (0,∞)).

A random variable X is called a censored failure time

random variable if X = min(T, U), where U is a non-

negative censoring variable.

In order to define a failure time random variable,

we need:

(1) an unambiguous time origin

(e.g. randomization to clinical trial, purchase of car)

(2) a time scale

(e.g. real time (days, years), mileage of a car)

(3) definition of the event

(e.g. death, need a new car transmission)
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Illustration of survival data
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y= censored observation
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The illustration of survival data on the previous page shows

several features which are typically encountered in analysis

of survival data:

• individuals do not all enter the study at the same time

• when the study ends, some individuals still haven’t had

the event yet

• other individuals drop out or get lost in the middle of

the study, and all we know about them is the last time

they were still “free” of the event

The first feature is referred to as “staggered entry”

The last two features relate to “censoring” of the failure

time events.
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Types of censoring:

• Right-censoring :

only the r.v. Xi = min(Ti, Ui) is observed due to

– loss to follow-up

– drop-out

– study termination

We call this right-censoring because the true unobserved

event is to the right of our censoring time; i.e., all we

know is that the event has not happened at the end of

follow-up.

In addition to observing Xi, we also get to see the fail-

ure indicator:

δi =




1 if Ti ≤ Ui
0 if Ti > Ui

Some software packages instead assume we have a

censoring indicator:

ci =




0 if Ti ≤ Ui
1 if Ti > Ui

Right-censoring is the most common type of censoring

assumption we will deal with in survival analysis.
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• Left-censoring

Can only observe Yi = max(Ti, Ui) and the failure indi-

cators:

δi =




1 if Ui ≤ Ti
0 if Ui > Ti

e.g. (Miller) study of age at which African children learn

a task. Some already knew (left-censored), some learned

during study (exact), some had not yet learned by end

of study (right-censored).

• Interval-censoring

Observe (Li, Ri) where Ti ∈ (Li, Ri)

Ex. 1: Time to prostate cancer, observe longitudinal

PSA measurements

Ex. 2: Time to undetectable viral load in AIDS studies,

based on measurements of viral load taken at each clinic

visit

Ex. 3: Detect recurrence of colon cancer after surgery.

Follow patients every 3 months after resection of primary

tumor.
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Independent vs informative censoring

• We say censoring is independent (non-informative) if

Ui is independent of Ti.

– Ex. 1 If Ui is the planned end of the study (say, 2

years after the study opens), then it is usually inde-

pendent of the event times.

– Ex. 2 If Ui is the time that a patient drops out

of the study because he/she got much sicker and/or

had to discontinue taking the study treatment, then

Ui and Ti are probably not independent.

An individual censored at U should be repre-

sentative of all subjects who survive to U .

This means that censoring at U could depend on prog-

nostic characteristics measured at baseline, but that among

all those with the same baseline characteristics, the prob-

ability of censoring prior to or at time U should be the

same.

• Censoring is considered informative if the distribu-

tion of Ui contains any information about the parameters

characterizing the distribution of Ti.
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Suppose we have a sample of observations on n people:

(T1, U1), (T2, U2), ..., (Tn, Un)

There are three main types of (right) censoring times:

• Type I: All the Ui’s are the same

e.g. animal studies, all animals sacrificed after 2 years

• Type II: Ui = T(r), the time of the rth failure.

e.g. animal studies, stop when 4/6 have tumors

• Type III: the Ui’s are random variables, δi’s are failure

indicators:

δi =




1 if Ti ≤ Ui
0 if Ti > Ui

Type I and Type II are called singly censored data,

Type III is called randomly censored (or sometimes pro-

gressively censored).
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Some example datasets:

Example A. Duration of nursing home stay

(Morris et al., Case Studies in Biometry, Ch 12)

The National Center for Health Services Research studied

36 for-profit nursing homes to assess the effects of different

financial incentives on length of stay. “Treated” nursing

homes received higher per diems for Medicaid patients, and

bonuses for improving a patient’s health and sending them

home.

Study included 1601 patients admitted between May 1, 1981

and April 30, 1982.

Variables include:

LOS - Length of stay of a resident (in days)

AGE - Age of a resident

RX - Nursing home assignment (1:bonuses, 0:no bonuses)

GENDER - Gender (1:male, 0:female)

MARRIED - (1: married, 0:not married)

HEALTH - health status (2:second best, 5:worst)

CENSOR - Censoring indicator (1:censored, 0:discharged)

First few lines of data:

37 86 1 0 0 2 0

61 77 1 0 0 4 0
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Example B. Fecundability

Women who had recently given birth were asked to recall

how long it took them to become pregnant, and whether or

not they smoked during that time. The outcome of inter-

est (summarized below) is time to pregnancy (measured in

menstrual cycles).

19 subjects were not able to get pregnant after 12 months.

Cycle Smokers Non-smokers

1 29 198

2 16 107

3 17 55

4 4 38

5 3 18

6 9 22

7 4 7

8 5 9

9 1 5

10 1 3

11 1 6

12 3 6

12+ 7 12

12



Example C: MAC Prevention Clinical Trial

ACTG 196 was a randomized clinical trial to study the effects

of combination regimens on prevention of MAC (mycobac-

terium avium complex), one of the most common oppor-

tunistic infections in AIDS patients.

The treatment regimens were:

• clarithromycin (new)

• rifabutin (standard)

• clarithromycin plus rifabutin

Other characteristics of trial:

• Patients enrolled between April 1993 and February 1994

• Follow-up ended August 1995

• In February 1994, rifabutin dosage was reduced from 3

pills/day (450mg) to 2 pills/day (300mg) due to concern

over uveitis1

The main intent-to-treat analysis compared the 3 treatment

arms without adjusting for this change in dosage.

1Uveitis is an adverse experience resulting in inflammation of the
uveal tract in the eyes (about 3-4% of patients reported uveitis).
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Example D: HMO Study of HIV-related Survival

This is hypothetical data used by Hosmer & Lemeshow (de-

scribed on pages 2-17) containing 100 observations on HIV+

subjects belonging to an Health Maintenance Organization

(HMO). The HMO wants to evaluate the survival time of

these subjects. In this hypothetical dataset, subjects were

enrolled from January 1, 1989 until December 31, 1991.

Study follow up then ended on December 31, 1995.

Variables:

ID Subject ID (1-100)

TIME Survival time in months

ENTDATE Entry date

ENDDATE Date follow-up ended due to death or censoring

CENSOR Death Indicator (1=death, 0=censor)

AGE Age of subject in years

DRUG History of IV Drug Use (0=no,1=yes)

This dataset is used by Hosmer & Lemeshow to motivate

some concepts in survival analysis in Chap. 1 of their book.
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Example E: UMARU Impact Study (UIS)

This dataset comes from the University of Massachusetts

AIDS Research Unit (UMARU) IMPACT Study, a 5-year

collaborative research project comprised of two concurrent

randomized trials of residential treatment for drug abuse.

(1) Program A: Randomized 444 subjects to a 3- or 6-

month program of health education and relapse preven-

tion. Clients were taught to recognize “high-risk” situ-

ations that are triggers to relapse, and taught skills to

cope with these situations without using drugs.

(2) Program B: Randomized 184 participants to a 6- or

12-month program with highly structured life-style in a

communal living setting.

Variables:
ID Subject ID (1-628)
AGE Age in years
BECKTOTA Beck Depression Score
HERCOC Heroin or Cocaine Use prior to entry
IVHX IV Drug use at Admission
NDRUGTX Number previous drug treatments
RACE Subject’s Race (0=White, 1=Other)
TREAT Treatment Assignment (0=short, 1=long)
SITE Treatment Program (0=A,1=B)
LOT Length of Treatment (days)
TIME Time to Return to Drug Use (days)
CENSOR Indicator of Drug Use Relapse (1=yes,0=censored)
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Example F: Atlantic Halibut Survival Times

One conservation measure suggested for trawl fishing is a

minimum size limit for halibut (32 inches). However, this size

limit would only be effective if captured fish below the limit

survived until the time of their release. An experiment was

conducted to evaluate the survival rates of halibut caught by

trawls or longlines, and to assess other factors which might

contribute to survival (duration of trawling, maximum depth

fished, size of fish, and handling time).

An article by Smith, Waiwood and Neilson, Survival Analy-

sis for Size Regulation of Atlantic Halibut in Case Studies

in Biometry compares parametric survival models to semi-

parametric survival models in evaluating this data.

Survival Tow Diff Length Handling Total
Obs Time Censoring Duration in of Fish Time log(catch)
# (min) Indicator (min.) Depth (cm) (min.) ln(weight)
100 353.0 1 30 15 39 5 5.685
109 111.0 1 100 5 44 29 8.690
113 64.0 0 100 10 53 4 5.323
116 500.0 1 100 10 44 4 5.323
....
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More Definitions and Notation

There are several equivalent ways to characterize the prob-

ability distribution of a survival random variable. Some of

these are familiar; others are special to survival analysis. We

will focus on the following terms:

• The density function f (t)

• The survivor function S(t)

• The hazard function λ(t)

• The cumulative hazard function Λ(t)

• Density function (or Probability Mass Func-
tion) for discrete r.v.’s

Suppose that T takes values in a1, a2, . . . , an.

f (t) = Pr(T = t)

=





fj if t = aj, j = 1, 2, . . . , n

0 if t 6= aj, j = 1, 2, . . . , n

• Density Function for continuous r.v.’s

f (t) = lim
∆t→0

1

∆t
Pr(t ≤ T ≤ t +∆t)
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• Survivorship Function: S(t) = P (T ≥ t).

In other settings, the cumulative distribution function,

F (t) = P (T ≤ t), is of interest. In survival analysis, our

interest tends to focus on the survival function, S(t).

For a continuous random variable:

S(t) =
∫ ∞
t
f (u)du

For a discrete random variable:

S(t) =
∑

u≥t
f (u)

=
∑

aj≥t
f (aj)

=
∑

aj≥t
fj

Notes:

• From the definition of S(t) for a continuous variable,

S(t) = 1−F (t) as long as F (t) is absolutely continuous

w.r.t the Lebesgue measure. [That is, F (t) has a density

function.]

• For a discrete variable, we have to decide what to do if

an event occurs exactly at time t; i.e., does that become

part of F (t) or S(t)?

• To get around this problem, several books define

S(t) = Pr(T > t), or else define F (t) = Pr(T < t)

(eg. Collett)
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• Hazard Function λ(t)

Sometimes called an instantaneous failure rate, the

force of mortality, or the age-specific failure rate.

– Continuous random variables:

λ(t) = lim
∆t→0

1

∆t
Pr(t ≤ T < t +∆t|T ≥ t)

= lim
∆t→0

1

∆t

Pr([t ≤ T < t +∆t]
⋂

[T ≥ t])

Pr(T ≥ t)

= lim
∆t→0

1

∆t

Pr(t ≤ T < t +∆t)

Pr(T ≥ t)

=
f (t)

S(t)

– Discrete random variables:

λ(aj) ≡ λj = Pr(T = aj|T ≥ aj)

=
P (T = aj)

P (T ≥ aj)

=
f (aj)

S(aj)

=
f (t)

∑
k:ak≥aj f (ak)
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• Cumulative Hazard Function Λ(t)

– Continuous random variables:

Λ(t) =
∫ t
0
λ(u)du

– Discrete random variables:

Λ(t) =
∑

k:ak<t
λk
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Relationship between S(t) and λ(t)

We’ve already shown that, for a continuous r.v.

λ(t) =
f (t)

S(t)

For a left-continuous survivor function S(t), we can show:

f (t) = −S ′(t) or S ′(t) = − f (t)

We can use this relationship to show that:

− d

dt
[logS(t)] = −




1

S(t)


 S ′(t)

= − −f (t)
S(t)

=
f (t)

S(t)

So another way to write λ(t) is as follows:

λ(t) = − d

dt
[logS(t)]
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Relationship between S(t) and Λ(t):

• Continuous case:
Λ(t) =

∫ t
0
λ(u)du

=
∫ t
0

f (u)

S(u)
du

=
∫ t
0
− d

du
logS(u)du

= − logS(t) + logS(0)

⇒ S(t) = e−Λ(t)

• Discrete case:
Suppose that aj < t ≤ aj+1. Then

S(t) = P (T ≥ a1, T ≥ a2, . . . , T ≥ aj+1)

= P (T ≥ a1)P (T ≥ a2|T ≥ a1) · · ·P (T ≥ aj+1|T ≥ aj)

= (1− λ1)× · · · × (1− λj)

=
∏

k:ak<t

(1− λk)

Cox defines Λ(t) =
∑
k:ak<t log(1 − λk) so that S(t) =

e−Λ(t) in the discrete case, as well.
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Measuring Central Tendency in Survival

•Mean survival - call this µ
µ =

∫ ∞
0
uf (u)du for continuous T

=
n∑

j=1
ajfj for discrete T

•Median survival - call this τ , is defined by

S(τ ) = 0.5

Similarly, any other percentile could be defined.

In practice, we don’t usually hit the median survival

at exactly one of the failure times. In this case, the

estimated median survival is the smallest time τ such

that

Ŝ(τ ) ≤ 0.5
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Some hazard shapes seen in applications:

• increasing
e.g. aging after 65

• decreasing
e.g. survival after surgery

• bathtub
e.g. age-specific mortality

• constant
e.g. survival of patients with advanced chronic disease
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Estimating the survival or hazard function

We can estimate the survival (or hazard) function in two

ways:

• by specifying a parametric model for λ(t) based on a

particular density function f (t)

• by developing an empirical estimate of the survival func-

tion (i.e., non-parametric estimation)

If no censoring:

The empirical estimate of the survival function, S̃(t), is the

proportion of individuals with event times greater than t.

With censoring:

If there are censored observations, then S̃(t) is not a good

estimate of the true S(t), so other non-parametric methods

must be used to account for censoring (life-table methods,

Kaplan-Meier estimator)
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Some Parametric Survival Distributions

• The Exponential distribution (1 parameter)

f (t) = λe−λt for t ≥ 0

S(t) =
∫ ∞
t
f (u)du

= e−λt

λ(t) =
f (t)

S(t)
= λ constant hazard!

Λ(t) =
∫ t
0
λ(u) du

=
∫ t
0
λ du

= λt

Check: Does S(t) = e−Λ(t) ?

median: solve 0.5 = S(τ ) = e−λτ :

⇒ τ =
− log(0.5)

λ
mean:

∫ ∞
0
uλe−λudu =

1

λ
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• TheWeibull distribution (2 parameters)

Generalizes exponential:

S(t) = e−λt
κ

f (t) =
−d
dt
S(t) = κλtκ−1e−λt

κ

λ(t) = κλtκ−1

Λ(t) =
∫ t
0
λ(u)du = λtκ

λ - the scale parameter

κ - the shape parameter

TheWeibull distribution is convenient because of its sim-

ple form. It includes several hazard shapes:

κ = 1→ constant hazard

0 < κ < 1→ decreasing hazard

κ > 1→ increasing hazard
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• Rayleigh distribution

Another 2-parameter generalization of exponential:

λ(t) = λ0 + λ1t

• compound exponential
T ∼ exp(λ), λ ∼ g

f (t) =
∫ ∞
0
λe−λtg(λ)dλ

• log-normal, log-logistic:
Possible distributions for T obtained by specifying for

log T any convenient family of distributions, e.g.

log T ∼ normal (non-monotone hazard)

log T ∼ logistic
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Why use one versus another?

• technical convenience for estimation and inference

• explicit simple forms for f (t), S(t), and λ(t).

• qualitative shape of hazard function

One can usually distinguish between a one-parameter model

(like the exponential) and two-parameter (like Weibull or

log-normal) in terms of the adequacy of fit to a dataset.

Without a lot of data, it may be hard to distinguish between

the fits of various 2-parameter models (i.e., Weibull vs log-

normal)
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Plots of estimates of S(t)

Based on KM, exponential, Weibull, and log-normal

for study of protease inhibitors in AIDS patients

(ACTG 320)
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Plots of estimates of S(t)

Based on KM, exponential, Weibull, and log-normal

for study of protease inhibitors in AIDS patients

(ACTG 320)
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Plots of estimates of S(t)

Based on KM, exponential, Weibull, and log-normal

for study of protease inhibitors in AIDS patients

(ACTG 320)
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Preview of Coming Attractions

Next we will discuss the most famous non-parametric ap-

proach for estimating the survival distribution, called the

Kaplan-Meier estimator.

To motivate the derivation of this estimator, we will first

consider a set of survival times where there is no censoring.

The following are times to relapse (weeks) for 21 leukemia

patients receiving control treatment (Table 1.1 of Cox &

Oakes):

1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

How would we estimate S(10), the probability that an indi-

vidual survives to time 10 or later?

What about S̃(8)? Is it 12
21 or 8

21?
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Let’s construct a table of S̃(t):

Values of t Ŝ(t)

t ≤ 1 21/21=1.000

1 < t ≤ 2 19/21=0.905

2 < t ≤ 3 17/21=0.809

3 < t ≤ 4

4 < t ≤ 5

5 < t ≤ 8

8 < t ≤ 11

11 < t ≤ 12

12 < t ≤ 15

15 < t ≤ 17

17 < t ≤ 22

22 < t ≤ 23

Empirical Survival Function:

When there is no censoring, the general formula is:

S̃(t) =
# individuals with T ≥ t

total sample size
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In most software packages, the survival function is evaluated

just after time t, i.e., at t+. In this case, we only count the

individuals with T > t.

Example for leukemia data (control arm):
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Stata Commands for Survival Estimation

.use leukem

.stset remiss status if trt==0 (to keep only untreated patients)

(21 observations deleted)

. sts list

failure _d: status

analysis time _t: remiss

Beg. Net Survivor Std.

Time Total Fail Lost Function Error [95% Conf. Int.]

----------------------------------------------------------------------

1 21 2 0 0.9048 0.0641 0.6700 0.9753

2 19 2 0 0.8095 0.0857 0.5689 0.9239

3 17 1 0 0.7619 0.0929 0.5194 0.8933

4 16 2 0 0.6667 0.1029 0.4254 0.8250

5 14 2 0 0.5714 0.1080 0.3380 0.7492

8 12 4 0 0.3810 0.1060 0.1831 0.5778

11 8 2 0 0.2857 0.0986 0.1166 0.4818

12 6 2 0 0.1905 0.0857 0.0595 0.3774

15 4 1 0 0.1429 0.0764 0.0357 0.3212

17 3 1 0 0.0952 0.0641 0.0163 0.2612

22 2 1 0 0.0476 0.0465 0.0033 0.1970

23 1 1 0 0.0000 . . .

----------------------------------------------------------------------

.sts graph

36



SAS Commands for Survival Estimation

data leuk;

input t;

cards;

1

1

2

2

3

4

4

5

5

8

8

8

8

11

11

12

12

15

17

22

23

;

proc lifetest data=leuk;

time t;

run;
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SAS Output for Survival Estimation

The LIFETEST Procedure

Product-Limit Survival Estimates

Survival

Standard Number Number

t Survival Failure Error Failed Left

0.0000 1.0000 0 0 0 21

1.0000 . . . 1 20

1.0000 0.9048 0.0952 0.0641 2 19

2.0000 . . . 3 18

2.0000 0.8095 0.1905 0.0857 4 17

3.0000 0.7619 0.2381 0.0929 5 16

4.0000 . . . 6 15

4.0000 0.6667 0.3333 0.1029 7 14

5.0000 . . . 8 13

5.0000 0.5714 0.4286 0.1080 9 12

8.0000 . . . 10 11

8.0000 . . . 11 10

8.0000 . . . 12 9

8.0000 0.3810 0.6190 0.1060 13 8

11.0000 . . . 14 7

11.0000 0.2857 0.7143 0.0986 15 6

12.0000 . . . 16 5

12.0000 0.1905 0.8095 0.0857 17 4

15.0000 0.1429 0.8571 0.0764 18 3

17.0000 0.0952 0.9048 0.0641 19 2

22.0000 0.0476 0.9524 0.0465 20 1

23.0000 0 1.0000 0 21 0
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SAS Output for Survival Estimation (cont’d)

Summary Statistics for Time Variable t

Quartile Estimates

Point 95% Confidence Interval

Percent Estimate [Lower Upper)

75 12.0000 8.0000 17.0000

50 8.0000 4.0000 11.0000

25 4.0000 2.0000 8.0000

Mean Standard Error

8.6667 1.4114

Summary of the Number of Censored and Uncensored Values

Percent

Total Failed Censored Censored

21 21 0 0.00
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Does anyone have a guess regarding how to calcu-

late the standard error of the estimated survival?

Ŝ(8+) = P (T > 8) =
8

21
= 0.381

(at t = 8+, we count the 4 events at time=8 as already

having failed)

se[Ŝ(8+)] = 0.106
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S-Plus Commands for Survival Estimation

> t_c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23)

> surv.fit(t,status=rep(1,21))

95 percent confidence interval is of type "log"

time n.risk n.event survival std.dev lower 95% CI upper 95% CI

1 21 2 0.90476190 0.06405645 0.78753505 1.0000000

2 19 2 0.80952381 0.08568909 0.65785306 0.9961629

3 17 1 0.76190476 0.09294286 0.59988048 0.9676909

4 16 2 0.66666667 0.10286890 0.49268063 0.9020944

5 14 2 0.57142857 0.10798985 0.39454812 0.8276066

8 12 4 0.38095238 0.10597117 0.22084536 0.6571327

11 8 2 0.28571429 0.09858079 0.14529127 0.5618552

12 6 2 0.19047619 0.08568909 0.07887014 0.4600116

15 4 1 0.14285714 0.07636035 0.05010898 0.4072755

17 3 1 0.09523810 0.06405645 0.02548583 0.3558956

22 2 1 0.04761905 0.04647143 0.00703223 0.3224544

23 1 1 0.00000000 NA NA NA
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Estimating the Survival Function

One-sample nonparametric methods:

We will consider three methods for estimating a survivorship

function

S(t) = Pr(T ≥ t)

without resorting to parametric methods:

(1) Kaplan-Meier

(2) Life-table (Actuarial Estimator)

(3) via the Cumulative hazard estimator
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(1) The Kaplan-Meier Estimator

The Kaplan-Meier (or KM) estimator is probably
the most popular approach. It can be justified
from several perspectives:

• product limit estimator

• likelihood justification

• redistribute to the right estimator

We will start with an intuitive motivation based
on conditional probabilities, then review some of
the other justifications.
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Motivation:

First, consider an example where there is no censoring.

The following are times of remission (weeks) for 21 leukemia

patients receiving control treatment (Table 1.1 of Cox &

Oakes):

1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

How would we estimate S(10), the probability that an indi-

vidual survives to time 10 or later?

What about S̃(8)? Is it 12
21 or 8

21?

Let’s construct a table of S̃(t):

Values of t Ŝ(t)

t ≤ 1 21/21=1.000
1 < t ≤ 2 19/21=0.905
2 < t ≤ 3 17/21=0.809
3 < t ≤ 4
4 < t ≤ 5
5 < t ≤ 8
8 < t ≤ 11
11 < t ≤ 12
12 < t ≤ 15
15 < t ≤ 17
17 < t ≤ 22
22 < t ≤ 23
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Empirical Survival Function:

When there is no censoring, the general formula is:

S̃(t) =
# individuals with T ≥ t

total sample size

Example for leukemia data (control arm):
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What if there is censoring?

Consider the treated group from Table 1.1 of Cox and Oakes:

6+, 6, 6, 6, 7, 9+, 10+, 10, 11+, 13, 16, 17+

19+, 20+, 22, 23, 25+, 32+, 32+, 34+, 35+

[Note: times with + are right censored]

We know S(6)= 21/21, because everyone survived at least

until time 6 or greater. But, we can’t say S(7) = 17/21,

because we don’t know the status of the person who was

censored at time 6.

In a 1958 paper in the Journal of the American Statistical

Association, Kaplan and Meier proposed a way to nonpara-

metrically estimate S(t), even in the presence of censoring.

The method is based on the ideas of conditional proba-

bility.
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A quick review of conditional probability:

Conditional Probability: Suppose A and B are two

events. Then,

P (A|B) =
P (A ∩B)

P (B)

Multiplication law of probability: can be obtained

from the above relationship, by multiplying both sides by

P (B):

P (A ∩B) = P (A|B)P (B)

Extension to more than 2 events:

Suppose A1, A2...Ak are k different events. Then, the prob-

ability of all k events happening together can be written as

a product of conditional probabilities:

P (A1 ∩ A2... ∩ Ak) = P (Ak|Ak−1 ∩ ... ∩ A1)×
×P (Ak−1|Ak−2 ∩ ... ∩ A1)

...

×P (A2|A1)

×P (A1)
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Now, let’s apply these ideas to estimate S(t):

Suppose ak < t ≤ ak+1. Then

S(t) = P (T ≥ ak+1)

= P (T ≥ a1, T ≥ a2, . . . , T ≥ ak+1)

= P (T ≥ a1)×
k∏

j=1
P (T ≥ aj+1|T ≥ aj)

=
k∏

j=1
[1− P (T = aj|T ≥ aj)]

=
k∏

j=1
[1− λj]

so Ŝ(t) ∼=
k∏

j=1


1− dj

rj




=
∏

j:aj<t


1− dj

rj




dj is the number of deaths at aj
rj is the number at risk at aj

48



Intuition behind the Kaplan-Meier Estimator

Think of dividing the observed timespan of the study into a

series of fine intervals so that there is a separate interval for

each time of death or censoring:

D C C D D D

Using the law of conditional probability,

Pr(T ≥ t) =
∏

j

Pr(survive j-th interval Ij | survived to start of Ij)

where the product is taken over all the intervals including or

preceding time t.
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4 possibilities for each interval:

(1) No events (death or censoring) - conditional prob-

ability of surviving the interval is 1

(2) Censoring - assume they survive to the end of the in-

terval, so that the conditional probability of surviving

the interval is 1

(3) Death, but no censoring - conditional probability

of not surviving the interval is # deaths (d) divided by #

‘at risk’ (r) at the beginning of the interval. So the con-

ditional probability of surviving the interval is 1− (d/r).

(4) Tied deaths and censoring - assume censorings last

to the end of the interval, so that conditional probability

of surviving the interval is still 1− (d/r)

General Formula for jth interval:

It turns out we can write a general formula for the conditional

probability of surviving the j-th interval that holds for all 4

cases:

1− dj
rj
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We could use the same approach by grouping the event times

into intervals (say, one interval for each month), and then

counting up the number of deaths (events) in each to esti-

mate the probability of surviving the interval (this is called

the lifetable estimate).

However, the assumption that those censored last until the

end of the interval wouldn’t be quite accurate, so we would

end up with a cruder approximation.

As the intervals get finer and finer, the approximations made

in estimating the probabilities of getting through each inter-

val become smaller and smaller, so that the estimator con-

verges to the true S(t).

This intuition clarifies why an alternative name for the KM

is the product limit estimator.
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The Kaplan-Meier estimator of the survivorship

function (or survival probability) S(t) = Pr(T ≥ t)

is:

Ŝ(t) =
∏
j:τj<t

rj−dj
rj

=
∏
j:τj<t


1− dj

rj




where

• τ1, ...τK is the set of K distinct death times observed in

the sample

• dj is the number of deaths at τj

• rj is the number of individuals “at risk” right before the

j-th death time (everyone dead or censored at or after

that time).

• cj is the number of censored observations between the

j-th and (j + 1)-st death times. Censorings tied at τj
are included in cj

Note: two useful formulas are:

(1) rj = rj−1 − dj−1 − cj−1

(2) rj =
∑

l≥j
(cl + dl)
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Calculating the KM - Cox and Oakes example

Make a table with a row for every death or censoring time:

τj dj cj rj 1− (dj/rj) Ŝ(τ+j )

6 3 1 21 18
21 = 0.857

7 1 0 17

9 0 1 16

10

11

13

16

17

19

20

22

23

Note that:

• Ŝ(t+) only changes at death (failure) times

• Ŝ(t+) is 1 up to the first death time

• Ŝ(t+) only goes to 0 if the last event is a death
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KM plot for treated leukemia patients

Note: most statistical software packages summa-

rize the KM survival function at τ+j , i.e., just af-

ter the time of the j-th failure.

In other words, they provide Ŝ(τ+j ).

When there is no censoring, the empirical survival estimate

would then be:

S̃(t+) =
# individuals with T > t

total sample size
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Output from STATA KM Estimator:

failure time: weeks

failure/censor: remiss

Beg. Net Survivor Std.

Time Total Fail Lost Function Error [95% Conf. Int.]

-------------------------------------------------------------------

6 21 3 1 0.8571 0.0764 0.6197 0.9516

7 17 1 0 0.8067 0.0869 0.5631 0.9228

9 16 0 1 0.8067 0.0869 0.5631 0.9228

10 15 1 1 0.7529 0.0963 0.5032 0.8894

11 13 0 1 0.7529 0.0963 0.5032 0.8894

13 12 1 0 0.6902 0.1068 0.4316 0.8491

16 11 1 0 0.6275 0.1141 0.3675 0.8049

17 10 0 1 0.6275 0.1141 0.3675 0.8049

19 9 0 1 0.6275 0.1141 0.3675 0.8049

20 8 0 1 0.6275 0.1141 0.3675 0.8049

22 7 1 0 0.5378 0.1282 0.2678 0.7468

23 6 1 0 0.4482 0.1346 0.1881 0.6801

25 5 0 1 0.4482 0.1346 0.1881 0.6801

32 4 0 2 0.4482 0.1346 0.1881 0.6801

34 2 0 1 0.4482 0.1346 0.1881 0.6801

35 1 0 1 0.4482 0.1346 0.1881 0.6801
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Two Other Justifications for KM Estimator

I. Likelihood-based derivation (Cox and Oakes)

For a discrete failure time variable, define:

dj number of failures at aj
rj number of individuals at risk at aj

(including those censored at aj).

λj Pr(death) in j-th interval

(conditional on survival to start of interval)

The likelihood is that of g independent binomials:

L(λ) =
g∏

j=1
λ
dj
j (1− λj)

rj−dj

Therefore, the maximum likelihood estimator of λj
is:

λ̂j = dj/rj

Now we plug in the MLE’s of λ to estimate S(t):

Ŝ(t) =
∏

j:aj<t
(1− λ̂j)

=
∏

j:aj<t


1− dj

rj



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II. Redistribute to the right justification

(Efron, 1967)

In the absence of censoring, Ŝ(t) is just the proportion of

individuals with T ≥ t. The idea behind Efron’s approach

is to spread the contributions of censored observations out

over all the possible times to their right.

Algorithm:

• Step (1): arrange the n observed times (deaths or censor-

ings) in increasing order. If there are ties, put censored

after deaths.

• Step (2): Assign weight (1/n) to each time.

• Step (3): Moving from left to right, each time you en-

counter a censored observation, distribute its mass to all

times to its right.

• Step (4): Calculate Ŝj by subtracting the final weight

for time j from Ŝj−1
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Example of “redistribute to the right” algorithm

Consider the following event times:

2, 2.5+, 3, 3, 4, 4.5+, 5, 6, 7

The algorithm goes as follows:

(Step 1) (Step 4)

Times Step 2 Step 3a Step 3b Ŝ(τj)

2 1/9=0.11 0.889

2.5+ 1/9=0.11 0 0.889

3 2/9=0.22 0.25 0.635

4 1/9=0.11 0.13 0.508

4.5+ 1/9=0.11 0.13 0 0.508

5 1/9=0.11 0.13 0.17 0.339

6 1/9=0.11 0.13 0.17 0.169

7 1/9=0.11 0.13 0.17 0.000

This comes out the same as the product limit approach.
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Properties of the KM estimator

In the case of no censoring:

Ŝ(t) = S̃(t) =
# deaths at t or greater

n

where n is the number of individuals in the study.

This is just like an estimated probability from a binomial

distribution, so we have:

Ŝ(t) ' N (S(t), S(t)[1− S(t)]/n)

How does censoring affect this?

• Ŝ(t) is still approximately normal

• The mean of Ŝ(t) converges to the true S(t)

• The variance is a bit more complicated (since the de-

nominator n includes some censored observations).

Once we get the variance, then we can construct (pointwise)

(1− α)% confidence intervals (NOT bands) about Ŝ(t):

Ŝ(t)± z1−α/2 se[Ŝ(t)]
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Greenwood’s formula (Collett 2.1.3)

We can think of the KM estimator as

Ŝ(t) =
∏

j:τj<t
(1− λ̂j)

where λ̂j = dj/rj.

Since the λ̂j’s are just binomial proportions, we can apply

standard likelihood theory to show that each λ̂j is approxi-

mately normal, with mean the true λj, and

var(λ̂j) ≈
λ̂j(1− λ̂j)

rj

Also, the λ̂j’s are independent in large enough samples.

Since Ŝ(t) is a function of the λj’s, we can estimate its vari-

ance using the delta method:

Delta method: If Y is normal with mean µ and

variance σ2, then g(Y ) is approximately normally

distributed with mean g(µ) and variance [g ′(µ)]2σ2.
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Two specific examples of the delta method:

(A) Z = log(Y )

then Z ∼ N


log(µ),



1

µ



2

σ2



(B) Z = exp(Y )

then Z ∼ N
[
eµ, [eµ]2σ2

]

The examples above use the following results from calculus:

d

dx
log u =

1

u



du

dx




d

dx
eu = eu



du

dx



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Greenwood’s formula (continued)

Instead of dealing with Ŝ(t) directly, we will look at its log:

log[Ŝ(t)] =
∑

j:τj<t
log(1− λ̂j)

Thus, by approximate independence of the λ̂j’s,

var(log[Ŝ(t)]) =
∑

j:τj<t
var[log(1− λ̂j)]

by (A) =
∑

j:τj<t




1

1− λ̂j




2

var(λ̂j)

=
∑

j:τj<t




1

1− λ̂j




2

λ̂j(1− λ̂j)/rj

=
∑

j:τj<t

λ̂j

(1− λ̂j)rj

=
∑

j:τj<t

dj
(rj − dj)rj

Now, Ŝ(t) = exp[log[Ŝ(t)]]. Thus by (B),

var(Ŝ(t)) = [Ŝ(t)]2var
[
log[Ŝ(t)]

]

Greenwood’s Formula:

var(Ŝ(t)) = [Ŝ(t)]2 ∑j:τj<t
dj

(rj−dj)rj

62



Back to confidence intervals

For a 95% confidence interval, we could use

Ŝ(t)± z1−α/2 se[Ŝ(t)]

where se[Ŝ(t)] is calculated using Greenwood’s formula.

Problem: This approach can yield values > 1 or < 0.

Better approach: Get a 95% confidence interval for

L(t) = log(− log(S(t)))

Since this quantity is unrestricted, the confidence interval

will be in the proper range when we transform back.

To see why this works, note the following:

• Since Ŝ(t) is an estimated probability

0 ≤ Ŝ(t) ≤ 1

• Taking the log of Ŝ(t) has bounds:

−∞ ≤ log[Ŝ(t)] ≤ 0

• Taking the opposite:

0 ≤ − log[Ŝ(t)] ≤ ∞
• Taking the log again:

−∞ ≤ log
[
− log[Ŝ(t)]

]
≤ ∞

To transform back, reverse steps with S(t) = exp(− exp(L(t))
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Log-log Approach for Confidence Intervals:

(1) Define L(t) = log(− log(S(t)))

(2) Form a 95% confidence interval for L(t) based on L̂(t),

yielding [L̂(t)− A, L̂(t) + A]

(3) Since S(t) = exp(− exp(L(t)), the confidence bounds

for the 95% CI on S(t) are:

[exp(−e(L̂(t)+A)), exp(−e(L̂(t)−A))]

(note that the upper and lower bounds switch)

(4) Substituting L̂(t) = log(− log(Ŝ(t))) back into the above

bounds, we get confidence bounds of

([Ŝ(t)]e
A
, [Ŝ(t)]e

−A
)
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What is A?

• A is 1.96 se(L̂(t))

• To calculate this, we need to calculate

var(L̂(t)) = var
[
log(− log(Ŝ(t)))

]

• From our previous calculations, we know

var(log[Ŝ(t)]) =
∑

j:τj<t

dj
(rj − dj)rj

• Applying the delta method as in example (A), we get:

var(L̂(t)) = var(log(− log[Ŝ(t)]))

=
1

[log Ŝ(t)]2
∑

j:τj<t

dj
(rj − dj)rj

• We take the square root of the above to get se(L̂(t)),

and then form the confidence intervals as:

Ŝ(t)e
±1.96 se(L̂(t))

• This is the approach that Stata uses. Splus gives an op-

tion to calculate these bounds (use conf.type=’’log-log’’

in surv.fit).
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Summary of Confidence Intervals on S(t)

• Calculate Ŝ(t) ± 1.96 se[Ŝ(t)] where se[Ŝ(t)] is calcu-

lated using Greenwood’s formula, and replace negative

lower bounds by 0 and upper bounds greater than 1 by

1.

– Recommended by Collett

– This is the default using SAS

– not very satisfactory

• Use a log transformation to stabilize the variance and

allow for non-symmetric confidence intervals. This is

what is normally done for the confidence interval of an

estimated odds ratio.

– Use var[log(Ŝ(t))] =
∑
j:τj<t

dj
(rj−dj)rj already calcu-

lated as part of Greenwood’s formula

– This is the default in Splus

• Use the log-log transformation just described

– Somewhat complicated, but always yields proper bounds

– This is the default in Stata.
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Software for Kaplan-Meier Curves

• Stata - stset and sts commands

• SAS - proc lifetest

• Splus - surv.fit(time,status)

Defaults for Confidence Interval Calculations

• Stata - “log-log” ⇒ L̂(t)± 1.96 se[L̂(t)]

where L(t) = log[− log(S(t))]

• SAS - “plain” ⇒ Ŝ(t)± 1.96 se[Ŝ(t)]

• Splus - “log” ⇒ logS(t)± 1.96 se[log(Ŝ(t))]

but Splus will also give either of the other two options if

you request them.
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Stata Commands

Create a file called “leukemia.dat” with the raw data, with

a column for treatment, weeks to relapse (i.e., duration of

remission), and relapse status:

.infile trt remiss status using leukemia.dat

.stset remiss status (sets up a failure time dataset,

with failtime status in that order,

type help stset to get details)

.sts list (estimated S(t), se[S(t)], and 95% CI)

.sts graph, saving(kmtrt) (creates a Kaplan-Meier plot, and

saves the plot in file kmtrt.gph,

type ‘‘help gphdot’’ to get some

printing instructions)

.graph using kmtrt (redisplays the graph at any later time)

If the dataset has already been created and loaded into Stata,

then you can substitute the following commands for initial-

izing the data:

.use leukem (finds Stata dataset leukem.dta)

.describe (provides a description of the dataset)

.stset remiss status (declares data to be failure type)

.stdes (gives a description of the survival dataset)
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STATA Output for Treated Leukemia Patients:

.use leukem

.stset remiss status if trt==1

.sts list

failure time: remiss

failure/censor: status

Beg. Net Survivor Std.

Time Total Fail Lost Function Error [95% Conf. Int.]

-------------------------------------------------------------------

6 21 3 1 0.8571 0.0764 0.6197 0.9516

7 17 1 0 0.8067 0.0869 0.5631 0.9228

9 16 0 1 0.8067 0.0869 0.5631 0.9228

10 15 1 1 0.7529 0.0963 0.5032 0.8894

11 13 0 1 0.7529 0.0963 0.5032 0.8894

13 12 1 0 0.6902 0.1068 0.4316 0.8491

16 11 1 0 0.6275 0.1141 0.3675 0.8049

17 10 0 1 0.6275 0.1141 0.3675 0.8049

19 9 0 1 0.6275 0.1141 0.3675 0.8049

20 8 0 1 0.6275 0.1141 0.3675 0.8049

22 7 1 0 0.5378 0.1282 0.2678 0.7468

23 6 1 0 0.4482 0.1346 0.1881 0.6801

25 5 0 1 0.4482 0.1346 0.1881 0.6801

32 4 0 2 0.4482 0.1346 0.1881 0.6801

34 2 0 1 0.4482 0.1346 0.1881 0.6801

35 1 0 1 0.4482 0.1346 0.1881 0.6801
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SAS Commands for Kaplan Meier Estimator -

PROC LIFETEST

The SAS command for the Kaplan-Meier estimate is:

time failtime*censor(1);

or time failtime*failind(0);

The first variable is the failure time, and the second is the

failure or censoring indicator. In parentheses you need to put

the specific numeric value that corresponds to censoring.

The upper and lower confidence limits on Ŝ(t) are included

in the data set “OUTSURV” when specified. The upper and

lower limits are called: sdf ucl, sdf lcl.

data leukemia;

input weeks remiss;

label weeks=’Time to Remission (in weeks)’

remiss=’Remission indicator (1=yes,0=no)’;

cards;

6 1

6 1

........... ( lines edited out here)

34 0

35 0

;

proc lifetest data=leukemia outsurv=confint;

time weeks*remiss(0);

title ’Leukemia data from Table 1.1 of Cox and Oakes’;

run;

proc print data=confint;

title ’95% Confidence Intervals for Estimated Survival’;
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Output from SAS Proc Lifetest

Note: this information is not printed if you use NOPRINT.

Leukemia data from Table 1.1 of Cox and Oakes

The LIFETEST Procedure

Product-Limit Survival Estimates

Survival

Standard Number Number

WEEKS Survival Failure Error Failed Left

0.0000 1.0000 0 0 0 21

6.0000 . . . 1 20

6.0000 . . . 2 19

6.0000 0.8571 0.1429 0.0764 3 18

6.0000* . . . 3 17

7.0000 0.8067 0.1933 0.0869 4 16

9.0000* . . . 4 15

10.0000 0.7529 0.2471 0.0963 5 14

10.0000* . . . 5 13

11.0000* . . . 5 12

13.0000 0.6902 0.3098 0.1068 6 11

16.0000 0.6275 0.3725 0.1141 7 10

17.0000* . . . 7 9

19.0000* . . . 7 8

20.0000* . . . 7 7

22.0000 0.5378 0.4622 0.1282 8 6

23.0000 0.4482 0.5518 0.1346 9 5

25.0000* . . . 9 4

32.0000* . . . 9 3

32.0000* . . . 9 2

34.0000* . . . 9 1

35.0000* . . . 9 0

* Censored Observation
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Output from printing the CONFINT file

95% Confidence Intervals for Estimated Survival

OBS WEEKS _CENSOR_ SURVIVAL SDF_LCL SDF_UCL

1 0 0 1.00000 1.00000 1.00000

2 6 0 0.85714 0.70748 1.00000

3 6 1 0.85714 . .

4 7 0 0.80672 0.63633 0.97711

5 9 1 0.80672 . .

6 10 0 0.75294 0.56410 0.94178

7 10 1 0.75294 . .

8 11 1 0.75294 . .

9 13 0 0.69020 0.48084 0.89955

10 16 0 0.62745 0.40391 0.85099

11 17 1 0.62745 . .

12 19 1 0.62745 . .

13 20 1 0.62745 . .

14 22 0 0.53782 0.28648 0.78915

15 23 0 0.44818 0.18439 0.71197

16 25 1 . . .

17 32 1 . . .

18 32 1 . . .

19 34 1 . . .

20 35 1 . . .

The output dataset will have one observation for each unique

combination of weeks and censor . It will also add an

observation for failure time equal to 0.
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Splus Commands

Create a file called “leukemia.dat” with the variables names

in the first row, as follows:

t c

6 1

6 1

etc ...

In Splus, type

y_read.table(’leukemia.dat’,header=T)

surv.fit(y$t,y$c)

plot(surv.fit(y$t,y$c))

(the plot command will also yield 95% confidence intervals)

To specify the type of confidence intervals, use the conf.type=

option in the surv.fit statements: e.g. conf.type=“log-log”

or conf.type=“plain”
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>surv.fit(y$t,y$c)

95 percent confidence interval is of type "log"

time n.risk n.event survival std.dev lower 95% CI upper 95% CI

6 21 3 0.8571429 0.07636035 0.7198171 1.0000000

7 17 1 0.8067227 0.08693529 0.6531242 0.9964437

10 15 1 0.7529412 0.09634965 0.5859190 0.9675748

13 12 1 0.6901961 0.10681471 0.5096131 0.9347692

16 11 1 0.6274510 0.11405387 0.4393939 0.8959949

22 7 1 0.5378151 0.12823375 0.3370366 0.8582008

23 6 1 0.4481793 0.13459146 0.2487882 0.8073720

> surv.fit(y$t,y$c,conf.type="log-log")

95 percent confidence interval is of type "log-log"

time n.risk n.event survival std.dev lower 95% CI upper 95% CI

6 21 3 0.8571429 0.07636035 0.6197180 0.9515517

7 17 1 0.8067227 0.08693529 0.5631466 0.9228090

10 15 1 0.7529412 0.09634965 0.5031995 0.8893618

13 12 1 0.6901961 0.10681471 0.4316102 0.8490660

16 11 1 0.6274510 0.11405387 0.3675109 0.8049122

22 7 1 0.5378151 0.12823375 0.2677789 0.7467907

23 6 1 0.4481793 0.13459146 0.1880520 0.6801426

> surv.fit(y$t,y$c,conf.type="plain")

95 percent confidence interval is of type "plain"

time n.risk n.event survival std.dev lower 95% CI upper 95% CI

6 21 3 0.8571429 0.07636035 0.7074793 1.0000000

7 17 1 0.8067227 0.08693529 0.6363327 0.9771127

10 15 1 0.7529412 0.09634965 0.5640993 0.9417830

13 12 1 0.6901961 0.10681471 0.4808431 0.8995491

16 11 1 0.6274510 0.11405387 0.4039095 0.8509924

22 7 1 0.5378151 0.12823375 0.2864816 0.7891487

23 6 1 0.4481793 0.13459146 0.1843849 0.7119737
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KM Survival Estimate and Confidence intervals
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Means, Medians, Quantiles based on the KM

•Mean: ∑kj=1 τj Pr(T = τj)

•Median - by definition, this is the time, τ , such that

S(τ ) = 0.5. However, in practice, it is defined as the

smallest time such that Ŝ(τ ) ≤ 0.5. The median is more

appropriate for censored survival data than the mean.

For the treated leukemia patients, we find:

Ŝ(22) = 0.5378

Ŝ(23) = 0.4482

The median is thus 23. This can also be seen visually on

the graph to the left.

• Lower quartile (25th percentile):
the smallest time (LQ) such that Ŝ(LQ) ≤ 0.75

• Upper quartile (75th percentile):
the smallest time (UQ) such that Ŝ(UQ) ≤ 0.25
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The (2) Lifetable Estimator of Survival:

We said that we would consider the following three methods

for estimating a survivorship function

S(t) = Pr(T ≥ t)

without resorting to parametric methods:

(1)
√
Kaplan-Meier

(2) =⇒ Life-table (Actuarial Estimator)

(3) =⇒ Cumulative hazard estimator
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(2) The Lifetable or Actuarial Estimator

• one of the oldest techniques around

• used by actuaries, demographers, etc.

• applies when the data are grouped

Our goal is still to estimate the survival function, hazard, and

density function, but this is complicated by the fact that we

don’t know exactly when during each time interval an event

occurs.
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Lee (section 4.2) provides a good description of lifetable

methods, and distinguishes several types according to the

data sources:

Population Life Tables

• cohort life table - describes the mortality experience

from birth to death for a particular cohort of people born

at about the same time. People at risk at the start of the

interval are those who survived the previous interval.

• current life table - constructed from (1) census infor-

mation on the number of individuals alive at each age,

for a given year and (2) vital statistics on the number

of deaths or failures in a given year, by age. This type

of lifetable is often reported in terms of a hypothetical

cohort of 100,000 people.

Generally, censoring is not an issue for Population Life Ta-

bles.

Clinical Life tables - applies to grouped survival data

from studies in patients with specific diseases. Because pa-

tients can enter the study at different times, or be lost to

follow-up, censoring must be allowed.
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Notation

• the j-th time interval is [tj−1, tj)

• cj - the number of censorings in the j-th interval

• dj - the number of failures in the j-th interval

• rj is the number entering the interval

Example: 2418 Males with Angina Pectoris (Lee, p.91)

Year after

Diagnosis j dj cj rj r′j = rj − cj/2

[0, 1) 1 456 0 2418 2418.0

[1, 2) 2 226 39 1962 1942.5 (1962 - 39
2 )

[2, 3) 3 152 22 1697 1686.0

[3, 4) 4 171 23 1523 1511.5

[4, 5) 5 135 24 1329 1317.0

[5, 6) 6 125 107 1170 1116.5

[6, 7) 7 83 133 938 871.5

etc..
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Estimating the survivorship function

We could apply the K-M formula directly to the numbers in

the table on the previous page, estimating S(t) as

Ŝ(t) =
∏

j:τj<t


1− dj

rj




However, this approach is unsatisfactory for grouped data....

it treats the problem as though it were in discrete time, with

events happening only at 1 yr, 2 yr, etc. In fact, what we

are trying to calculate here is the conditional probability of

dying within the interval, given survival to the beginning of

it.

What should we do with the censored people?

We can assume that censorings occur:

• at the beginning of each interval: r′j = rj − cj

• at the end of each interval: r′j = rj

• on average halfway through the interval:

r′j = rj − cj/2

The last assumption yields the Actuarial Estimator. It is

appropriate if censorings occur uniformly throughout the in-

terval.
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Constructing the lifetable

First, some additional notation for the j-th interval, [tj−1, tj):

•Midpoint (tmj) - useful for plotting the density and

the hazard function

•Width (bj = tj−tj−1) needed for calculating the hazard

in the j-th interval

Quantities estimated:

• Conditional probability of dying

q̂j = dj/r
′
j

• Conditional probability of surviving

p̂j = 1− q̂j

• Cumulative probability of surviving at tj:

Ŝ(tj) =
∏

`≤j
p̂`

=
∏

`≤j


1− d`

r`′



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Some important points to note:

• Because the intervals are defined as [tj−1, tj), the first

interval typically starts with t0 = 0.

• Stata estimates the survival function at the right-hand

endpoint of each interval, i.e., S(tj)

• However, SAS estimates the survival function at the left-

hand endpoint, S(tj−1).

• The implication in SAS is that Ŝ(t0) = 1 and Ŝ(t1) = p1
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Other quantities estimated at the

midpoint of the j-th interval:

• Hazard in the j-th interval:

λ̂(tmj) =
dj

bj(r′j − dj/2)

=
q̂j

bj(1− q̂j/2)

the number of deaths in the interval divided by the av-

erage number of survivors at the midpoint

• density at the midpoint of the j-th interval:

f̂ (tmj) =
Ŝ(tj−1)− Ŝ(tj)

bj

=
Ŝ(tj−1) q̂j

bj

Note: Another way to get this is:

f̂ (tmj) = λ̂(tmj)Ŝ(tmj)

= λ̂(tmj)[Ŝ(tj) + Ŝ(tj−1)]/2
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Constructing the Lifetable using Stata

Uses the ltable command.

If the raw data are already grouped, then the freq statement

must be used when reading the data.

. infile years status count using angina.dat

(32 observations read)

. ltable years status [freq=count]

Beg. Std.

Interval Total Deaths Lost Survival Error [95% Conf. Int.]

-------------------------------------------------------------------------

0 1 2418 456 0 0.8114 0.0080 0.7952 0.8264

1 2 1962 226 39 0.7170 0.0092 0.6986 0.7346

2 3 1697 152 22 0.6524 0.0097 0.6329 0.6711

3 4 1523 171 23 0.5786 0.0101 0.5584 0.5981

4 5 1329 135 24 0.5193 0.0103 0.4989 0.5392

5 6 1170 125 107 0.4611 0.0104 0.4407 0.4813

6 7 938 83 133 0.4172 0.0105 0.3967 0.4376

7 8 722 74 102 0.3712 0.0106 0.3505 0.3919

8 9 546 51 68 0.3342 0.0107 0.3133 0.3553

9 10 427 42 64 0.2987 0.0109 0.2775 0.3201

10 11 321 43 45 0.2557 0.0111 0.2341 0.2777

11 12 233 34 53 0.2136 0.0114 0.1917 0.2363

12 13 146 18 33 0.1839 0.0118 0.1614 0.2075

13 14 95 9 27 0.1636 0.0123 0.1404 0.1884

14 15 59 6 23 0.1429 0.0133 0.1180 0.1701

15 16 30 0 30 0.1429 0.0133 0.1180 0.1701

-------------------------------------------------------------------------------
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It is also possible to get estimates of the hazard function, λ̂j,

and its standard error using the “hazard” option:

. ltable years status [freq=count], hazard

Beg. Cum. Std. Std.

Interval Total Failure Error Hazard Error [95% Conf Int]

--------------------------------------------------------------------------

0 1 2418 0.1886 0.0080 0.2082 0.0097 0.1892 0.2272

1 2 1962 0.2830 0.0092 0.1235 0.0082 0.1075 0.1396

2 3 1697 0.3476 0.0097 0.0944 0.0076 0.0794 0.1094

3 4 1523 0.4214 0.0101 0.1199 0.0092 0.1020 0.1379

4 5 1329 0.4807 0.0103 0.1080 0.0093 0.0898 0.1262

5 6 1170 0.5389 0.0104 0.1186 0.0106 0.0978 0.1393

6 7 938 0.5828 0.0105 0.1000 0.0110 0.0785 0.1215

7 8 722 0.6288 0.0106 0.1167 0.0135 0.0902 0.1433

8 9 546 0.6658 0.0107 0.1048 0.0147 0.0761 0.1336

9 10 427 0.7013 0.0109 0.1123 0.0173 0.0784 0.1462

10 11 321 0.7443 0.0111 0.1552 0.0236 0.1090 0.2015

11 12 233 0.7864 0.0114 0.1794 0.0306 0.1194 0.2395

12 13 146 0.8161 0.0118 0.1494 0.0351 0.0806 0.2182

13 14 95 0.8364 0.0123 0.1169 0.0389 0.0407 0.1931

14 15 59 0.8571 0.0133 0.1348 0.0549 0.0272 0.2425

15 16 30 0.8571 0.0133 0.0000 . . .

-------------------------------------------------------------------------

There is also a “failure” option which gives the number of

failures (like the default), and also provides a 95% confidence

interval on the cumulative failure probability.
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Constructing the lifetable using SAS

If the raw data are already grouped, then the FREQ state-

ment must be used when reading the data.

SAS requires that the interval endpoints be specified, using

one of the following (see SAS manual or online help for more

detail):

• intervals - specify the the interval endpoints

• width - specify the width of each interval

• ninterval - specify the number of intervals

Title ’Actuarial Estimator for Angina Pectoris Example’;

data angina;

input years status count;

cards;

0.5 1 456

1.5 1 226

2.5 1 152 /* angina cases */

3.5 1 171

4.5 1 135

5.5 1 125

.

.

0.5 0 0

1.5 0 39

2.5 0 22 /* censored */

3.5 0 23

4.5 0 24

5.5 0 107

.

.

proc lifetest data=angina outsurv=survres intervals=0 to 15 by 1 method=act;

time years*status(0);

freq count;
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SAS output:

Actuarial Estimator for Angina Pectoris Example

The LIFETEST Procedure

Life Table Survival Estimates

Conditional

Effective Conditional Probability

Interval Number Number Sample Probability Standard

[Lower, Upper) Failed Censored Size of Failure Error

0 1 456 0 2418.0 0.1886 0.00796

1 2 226 39 1942.5 0.1163 0.00728

2 3 152 22 1686.0 0.0902 0.00698

3 4 171 23 1511.5 0.1131 0.00815

4 5 135 24 1317.0 0.1025 0.00836

5 6 125 107 1116.5 0.1120 0.00944

6 7 83 133 871.5 0.0952 0.00994

7 8 74 102 671.0 0.1103 0.0121

8 9 51 68 512.0 0.0996 0.0132

9 10 42 64 395.0 0.1063 0.0155

10 11 43 45 298.5 0.1441 0.0203

11 12 34 53 206.5 0.1646 0.0258

12 13 18 33 129.5 0.1390 0.0304

13 14 9 27 81.5 0.1104 0.0347

14 15 6 23 47.5 0.1263 0.0482

15 . 0 30 15.0 0 0

Survival Median Median

Interval Standard Residual Standard

[Lower, Upper) Survival Failure Error Lifetime Error

0 1 1.0000 0 0 5.3313 0.1749

1 2 0.8114 0.1886 0.00796 6.2499 0.2001

2 3 0.7170 0.2830 0.00918 6.3432 0.2361

3 4 0.6524 0.3476 0.00973 6.2262 0.2361

4 5 0.5786 0.4214 0.0101 6.2185 0.1853

5 6 0.5193 0.4807 0.0103 5.9077 0.1806

6 7 0.4611 0.5389 0.0104 5.5962 0.1855

7 8 0.4172 0.5828 0.0105 5.1671 0.2713

8 9 0.3712 0.6288 0.0106 4.9421 0.2763

9 10 0.3342 0.6658 0.0107 4.8258 0.4141

10 11 0.2987 0.7013 0.0109 4.6888 0.4183

11 12 0.2557 0.7443 0.0111 . .

12 13 0.2136 0.7864 0.0114 . .

13 14 0.1839 0.8161 0.0118 . .

14 15 0.1636 0.8364 0.0123 . .

15 . 0.1429 0.8571 0.0133 . .
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more SAS output: (estimated density f̂j and hazard λ̂j)

Evaluated at the Midpoint of the Interval

PDF Hazard

Interval Standard Standard

[Lower, Upper) PDF Error Hazard Error

0 1 0.1886 0.00796 0.208219 0.009698

1 2 0.0944 0.00598 0.123531 0.008201

2 3 0.0646 0.00507 0.09441 0.007649

3 4 0.0738 0.00543 0.119916 0.009154

4 5 0.0593 0.00495 0.108043 0.009285

5 6 0.0581 0.00503 0.118596 0.010589

6 7 0.0439 0.00469 0.1 0.010963

7 8 0.0460 0.00518 0.116719 0.013545

8 9 0.0370 0.00502 0.10483 0.014659

9 10 0.0355 0.00531 0.112299 0.017301

10 11 0.0430 0.00627 0.155235 0.023602

11 12 0.0421 0.00685 0.17942 0.030646

12 13 0.0297 0.00668 0.149378 0.03511

13 14 0.0203 0.00651 0.116883 0.038894

14 15 0.0207 0.00804 0.134831 0.054919

15 . . . . .

Summary of the Number of Censored and Uncensored Values

Total Failed Censored %Censored

2418 1625 793 32.7957
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Suppose we wish to use the actuarial method, but the data

do not come grouped.

Consider the treated nursing home patients, with length of

stay (los) grouped into 100 day intervals:

.use nurshome

.drop if rx==0 (keep only the treated patients)

(881 observations deleted)

.stset los fail

.ltable los fail, intervals(100)

Beg. Std.

Interval Total Deaths Lost Survival Error [95% Conf. Int.]

------------------------------------------------------------------------

0 100 710 328 0 0.5380 0.0187 0.5006 0.5739

100 200 382 86 0 0.4169 0.0185 0.3805 0.4529

200 300 296 65 0 0.3254 0.0176 0.2911 0.3600

300 400 231 38 0 0.2718 0.0167 0.2396 0.3050

400 500 193 32 1 0.2266 0.0157 0.1966 0.2581

500 600 160 13 0 0.2082 0.0152 0.1792 0.2388

600 700 147 13 0 0.1898 0.0147 0.1619 0.2195

700 800 134 10 30 0.1739 0.0143 0.1468 0.2029

800 900 94 4 29 0.1651 0.0143 0.1383 0.1941

900 1000 61 4 30 0.1508 0.0147 0.1233 0.1808

1000 1100 27 0 27 0.1508 0.0147 0.1233 0.1808

-------------------------------------------------------------------------
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SAS Commands for lifetable analysis - grouping

data

Title ’Actuarial Estimator for nursing home data’;

data morris ;

infile ’ch12.dat’ ;

input los age trt gender marstat hltstat cens ;

data morristr;

set morris;

if trt=1;

proc lifetest data=morristr outsurv=survres

intervals=0 to 1100 by 100 method=act;

time los*cens(1);

run ;

proc print data=survres;

run;
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Actuarial estimator for treated nursing home patients

Actuarial Estimator for Nursing Home Patients

The LIFETEST Procedure

Life Table Survival Estimates

Effective Conditional

Interval Number Number Sample Probability

[Lower, Upper) Failed Censored Size of Failure

0 100 330 0 712.0 0.4635

100 200 86 0 382.0 0.2251

200 300 65 0 296.0 0.2196

300 400 38 0 231.0 0.1645

400 500 32 1 192.5 0.1662

500 600 13 0 160.0 0.0813

600 700 13 0 147.0 0.0884

700 800 10 30 119.0 0.0840

800 900 4 29 79.5 0.0503

900 1000 4 30 46.0 0.0870

1000 1100 0 27 13.5 0

Conditional

Probability Survival Median

Interval Standard Standard Residual

[Lower, Upper) Error Survival Failure Error Lifetime

0 100 0.0187 1.0000 0 0 130.2

100 200 0.0214 0.5365 0.4635 0.0187 306.2

200 300 0.0241 0.4157 0.5843 0.0185 398.8

300 400 0.0244 0.3244 0.6756 0.0175 617.0

400 500 0.0268 0.2711 0.7289 0.0167 .

500 600 0.0216 0.2260 0.7740 0.0157 .

600 700 0.0234 0.2076 0.7924 0.0152 .

700 800 0.0254 0.1893 0.8107 0.0147 .

800 900 0.0245 0.1734 0.8266 0.0143 .

900 1000 0.0415 0.1647 0.8353 0.0142 .

1000 1100 0 0.1503 0.8497 0.0147 .
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Actuarial estimator for treated nursing home patients, cont’d

Evaluated at the Midpoint

of the Interval

Median PDF Hazard

Interval Standard Standard Standard

[Lower, Upper) Error PDF Error Hazard Error

0 100 15.5136 0.00463 0.000187 0.006033 0.000317

100 200 30.4597 0.00121 0.000122 0.002537 0.000271

200 300 65.7947 0.000913 0.000108 0.002467 0.000304

300 400 74.5466 0.000534 0.000084 0.001792 0.00029

400 500 . 0.000451 0.000078 0.001813 0.000319

500 600 . 0.000184 0.00005 0.000847 0.000235

600 700 . 0.000184 0.00005 0.000925 0.000256

700 800 . 0.000159 0.00005 0.000877 0.000277

800 900 . 0.000087 0.000043 0.000516 0.000258

900 1000 . 0.000143 0.00007 0.000909 0.000454

1000 1100 . 0 . 0 .

Summary of the Number of Censored and Uncensored Values

Total Failed Censored %Censored

712 595 117 16.4326
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Actuarial estimator for treated nursing home patients, cont’d
Output from SURVRES dataset

Actuarial Estimator for Nursing Home Patients

OBS LOS SURVIVAL SDF_LCL SDF_UCL MIDPOINT PDF

1 0 1.00000 1.00000 1.00000 50 .0046348

2 100 0.53652 0.49989 0.57315 150 .0012079

3 200 0.41573 0.37953 0.45193 250 .0009129

4 300 0.32444 0.29005 0.35883 350 .0005337

5 400 0.27107 0.23842 0.30372 450 .0004506

6 500 0.22601 0.19528 0.25674 550 .0001836

7 600 0.20764 0.17783 0.23745 650 .0001836

8 700 0.18928 0.16048 0.21808 750 .0001591

9 800 0.17337 0.14536 0.20139 850 .0000872

10 900 0.16465 0.13677 0.19253 950 .0001432

11 1000 0.15033 0.12157 0.17910 1050 .0000000

OBS PDF_LCL PDF_UCL HAZARD HAZ_LCL HAZ_UCL

1 .0042685 .0050011 .0060329 .0054123 .0066535

2 .0009685 .0014472 .0025369 .0020050 .0030687

3 .0007014 .0011245 .0024668 .0018717 .0030619

4 .0003686 .0006988 .0017925 .0012248 .0023601

5 .0002981 .0006031 .0018130 .0011874 .0024386

6 .0000847 .0002825 .0008469 .0003869 .0013069

7 .0000847 .0002825 .0009253 .0004228 .0014277

8 .0000617 .0002565 .0008772 .0003340 .0014203

9 .0000027 .0001717 .0005161 .0000105 .0010218

10 .0000069 .0002794 .0009091 .0000191 .0017991

11 . . .0000000 . .
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Examples for Nursing home data:

Estimated Survival:

E s t i m a t e d  S u r v i v a l

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

L o w e r  L i m i t  o f  T i m e  I n t e r v a l
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
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Estimated hazard:

E s t i m a t e d  h a z a r d

0 . 0 0 0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

0 . 0 0 8

0 . 0 1 0

L o w e r  L i m i t  o f  T i m e  I n t e r v a l
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
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(3) Estimating the cumulative hazard

(Nelson-Aalen estimator)

Suppose we want to estimate Λ(t) =
∫ t
0 λ(u)du, the cumula-

tive hazard at time t.

Just as we did for the KM, think of dividing the observed

timespan of the study into a series of fine intervals so that

there is only one event per interval:

D C C D D D

Λ(t) can then be approximated by a sum:

Λ̂(t) =
∑

j
λj∆

where the sum is over intervals, λj is the value of the hazard

in the j-th interval and ∆ is the width of each interval. Since

λ̂∆ is approximately the probability of dying in the interval,

we can further approximate by

Λ̂(t) =
∑

j
dj/rj

It follows that Λ(t) will change only at death times, and

hence we write the Nelson-Aalen estimator as:

Λ̂NA(t) =
∑

j:τj<t
dj/rj
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D C C D D D

rj n n n n-

1

n-

1

n-2 n-2 n-3 n-4

dj 0 0 1 0 0 0 0 1 1

cj 0 0 0 0 1 0 1 0 0

λ̂(tj) 0 0 1/n 0 0 0 0 1
n−3

1
n−4

Λ̂(tj) 0 0 1/n 1/n 1/n 1/n 1/n

Once we have Λ̂NA(t), we can also find another estimator of

S(t) (Fleming-Harrington):

ŜFH(t) = exp(−Λ̂NA(t))

In general, this estimator of the survival function will be

close to the Kaplan-Meier estimator, ŜKM(t)

We can also go the other way ... we can take the Kaplan-

Meier estimate of S(t), and use it to calculate an alternative

estimate of the cumulative hazard function:

Λ̂KM(t) = − log ŜKM(t)
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Stata commands for FH Survival Estimate

Say we want to obtain the Fleming-Harrington estimate of

the survival function for married females, in the healthiest

initial subgroup, who are randomized to the untreated group

of the nursing home study.

First, we use the following commands to calculate the Nelson-

Aalen cumulative hazard estimator:

. use nurshome

. keep if rx==0 & gender==0 & health==2 & married==1

(1579 observations deleted)

. sts list, na

failure _d: fail

analysis time _t: los

Beg. Net Nelson-Aalen Std.

Time Total Fail Lost Cum. Haz. Error [95% Conf. Int.]

----------------------------------------------------------------------

14 12 1 0 0.0833 0.0833 0.0117 0.5916

24 11 1 0 0.1742 0.1233 0.0435 0.6976

25 10 1 0 0.2742 0.1588 0.0882 0.8530

38 9 1 0 0.3854 0.1938 0.1438 1.0326

64 8 1 0 0.5104 0.2306 0.2105 1.2374

89 7 1 0 0.6532 0.2713 0.2894 1.4742

113 6 1 0 0.8199 0.3184 0.3830 1.7551

123 5 1 0 1.0199 0.3760 0.4952 2.1006

149 4 1 0 1.2699 0.4515 0.6326 2.5493

168 3 1 0 1.6032 0.5612 0.8073 3.1840

185 2 1 0 2.1032 0.7516 1.0439 4.2373

234 1 1 0 3.1032 1.2510 1.4082 6.8384

----------------------------------------------------------------------
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After generating the Nelson-Aalen estimator, we manually

have to create a variable for the survival estimate:

. sts gen nelson=na

. gen sfh=exp(-nelson)

. list sfh

sfh

1. .9200444

2. .8400932

3. .7601478

4. .6802101

5. .6002833

6. .5203723

7. .4404857

8. .3606392

9. .2808661

10. .2012493

11. .1220639

12. .0449048

Additional built-in functions can be used to generate 95%

confidence intervals on the FH survival estimate.
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We can compare the Fleming-Harrington survival estimate

to the KM estimate by rerunning the sts list command:

. sts list

. sts gen skm=s

. list skm sfh

skm sfh

1. .91666667 .9200444

2. .83333333 .8400932

3. .75 .7601478

4. .66666667 .6802101

5. .58333333 .6002833

6. .5 .5203723

7. .41666667 .4404857

8. .33333333 .3606392

9. .25 .2808661

10. .16666667 .2012493

11. .08333333 .1220639

12. 0 .0449048

In this example, it looks like the Fleming-Harrington estima-

tor is slightly higher than the KM at every time point, but

with larger datasets the two will typically be much closer.
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Splus Commands for Fleming-Harrington Esti-

mator:

(Nursing home data: females, untreated, married, healthy)

Fleming-Harrington:
>fh<-surv.fit(los,cens,type="f",conf.type="log-log")

>fh

95 percent confidence interval is of type "log-log"

time n.risk n.event survival std.dev lower 95% CI upper 95% CI

14 12 1 0.9200444 0.08007959 0.5244209125 0.9892988

24 11 1 0.8400932 0.10845557 0.4750041174 0.9600371

25 10 1 0.7601478 0.12669130 0.4055610500 0.9200425

38 9 1 0.6802101 0.13884731 0.3367907188 0.8724502

64 8 1 0.6002833 0.14645413 0.2718422278 0.8187596

89 7 1 0.5203723 0.15021856 0.2115701242 0.7597900

113 6 1 0.4404857 0.15045450 0.1564397006 0.6960354

123 5 1 0.3606392 0.14723033 0.1069925657 0.6278888

149 4 1 0.2808661 0.14043303 0.0640979523 0.5560134

168 3 1 0.2012493 0.12990589 0.0293208029 0.4827590

185 2 1 0.1220639 0.11686728 0.0058990525 0.4224087

234 1 1 0.0449048 0.06216787 0.0005874321 0.2740658

Kaplan-Meier:
>km<-surv.fit(los,cens,conf.type="log-log")

>km

95 percent confidence interval is of type "log-log"

time n.risk n.event survival std.dev lower 95% CI upper 95% CI

14 12 1 0.91666667 0.07978559 0.538977181 0.9878256

24 11 1 0.83333333 0.10758287 0.481714942 0.9555094

25 10 1 0.75000000 0.12500000 0.408415913 0.9117204

38 9 1 0.66666667 0.13608276 0.337018933 0.8597118

64 8 1 0.58333333 0.14231876 0.270138924 0.8009402

89 7 1 0.50000000 0.14433757 0.208477143 0.7360731

113 6 1 0.41666667 0.14231876 0.152471264 0.6653015

123 5 1 0.33333333 0.13608276 0.102703980 0.5884189

149 4 1 0.25000000 0.12500000 0.060144556 0.5047588

168 3 1 0.16666667 0.10758287 0.026510427 0.4129803

185 2 1 0.08333333 0.07978559 0.005052835 0.3110704

234 1 1 0.00000000 NA NA NA
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Comparison of Survival Curves

We spent the last class looking at some nonparametric ap-

proaches for estimating the survival function, Ŝ(t), over time

for a single sample of individuals.

Now we want to compare the survival estimates between two

groups.

Example: Time to remission of leukemia patients
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How can we form a basis for comparison?

At a specific point in time, we could see whether the confi-

dence intervals for the survival curves overlap.

However, the confidence intervals we have been calculating

are “pointwise”⇒ they correspond to a confidence inter-

val for Ŝ(t∗) at a single point in time, t∗.

In other words, we can’t say that the true survival function

S(t) is contained between the pointwise confidence intervals

with 95% probability.

(Aside: if you’re interested, the issue of confidence bands

for the estimated survival function are discussed in Section

4.4 of Klein and Moeschberger)
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Looking at whether the confidence intervals for Ŝ(t∗) overlap
between the 6MP and placebo groups would only focus on

comparing the two treatment groups at a single point in

time, t∗. We want an overall comparison.

Should we base our overall comparison of Ŝ(t) on:

• the furthest distance between the two curves?

• the median survival for each group?

• the average hazard? (for exponential distributions, this

would be like comparing the mean event times)

• adding up the difference between the two survival esti-

mates over time?

∑

j

[
Ŝ(tjA)− Ŝ(tjB)

]

• a weighted sum of differences, where the weights reflect

the number at risk at each time?

• a rank-based test? i.e., we could rank all of the event

times, and then see whether the sum of ranks for one

group was less than the other.

105



Nonparametric comparisons of groups

All of these are pretty reasonable options, and we’ll see that

there have been several proposals for how to compare the

survival of two groups. For the moment, we are sticking to

nonparametric comparisons.

Why nonparametric?

• fairly robust

• efficient relative to parametric tests

• often simple and intuitive

Before continuing the description of the two-sample compar-

ison, I’m going to try to put this in a general framework to

give a perspective of where we’re heading in this class.
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General Framework for Survival Analysis

We observe (Xi, δi,Zi) for individual i, where

• Xi is a censored failure time random variable

• δi is the failure/censoring indicator

• Zi represents a set of covariates

Note that Zi might be a scalar (a single covariate, say treat-

ment or gender) or may be a (p × 1) vector (representing

several different covariates).

These covariates might be:

• continuous

• discrete

• time-varying (more later)

If Zi is a scalar and is binary, then we are comparing the

survival of two groups, like in the leukemia example.

More generally though, it is useful to build a model that

characterizes the relationship between survival and all of the

covariates of interest.
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We’ll proceed as follows:

• Two group comparisons

• Multigroup and stratified comparisons - stratified logrank

• Failure time regression models

– Cox proportional hazards model

– Accelerated failure time model
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Two sample tests

• Mantel-Haenszel logrank test

• Peto & Peto’s version of the logrank test

• Gehan’s Generalized Wilcoxon

• Peto & Peto’s and Prentice’s generalized Wilcoxon

• Tarone-Ware and Fleming-Harrington classes

• Cox’s F-test (non-parametric version)

References:

Hosmer & Lemeshow Section 2.4

Collett Section 2.5

Klein & Moeschberger Section 7.3

Kleinbaum Chapter 2

Lee Chapter 5
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Mantel-Haenszel Logrank test

The logrank test is the most well known and widely used.

It also has an intuitive appeal, building on standard meth-

ods for binary data. (Later we will see that it can also be

obtained as the score test from a partial likelihood from the

Cox Proportional Hazards model.)

First consider the following (2 × 2) table classifying those

with and without the event of interest in a two group setting:

Event

Group Yes No Total

0 d0 n0 − d0 n0
1 d1 n1 − d1 n1

Total d n− d n
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If the margins of this table are considered fixed, then d0
follows a ? distribution. Under

the null hypothesis of no association between the event and

group, it follows that

E(d0) =
n0d

n

V ar(d0) =
n0 n1 d(n− d)

n2(n− 1)

Therefore, under H0:

χ2MH =
[d0 − n0 d/n]

2

n0 n1 d(n−d)
n2(n−1)

∼ χ21

This is the Mantel-Haenszel statistic and is approximately

equivalent to the Pearson χ2 test for equality of the two

groups given by:

χ2p =
∑ (o− e)2

e

Note: recall that the Pearson χ2 test was derived for the

case where only the row margins were fixed, and thus the

variance above was replaced by:

V ar(d0 −
n0(d0 + d1)

n
) =

n0 n1 d(n− d)

n3
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Example: Toxicity in a clinical trial with two treatments

Toxicity

Group Yes No Total

0 8 42 50

1 2 48 50

Total 10 90 100

χ2p = 4.00 (p = 0.046)

χ2MH = 3.96 (p = 0.047)
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Now suppose we have K (2×2) tables, all independent, and

we want to test for a common group effect. The Cochran-

Mantel-Haenszel test for a common odds ratio not equal to

1 can be written as:

χ2CMH =
[
∑K
j=1(d0j − n0j ∗ dj/nj)]2

∑K
j=1 n1jn0jdj(nj − dj)/[n2j(nj − 1)]

where the subscript j refers to the j-th table:

Event

Group Yes No Total

0 d0j n0j − d0j n0j
1 d1j n1j − d1j n1j

Total dj nj − dj nj

This statistic is distributed approximately as χ2
1.
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How does this apply in survival analysis?

Suppose we observe

Group 1: (X11, δ11) . . . (X1n1, δ1n1)

Group 0: (X01, δ01) . . . (X0n0, δ0n0)

We could just count the numbers of failures: eg., d1 =
∑K
j=1 δ1j

Example: Leukemia data, just counting up the number

of remissions in each treatment group.

Fail

Group Yes No Total

0 21 0 21

1 9 12 21

Total 30 12 42

χ2p = 16.8 (p = 0.001)

χ2MH = 16.4 (p = 0.001)

But, this doesn’t account for the time at risk.

Conceptually, we would like to compare the KM survival

curves. Let’s put the components side-by-side and compare.
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Cox & Oakes Table 1.1 Leukemia example

Ordered Group 0 Group 1
Death Times dj cj rj dj cj rj

1 2 0 21 0 0 21
2 2 0 19 0 0 21
3 1 0 17 0 0 21
4 2 0 16 0 0 21
5 2 0 14 0 0 21
6 0 0 12 3 1 21
7 0 0 12 1 0 17
8 4 0 12 0 0 16
9 0 0 8 0 1 16
10 0 0 8 1 1 15
11 2 0 8 0 1 13
12 2 0 6 0 0 12
13 0 0 4 1 0 12
15 1 0 4 0 0 11
16 0 0 3 1 0 11
17 1 0 3 0 1 10
19 0 0 2 0 1 9
20 0 0 2 0 1 8
22 1 0 2 1 0 7
23 1 0 1 1 0 6
25 0 0 0 0 1 5

Note that I wrote down the number at risk for Group 1 for times
1-5 even though there were no events or censorings at those times.
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Logrank Test: Formal Definition

The logrank test is obtained by constructing a (2 × 2) ta-

ble at each distinct death time, and comparing the death

rates between the two groups, conditional on the number at

risk in the groups. The tables are then combined using the

Cochran-Mantel-Haenszel test.

Note: The logrank is sometimes called the Cox-Mantel test.

Let t1, ..., tK represent the K ordered, distinct death times.

At the j-th death time, we have the following table:

Die/Fail

Group Yes No Total

0 d0j r0j − d0j r0j

1 d1j r1j − d1j r1j

Total dj rj − dj rj

where d0j and d1j are the number of deaths in group 0 and

1, respectively at the j-th death time, and r0j and r1j are

the number at risk at that time, in groups 0 and 1.
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The logrank test is:

χ2logrank =
[∑Kj=1(d0j − r0j ∗ dj/rj)]2

∑K
j=1

r1jr0jdj(rj−dj)
[r2j (rj−1)]

Assuming the tables are all independent, then this statistic

will have an approximate χ2 distribution with 1 df.

Based on the motivation for the logrank test,

which of the survival-related quantities are we

comparing at each time point?

• ∑K
j=1wj

[
Ŝ1(tj)− Ŝ2(tj)

]
?

• ∑K
j=1wj

[
λ̂1(tj)− λ̂2(tj)

]
?

• ∑K
j=1wj

[
Λ̂1(tj)− Λ̂2(tj)

]
?
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First several tables of leukemia data

CMH analysis of leukemia data

TABLE 1 OF TRTMT BY REMISS TABLE 3 OF TRTMT BY REMISS

CONTROLLING FOR FAILTIME=1 CONTROLLING FOR FAILTIME=3

TRTMT REMISS TRTMT REMISS

Frequency| Frequency|

Expected | 0| 1| Total Expected | 0| 1| Total

---------+--------+--------+ ---------+--------+--------+

0 | 19 | 2 | 21 0 | 16 | 1 | 17

| 20 | 1 | | 16.553 | 0.4474 |

---------+--------+--------+ ---------+--------+--------+

1 | 21 | 0 | 21 1 | 21 | 0 | 21

| 20 | 1 | | 20.447 | 0.5526 |

---------+--------+--------+ ---------+--------+--------+

Total 40 2 42 Total 37 1 38

TABLE 2 OF TRTMT BY REMISS TABLE 4 OF TRTMT BY REMISS

CONTROLLING FOR FAILTIME=2 CONTROLLING FOR FAILTIME=4

TRTMT REMISS TRTMT REMISS

Frequency| Frequency|

Expected | 0| 1| Total Expected | 0| 1| Total

---------+--------+--------+ ---------+--------+--------+

0 | 17 | 2 | 19 0 | 14 | 2 | 16

| 18.05 | 0.95 | | 15.135 | 0.8649 |

---------+--------+--------+ ---------+--------+--------+

1 | 21 | 0 | 21 1 | 21 | 0 | 21

| 19.95 | 1.05 | | 19.865 | 1.1351 |

---------+--------+--------+ ---------+--------+--------+

Total 38 2 40 Total 35 2 37
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CMH statistic = logrank statistic

SUMMARY STATISTICS FOR TRTMT BY REMISS

CONTROLLING FOR FAILTIME

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

-----------------------------------------------------------------

1 Nonzero Correlation 1 16.793 0.001

2 Row Mean Scores Differ 1 16.793 0.001

3 General Association 1 16.793 0.001 <===LOGRANK

TEST

Note: Although CMH works to get the correct logrank test,

it would require inputting the dj and rj at each time of death

for each treatment group. There’s an easier way to get the

test statistic, which I’ll show you shortly.
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Calculating logrank statistic by hand

Leukemia Example:

Ordered Group 0 Combined
Death Times d0j r0j dj rj ej oj − ej vj

1 2 21 2 42 1.00 1.00 0.488
2 2 19 2 40 0.95 1.05
3 1 17 1 38 0.45 0.55
4 2 16 2 37 0.86 1.14
5 2 14 2 35
6 0 12 3 33
7 0 12 1 29
8 4 12 4 28
10 0 8 1 23
11 2 8 2 21
12 2 6 2 18
13 0 4 1 16
15 1 4 1 15
16 0 3 1 14
17 1 3 1 13
22 1 2 2 9
23 1 1 2 7

Sum 10.251 6.257

oj = d0j

ej = djr0j/rj

vj = r1jr0jdj(rj − dj)/[r
2
j (rj − 1)]

χ2logrank =
(10.251)2

6.257
= 16.793
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Notes about logrank test:

• The logrank statistic depends on ranks of event times

only

• If there are no tied deaths, then the logrank has the form:

[
∑K
j=1(d0j −

r0j
rj
)]2

∑K
j=1 r1jr0j/r

2
j

• Numerator can be interpreted as
∑
(o − e) where “o” is

the observed number of deaths in group 0, and “e” is

the expected number, given the risk set. The expected

number equals #deaths × proportion in group 0 at risk.

• The (o− e) terms in the numerator can be written as

r0jr1j
rj

(λ̂1j − λ̂0j)

• It does not matter which group you choose to sum over.

To see this, note that if we summed up (o-e) over the death
times for the 6MP group we would get -10.251, and the sum of
the variances is the same. So when we square the numerator,
the test statistic is the same.
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Analogous to the CMH test for a series of tables at different

levels of a confounder, the logrank test is most powerful when

“odds ratios” are constant over time intervals. That is, it is

most powerful for proportional hazards.

Checking the assumption of proportional hazards:

• check to see if the estimated survival curves cross - if

they do, then this is evidence that the hazards are not

proportional

• more formal test: any ideas?

What should be done if the hazards are not

proportional?

• If the difference between hazards has a consistent sign,

the logrank test usually does well.

• Other tests are available that are more powerful against

different alternatives.
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Getting the logrank statistic using Stata:

After declaring data as survival type data using

the “stset” command, issue the “sts test” com-

mand

. stset remiss status

data set name: leukem

id: -- (meaning each record a unique subject)

entry time: -- (meaning all entered at time 0)

exit time: remiss

failure/censor: status

. sts list, by(trt)

Beg. Net Survivor Std.

Time Total Fail Lost Function Error [95% Conf. Int.]

----------------------------------------------------------------------

trt=0

1 21 2 0 0.9048 0.0641 0.6700 0.9753

2 19 2 0 0.8095 0.0857 0.5689 0.9239

3 17 1 0 0.7619 0.0929 0.5194 0.8933

4 16 2 0 0.6667 0.1029 0.4254 0.8250

.

. (etc)

. sts test trt

Log-rank test for equality of survivor functions

------------------------------------------------

| Events

trt | observed expected

------+-------------------------

0 | 21 10.75

1 | 9 19.25

------+-------------------------

Total | 30 30.00

chi2(1) = 16.79

Pr>chi2 = 0.0000
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Getting the logrank statistic using SAS

• Still use PROC LIFETEST

• Add “STRATA” command, with treatment variable

• Gives the chi-square test (2-sided), but also gives you

the terms you need to calculate the 1-sided test; this is

useful if we want to know which of the two groups has

the higher estimated hazard over time.

• The STRATA command also gives the Gehan-Wilcoxon

test (which we will talk about next)

Title ’Cox and Oakes example’;

data leukemia;

input weeks remiss trtmt;

cards;

6 0 1

6 1 1

6 1 1

6 1 1 /* data for 6MP group */

7 1 1

9 0 1

etc

1 1 0

1 1 0 /* data for placebo group */

2 1 0

2 1 0

etc

;

proc lifetest data=leukemia;

time weeks*remiss(0);

strata trtmt;

title ’Logrank test for leukemia data’;

run;
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Output from leukemia example:

Logrank test for leukemia data

Summary of the Number of Censored and Uncensored Values

TRTMT Total Failed Censored %Censored

6-MP 21 9 12 57.1429

Control 21 21 0 0.0000

Total 42 30 12 28.5714

Testing Homogeneity of Survival Curves over Strata

Time Variable FAILTIME

Rank Statistics

TRTMT Log-Rank Wilcoxon

6-MP -10.251 -271.00

Control 10.251 271.00

Covariance Matrix for the Log-Rank Statistics

TRTMT 6-MP Control

6-MP 6.25696 -6.25696

Control -6.25696 6.25696

Test of Equality over Strata

Pr >

Test Chi-Square DF Chi-Square

Log-Rank 16.7929 1 0.0001 <== Here’s the one we want!!

Wilcoxon 13.4579 1 0.0002

-2Log(LR) 16.4852 1 0.0001
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Getting the logrank statistic using Splus:

Instead of the “surv.fit” command, use the

“surv.diff” command with a “group” (treatment)

variable.

Mantel-Haenszel logrank:

> logrank<-surv.diff(weeks,remiss,trtmt)

> logrank

N Observed Expected (O-E)^2/E

0 21 21 10.75 9.775

1 21 9 19.25 5.458

Chisq= 16.8 on 1 degrees of freedom, p= 4.169e-05
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Generalization of logrank test

=⇒ Linear rank tests

The logrank and other tests can be derived by assigning

scores to the ranks of the death times, and are members of

a general class of linear rank tests (for more detail, see

Lee, ch 5)

First, define

Λ̂(t) =
∑

j:tj<t

dj
rj

where dj and rj are the number of deaths and the number

at risk, respectively at the j-th ordered death time.

Then assign these scores (suggested by Peto and Peto):

Event Score

Death at tj wj = 1− Λ̂(tj)

Censoring at tj wj = −Λ̂(tj)

To calculate the logrank test, simply sum up the scores for

group 0.
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Example Group 0: 15, 18, 19, 19, 20

Group 1: 16+, 18+, 20+, 23, 24+

Calculation of logrank as a linear rank statistic
Ordered Data Group dj rj Λ̂(tj) score wj

15 0 1 10 0.100 0.900

16+ 1 0 9 0.100 -0.100

18 0 1 8 0.225 0.775

18+ 1 0 7 0.225 -0.225

19 0 2 6 0.558 0.442

20 0 1 4 0.808 0.192

20+ 1 0 3 0.808 -0.808

23 1 1 2 1.308 -0.308

24+ 1 0 1 1.308 -1.308

The logrank statistic S is sum of scores for group 0:

S = 0.900 + 0.775 + 0.442 + 0.442 + 0.192 = 2.75

The variance is:

V ar(S) =
n0n1

∑n
j=1w

2
j

n(n− 1)

In this case, V ar(S) = 1.210, so

Z =
2.75√
1.210

= 2.50 =⇒ χ2logrank = (2.50)2 = 6.25
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Why is this form of the logrank equivalent?

The logrank statistic S is equivalent to
∑
(o − e) over the

distinct death times, where “o” is the observed number of

deaths in group 0, and “e” is the expected number, given

the risk sets.

At deaths: weights are 1− Λ̂

At censorings: weights are −Λ̂

So we are summing up “1’s” for deaths (to get d0j), and sub-

tracting−Λ̂ at both deaths and censorings. This amounts to

subtracting dj/rj at each death or censoring time in group

0, at or after the j-th death. Since there are a total of r0j of

these, we get e = r0j ∗ dj/rj.

Why is it called the logrank test?

Since S(t) = exp(−Λ(t)), an alternative estimator of S(t)

is:

Ŝ(t) = exp(−Λ̂(t)) = exp(− ∑

j:tj<t

dj
rj
)

So, we can think of Λ̂(t) = − log(Ŝ(t)) as yielding the “log-

survival” scores used to calculate the statistic.
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Comparing the CMH-type Logrank and

“Linear Rank” logrank

A. CMH-type Logrank:

We motivated the logrank test through the CMH statistic

for testing Ho : OR = 1 over K tables, where K is the

number of distinct death times. This turned out to be what

we get when we use the logrank (default) option in Stata or

the “strata” statement in SAS.

B. Linear Rank logrank:

The linear rank version of the logrank test is based on adding

up “scores” for one of the two treatment groups. The par-

ticular scores that gave us the same logrank statistic were

based on the Nelson-Aalen estimator, i.e., Λ̂ =
∑
λ̂(tj). This

is what you get when you use the “test” statement in SAS.

Here are some comparisons, with a new example to show

when the two types of logrank statistics will be equal.
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First, let’s go back to our example from Chapter 5 of Lee:

Example Group 0: 15, 18, 19, 19, 20

Group 1: 16+, 18+, 20+, 23, 24+

A. The CMH-type logrank statistic:

(using the strata statement)

Rank Statistics

TRTMT Log-Rank Wilcoxon

Control 2.7500 18.000

Treated -2.7500 -18.000

Covariance Matrix for the Log-Rank Statistics

TRTMT Control Treated

Control 1.08750 -1.08750

Treated -1.08750 1.08750

Test of Equality over Strata

Pr >

Test Chi-Square DF Chi-Square

Log-Rank 6.9540 1 0.0084

Wilcoxon 5.5479 1 0.0185

-2Log(LR) 3.3444 1 0.0674
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This is exactly the same chi-square test that you would get

if you calculated the numerator of the logrank as
∑
(oj − ej)

and the variance as vj = r1jr0jdj(rj − dj)/[r
2
j (rj − 1)]

Ordered Group 0 Combined
Death Times d0j r0j dj rj ej oj − ej vj

15 1 5 1 10 0.50 0.50 0.2500
18 1 4 1 8 0.50 0.50 0.2500
19 2 3 2 6 1.00 1.00 0.4000
20 1 1 2 4 0.25 0.75 0.1870
23 0 0 1 2 0.00 0.00 0.0000

Sum 2.75 1.0875

χ2
logrank =

(2.75)2

1.0875
= 6.954
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B. The “linear rank” logrank statistic:
(using the test statement)

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >

Variable Statistic Deviation Chi-Square Chi-Square

GROUP 2.7500 1.0897 6.3684 0.0116

Covariance Matrix for the LOG RANK Statistics

Variable TRTMT

TRTMT 1.18750

This is actually very close to what we would get if we use

the Nelson-Aalen based “scores”:

Calculation of logrank as a linear rank statistic
Ordered Data Group dj rj Λ̂(tj) score wj

15 0 1 10 0.100 0.900

16+ 1 0 9 0.100 -0.100

18 0 1 8 0.225 0.775

18+ 1 0 7 0.225 -0.225

19 0 2 6 0.558 0.442

20 0 1 4 0.808 0.192

20+ 1 0 3 0.808 -0.808

23 1 1 2 1.308 -0.308

24+ 1 1 1 1.308 -1.308

Sum(grp 0) 2.750
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Note that the numerator is the exact same number (2.75)

in both versions of the logrank test. The difference in the

denominator is due to the way that ties are handled.

CMH-type variance:

var =
∑ r1jr0jdj(rj − dj)

r2j (rj − 1)

=
∑ r1jr0j
rj(rj − 1)

dj(rj − dj)

rj

Linear rank type variance:

var =
n0n1

∑n
j=1w

2
j

n(n− 1)
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Now consider an example where there are no tied

death times

Example I Group 0: 15, 18, 19, 21, 22

Group 1: 16+, 17+, 20+, 23, 24+

A. The CMH-type logrank statistic:

(using the strata statement)

Rank Statistics

TRTMT Log-Rank Wilcoxon

Control 2.5952 15.000

Treated -2.5952 -15.000

Covariance Matrix for the Log-Rank Statistics

TRTMT Control Treated

Control 1.21712 -1.21712

Treated -1.21712 1.21712

Test of Equality over Strata

Pr >

Test Chi-Square DF Chi-Square

Log-Rank 5.5338 1 0.0187

Wilcoxon 4.3269 1 0.0375

-2Log(LR) 3.1202 1 0.0773
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B. The “linear rank” logrank statistic:

(using the test statement)

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >

Variable Statistic Deviation Chi-Square Chi-Square

TRTMT 2.5952 1.1032 5.5338 0.0187

Covariance Matrix for the LOG RANK Statistics

Variable TRTMT

TRTMT 1.21712

Note that this time, the variances of the two logrank statis-

tics are exactly the same, equal to 1.217.

If there are no tied event times, then the
two versions of the test will yield identi-
cal results. The more ties we have, the
more it matters which version we use.
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Gehan’s Generalized Wilcoxon Test

First, let’s review the Wilcoxon test for uncensored data:

Denote observations from two samples by:

(X1, X2, . . . , Xn) and (Y1, Y2, . . . , Ym)

Order the combined sample and define:

Z(1) < Z(2) < · · · < Z(m+n)

Ri1 = rank of Xi

R1 =
m+n∑

i=1
Ri1

Reject H0 if R1 is too big or too small, according to

R1 − E(R1)√
V ar(R1)

∼ N(0, 1)

where

E(R1) =
m(m + n + 1)

2

V ar(R1) =
mn(m + n + 1)

12
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TheMann-Whitney form of the Wilcoxon is defined as:

U(Xi, Yj) = Uij =





+1 if Xi > Yj
0 if Xi = Yj
−1 if Xi < Yj

and

U =
n∑

i=1

m∑

j=1
Uij.

There is a simple correspondence between U and R1:

R1 = m(m + n + 1)/2 + U/2

so U = 2R1 −m(m + n + 1)

Therefore,

E(U) = 0

V ar(U) = mn(m + n + 1)/3
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Extending Wilcoxon to censored data

The Mann-Whitney form leads to a generalization for cen-

sored data. Define

U(Xi, Yj) = Uij =





+1 if xi > yj or x+i ≥ yj
0 if xi = yi or lower value censored

−1 if xi < yj or xi ≤ y+j

Then define

W =
n∑

i=1

m∑

j=1
Uij

Thus, there is a contribution to W for every comparison

where both observations are failures (except for ties), or

where a censored observation is greater than or equal to a

failure.

Looking at all possible pairs of individuals between the two

treatment groups makes this a nightmare to compute by

hand!
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Gehan found an easier way to compute the above. First,

pool the sample of (n+m) observations into a single group,

then compare each individual with the remaining n+m−1:

For comparing the i-th individual with the j-th, define

Uij =





+1 if ti > tj or t+i ≥ tj
−1 if ti < tj or ti ≤ t+j
0 otherwise

Then

Ui =
m+n∑

j=1
Uij

Thus, for the i-th individual, Ui is the number of observa-

tions which are definitely less than ti minus the number of

observations that are definitely greater than ti. We assume

censorings occur after deaths, so that if ti = 18+ and tj = 18,

then we add 1 to Ui.

The Gehan statistic is defined as

U =
m+n∑

i=1
Ui 1{i in group 0}

= W

U has mean 0 and variance

var(U) =
mn

(m + n)(m + n− 1)

m+n∑

i=1
U 2
i

140



Example from Lee:

Group 0: 15, 18, 19, 19, 20

Group 1: 16+, 18+, 20+, 23, 24+

Time Group Ui U 2
i

15 0 -9 81

16+ 1 1 1

18 0 -6 36

18+ 1 2 4

19 0 -2 4

19 0 -2 4

20 0 1 1

20+ 1 5 25

23 1 4 16

24+ 1 6 36

SUM -18 208

U = −18

V ar(U) =
(5)(5)(208)

(10)(9)

= 57.78

and χ2 = (−18)2/57.78 = 5.61
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SAS code:

data leedata;

infile ’lee.dat’;

input time cens group;

proc lifetest data=leedata;

time time*cens(0);

strata group;

run ;

SAS OUTPUT: Gehans Wilcoxon test

Rank Statistics

TRTMT Log-Rank Wilcoxon

Control 2.7500 18.000

Treated -2.7500 -18.000

Covariance Matrix for the Wilcoxon Statistics

TRTMT Control Treated

Control 58.4000 -58.4000

Treated -58.4000 58.4000

Test of Equality over Strata

Pr >

Test Chi-Square DF Chi-Square

Log-Rank 6.9540 1 0.0084

Wilcoxon 5.5479 1 0.0185 **this is Gehan’s test

-2Log(LR) 3.3444 1 0.0674
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Notes about SAS Wilcoxon Test:

SAS calculates the Wilcoxon as −U instead of U , probably

so that the sign of the test statistic is consistent with the

logrank.

SAS gets something slightly different for the variance, and

this does not seem to depend on whether there are ties.

For example, the hypothetical dataset on p.6 without ties

yields U = −15 and
∑
U 2
i = 182, so

V ar(U) =
(5)(5)(182)

(10)(9)
= 50.56 and χ2 =

(−15)2

50.56
= 4.45

while SAS gives the following:

Rank Statistics

TRTMT Log-Rank Wilcoxon

Control 2.5952 15.000

Treated -2.5952 -15.000

Covariance Matrix for the Wilcoxon Statistics

TRTMT Control Treated

Control 52.0000 -52.0000

Treated -52.0000 52.0000

Test of Equality over Strata

Pr >

Test Chi-Square DF Chi-Square

Log-Rank 5.5338 1 0.0187

Wilcoxon 4.3269 1 0.0375

-2Log(LR) 3.1202 1 0.0773
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Obtaining the Wilcoxon test using Stata

Use the sts test statement, with the appropriate option

sts test varlist [if exp] [in range]

[, [logrank|wilcoxon|cox] strata(varlist) detail

mat(matname1 matname2) notitle noshow ]

logrank, wilcoxon, and cox specify which test of equality is desired.

logrank is the default, and cox yields a likelihood ratio test

under a cox model.

Example: (leukemia data)

. stset remiss status

. sts test trt, wilcoxon

Wilcoxon (Breslow) test for equality of survivor functions

----------------------------------------------------------

| Events Sum of

trt | observed expected ranks

------+--------------------------------------

0 | 21 10.75 271

1 | 9 19.25 -271

------+--------------------------------------

Total | 30 30.00 0

chi2(1) = 13.46

Pr>chi2 = 0.0002
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Generalized Wilcoxon

(Peto & Peto, Prentice)

Assign the following scores:
For a death at t: Ŝ(t+) + Ŝ(t−)− 1

For a censoring at t: Ŝ(t+)− 1

The test statistic is
∑
(scores) for group 0.

Time Group dj rj Ŝ(t+) score wj

15 0 1 10 0.900 0.900

16+ 1 0 9 0.900 -0.100

18 0 1 8 0.788 0.688

18+ 1 0 7 0.788 -0.212

19 0 2 6 0.525 0.313

20 0 1 4 0.394 -0.081

20+ 1 0 3 0.394 -0.606

23 1 1 2 0.197 -0.409

24+ 1 0 1 0.197 -0.803

∑
wj 1{j in group 0} = 0.900 + 0.688 + 2 ∗ (0.313) + (−0.081)

= 2.13

V ar(S) =
n0n1

∑n
j=1w

2
j

n(n− 1)
= 0.765

so Z = 2.13/0.765 = 2.433

145



The Tarone-Ware class of tests:

This general class of tests is like the logrank test, but adds

weights wj. The logrank test, Wilcoxon test, and Peto-

Prentice Wilcoxon are included as special cases.

χ2tw =
[∑Kj=1wj(d1j − r1j ∗ dj/rj)]2

∑K
l=1

w2
jr1jr0jdj(rj−dj)

r2j (rj−1)

Test Weight wj

Logrank wj = 1

Gehan’s Wilcoxon wj = rj

Peto/Prentice wj = nŜ(tj)

Fleming-Harrington wj = [Ŝ(tj)]
α

Tarone-Ware wj =
√
rj

Note: these weights wj are not the same as the scores wj we’ve been
talking about earlier, and they apply to the CMH-type form of the
test statistic rather than

∑
(scores) over a single treatment group.

146



Which test should we used?

CMH-type or Linear Rank?

If there are not a high proportion of ties, then it doesn’t

really matter since:

• The two Wilcoxons are similar to each other

• The two logrank tests are similar to each other

Note: personally, I tend to use the CMH-type test, which you get with the strata

statement in SAS and the test statement in STATA.

Logrank or Wilcoxon?

• Both tests have the right Type I power for testing the

null hypothesis of equal survival, Ho : S1(t) = S2(t)

• The choice of which test may therefore depend on the

alternative hypothesis, which will drive the power of the

test.
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• The Wilcoxon is sensitive to early differences between

survival, while the logrank is sensitive to later ones. This

can be seen by the relative weights they assign to the test

statistic:

LOGRANK numerator =
∑

j
(oj − ej)

WILCOXON numerator =
∑

j
rj(oj − ej)

• The logrank is most powerful under the assumption of

proportional hazards, which implies an alternative in

terms of the survival functions of Ha : S1(t) = [S2(t)]
α

• The Wilcoxon has high power when the failure times

are lognormally distributed, with equal variance in both

groups but a different mean. It will turn out that this is

the assumption of an accelerated failure time model.

• Both tests will lack power if the survival curves (or haz-

ards) “cross”. However, that does not necessarily make

them invalid!
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Comparison between TEST and STRATA in SAS

for 2 examples:

Data from Lee (n=10):

from STRATA:

Test of Equality over Strata

Pr >

Test Chi-Square DF Chi-Square

Log-Rank 6.9540 1 0.0084

Wilcoxon 5.5479 1 0.0185 **this is Gehan’s test

-2Log(LR) 3.3444 1 0.0674

from TEST:

Univariate Chi-Squares for the WILCOXON Test

Test Standard Pr >

Variable Statistic Deviation Chi-Square Chi-Square

GROUP 1.8975 0.7508 6.3882 0.0115

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >

Variable Statistic Deviation Chi-Square Chi-Square

GROUP 2.7500 1.0897 6.3684 0.0116
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Previous example with leukemia data:

from STRATA:

Test of Equality over Strata

Pr >

Test Chi-Square DF Chi-Square

Log-Rank 16.7929 1 0.0001

Wilcoxon 13.4579 1 0.0002

-2Log(LR) 16.4852 1 0.0001

from TEST:

Univariate Chi-Squares for the WILCOXON Test

Test Standard Pr >

Variable Statistic Deviation Chi-Square Chi-Square

GROUP 6.6928 1.7874 14.0216 0.0002

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >

Variable Statistic Deviation Chi-Square Chi-Square

GROUP 10.2505 2.5682 15.9305 0.0001
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P -sample and stratified logrank tests

We have been discussing two sample problems. In practice,

more complex settings often arise:

• There are more than two treatments or groups, and the

question of interest is whether the groups differ from each

other.

• We are interested in a comparison between two groups,

but we wish to adjust for another factor that may con-

found the analysis

• We want to adjust for lots of covariates.

We will first talk about comparing the survival distributions

between more than 2 groups, and then about adjusting for

other covariates.
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P -sample logrank

Suppose we observe data from P different groups, and the

data from group p (p = 1, ..., P ) are:

(Xp1, δp1) . . . (Xpnp, δpnp)

We now construct a (P × 2) table at each of the K distinct

death times, and compare the death rates between the P

groups, conditional on the number at risk.

Let t1, ....tK represent the K ordered, distinct death times.

At the j-th death time, we have the following table:

Die/Fail

Group Yes No Total

1 d1j r1l − d1j r1j

. . . .

P dPj rPj − dPj rPj
Total dj rj − dj rj

where dpj is the number of deaths in group p at the j-th

death time, and rpj is the number at risk at that time.

The tables are then combined using the CMH approach.
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If we were just focusing on this one table, then a χ2
(P−1) test

statistic could be constructed through a comparison of “o”s

and “e”s, like before.

Example: Toxicity in a clinical trial with 3 treatments

TABLE OF GROUP BY TOXICITY

GROUP TOXICITY

Frequency|

Row Pct |no |yes | Total

---------+--------+--------+

1 | 42 | 8 | 50

| 84.00 | 16.00 |

---------+--------+--------+

2 | 48 | 2 | 50

| 96.00 | 4.00 |

---------+--------+--------+

3 | 38 | 12 | 50

| 76.00 | 24.00 |

---------+--------+--------+

Total 128 22 150

STATISTICS FOR TABLE OF GROUP BY TOXICITY

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 8.097 0.017

Likelihood Ratio Chi-Square 2 9.196 0.010

Mantel-Haenszel Chi-Square 1 1.270 0.260

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

----------------------------------------------------------

1 Nonzero Correlation 1 1.270 0.260

2 Row Mean Scores Differ 2 8.043 0.018

3 General Association 2 8.043 0.018
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Formal Calculations:

Let Oj = (d1j, ...d(P−1)j)
T be a vector of the observed num-

ber of failures in groups 1 to (P − 1), respectively, at the

j-th death time. Given the risk sets r1j, ... rPj, and the fact

that there are dj deaths, then Oj has a distribution like a

multivariate version of the Hypergeometric. Oj has mean:

Ej = (
dj r1j
rj

, ... ,
dj r(P−1)j

rj
)T

and variance covariance matrix:

Vj =




v11j v12j ... v1(P−1)j
v22j ... v2(P−1)j

... ... ...

v(P−1)(P−1)j




where the `-th diagonal element is:

v``j = r`j(rj − r`j)dj(rj − dj)/[r
2
j (rj − 1)]

and the `m-th off-diagonal element is:

v`mj = r`jrmjdj(rj − dj)/[r
2
j (rj − 1)]
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The resulting χ2 test for a single (P × 1) table would have

(P-1) degrees and is constructed as follows:

(Oj − Ej)T V−1j (Oj − Ej)

Generalizing to K tables

Analogous to what we did for the two sample logrank, we

replace theOj, Ej andVj with the sums over theK distinct

death times. That is, let O =
∑k
j=1Oj, E =

∑k
j=1Ej, and

V =
∑k
j=1Vj. Then, the test statistic is:

(O− E)T V−1 (O− E)
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Example:

Time taken to finish a test with 3 different noise distractions.

All tests were stopped after 12 minutes.

Noise Level

Group Group Group

1 2 3

9.0 10.0 12.0

9.5 12.0 12+

9.0 12+ 12+

8.5 11.0 12+

10.0 12.0 12+

10.5 10.5 12+
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Lets start the calculations ...

Observed data table

Ordered Group 1 Group 2 Group 3 Combined
Times d1j r1j d2j r2j d3j r3j dj rj
8.5 1 6 0 6 0 6
9.0 2 5 0 6 0 6
9.5 1 3 0 6 0 6
10.0 1 2 1 6 0 6
10.5 1 1 1 5 0 6
11.0 0 0 1 4 0 6
12.0 0 0 2 3 1 6

Expected table

Ordered Group 1 Group 2 Group 3 Combined
Times o1j e1j o2j e2j o3j e3j oj ej
8.5
9.0
9.5
10.0
10.5
11.0
12.0

Doing the P -sample test by hand is cumbersome ...

Luckily, most statistical packages will do it for you!
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P -sample logrank in Stata

.sts graph, by(group)

.sts test group, logrank

Log-rank test for equality of survivor functions

------------------------------------------------

| Events

group | observed expected

------+-------------------------

1 | 6 1.57

2 | 5 4.53

3 | 1 5.90

------+-------------------------

Total | 12 12.00

chi2(2) = 20.38

Pr>chi2 = 0.0000

. sts test group, wilcoxon

Wilcoxon (Breslow) test for equality of survivor functions

----------------------------------------------------------

| Events Sum of

group | observed expected ranks

------+--------------------------------------

1 | 6 1.57 68

2 | 5 4.53 -5

3 | 1 5.90 -63

------+--------------------------------------

Total | 12 12.00 0

chi2(2) = 18.33

Pr>chi2 = 0.0001
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SAS program for P -sample logrank

Title ’Testing with noise example’;

data noise;

input testtime finish group;

cards;

9 1 1

9.5 1 1

9.0 1 1

8.5 1 1

10 1 1

10.5 1 1

10.0 1 2

12 1 2

12 0 2

11 1 2

12 1 2

10.5 1 2

12 1 3

12 0 3

12 0 3

12 0 3

12 0 3

12 0 3

;

proc lifetest data=noise;

time testtime*finish(0);

strata group;

run;
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Testing Homogeneity of Survival Curves over Strata

Time Variable TESTTIME

Rank Statistics

GROUP Log-Rank Wilcoxon

1 4.4261 68.000

2 0.4703 -5.000

3 -4.8964 -63.000

Covariance Matrix for the Log-Rank Statistics

GROUP 1 2 3

1 1.13644 -0.56191 -0.57454

2 -0.56191 2.52446 -1.96255

3 -0.57454 -1.96255 2.53709

Covariance Matrix for the Wilcoxon Statistics

GROUP 1 2 3

1 284.808 -141.495 -143.313

2 -141.495 466.502 -325.007

3 -143.313 -325.007 468.320

Test of Equality over Strata

Pr >

Test Chi-Square DF Chi-Square

Log-Rank 20.3844 2 0.0001

Wilcoxon 18.3265 2 0.0001

-2Log(LR) 5.5470 2 0.0624
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Note: do not use Test in SAS PROC LIFETEST if you

want a P -sample logrank. Test will interpret the group

variable as a measured covariate (i.e., either ordinal or con-

tinuous).

In other words, you will get a trend test with only 1 degree

of freedom, rather than a P-sample test with (p-1) df.

For example, here’s what we get if we use the TEST state-

ment on the noise example:

proc lifetest data=noise;

time testtime*finish(0);

test group;

run;

SAS OUTPUT:

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >

Variable Statistic Deviation Chi-Square Chi-Square

GROUP 9.3224 2.2846 16.6503 0.0001

Covariance Matrix for the LOG RANK Statistics

Variable GROUP

GROUP 5.21957

Forward Stepwise Sequence of Chi-Squares for the LOG RANK Test

Pr > Chi-Square Pr >

Variable DF Chi-Square Chi-Square Increment Increment

GROUP 1 16.6503 0.0001 16.6503 0.0001
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The Stratified Logrank

Sometimes, even though we are interested in comparing two

groups (or maybe P ) groups, we know there are other factors

that also affect the outcome. It would be useful to adjust for

these other factors in some way.

Example: For the nursing home data, a logrank test com-

paring length of stay for those under and over 85 years of

age suggests a significant difference (p=0.03).

However, we know that gender has a strong association with

length of stay, and also age. Hence, it would be a good idea

to STRATIFY the analysis by gender when trying to assess

the age effect.

A stratified logrank allows one to compare groups, but

allows the shapes of the hazards of the different groups to

differ across strata. It makes the assumption that the group

1 vs group 2 hazard ratio is constant across strata.

In other words: λ1s(t)
λ2s(t)

= θ where θ is constant over the strata

(s = 1, ..., S).

This method of adjusting for other variables is not as flexible

as that based on a modelling approach.
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General setup for the stratified logrank:

Suppose we want to assess the association between survival

and a factor (call this X) that has two different levels. Sup-

pose however, that we want to stratify by a second factor,

that has S different levels.

First, divide the data into S separate groups. Within group

s (s = 1, ..., S), proceed as though you were constructing

the logrank to assess the association between survival and

the variable X . That is, let t1s, ..., tKss represent the Ks

ordered, distinct death times in the s-th group.

At the j-th death time in group s, we have the following

table:

Die/Fail

X Yes No Total

1 ds1j rs1j − ds1j rs1j

2 ds2j rs2j − ds2j rs2j
Total dsj rsj − dsj rsj
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Let Os be the sum of the “o”s obtained by applying the

logrank calculations in the usual way to the data from group

s. Similarly, let Es be the sum of the “e”s, and Vs be the

sum of the “v”s.

The stratified logrank is

Z =
∑S
s=1(Os − Es)√∑S

s=1(Vs)
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Stratified logrank using Stata:

. use nurshome

. gen age1=0

. replace age1=1 if age>85

. sts test age1, strata(gender)

failure _d: cens

analysis time _t: los

Stratified log-rank test for equality of survivor functions

-----------------------------------------------------------

| Events

age1 | observed expected(*)

------+-------------------------

0 | 795 764.36

1 | 474 504.64

------+-------------------------

Total | 1269 1269.00

(*) sum over calculations within gender

chi2(1) = 3.22

Pr>chi2 = 0.0728

165



Stratified logrank using SAS:

data pop1;

set pop;

age1=0;

if age >85 then age1=1;

proc lifetest data=pop1 outsurv=survres;

time stay*censor(1);

test age1;

strata gender;

RESULTS (just the logrank part .... you can also do a stratified
Wilcoxon)

The LIFETEST Procedure

Rank Tests for the Association of LSTAY with Covariates

Pooled over Strata

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >

Variable Statistic Deviation Chi-Square Chi-Square

AGE1 29.1508 17.1941 2.8744 0.0900

Covariance Matrix for the LOG RANK Statistics

Variable AGE1

AGE1 295.636

Forward Stepwise Sequence of Chi-Squares for the LOG RANK Test

Pr > Chi-Square Pr >

Variable DF Chi-Square Chi-Square Increment Increment

AGE1 1 2.8744 0.0900 2.8744 0.0900
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Modeling of Survival Data

Now we will explore the relationship between survival and

explanatory variables by modeling. In this class, we consider

two broad classes of regression models:

• Proportional Hazards (PH) models
λ(t;Z) = λ0(t)Ψ(Z)

Most commonly, we write the second term as:

Ψ(Z) = eβZ

Suppose Z = 1 for treated subjects and Z = 0 for un-

treated subjects. Then this model says that the hazard

is increased by a factor of eβ for treated subjects versus

untreated subjects (cβ might be < 1).

This is an example of a semi-parametric model.

• Accelerated Failure Time (AFT) models
log(T ) = µ + βZ + σw

where w is an “error distribution”. Typically, we place

a parametric assumption on w:

– exponential, Weibull, Gamma

– lognormal
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Covariates:

In general, Z is a vector of covariates of interest.

Z may include:

• continuous factors (eg, age, blood pressure),

• discrete factors (gender, marital status),

• possible interactions (age by sex interaction)

Discrete Covariates:

Just as in standard linear regression, if we have a discrete

covariate A with a levels, then we will need to include (a−1)

dummy variables (U1, U2, . . . , Ua) such that Uj = 1 if A =

j. Then

λi(t) = λ0(t) exp(β2U2 + β3U3 + · · · + βaUa)

(In the above model, the subgroup with A = 1 or U1 = 1 is

the reference group.)

Interactions:

Two factors, A and B, interact if the hazard of death de-

pends on the combination of levels of A and B.

We usually follow the principle of hierarchical models, and

only include interactions if all of the corresponding main

effects are also included.
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The example I just gave was based on a proportional hazards

model, but the description of the types of covariates we might

want to include in our model applies to both the AFT and

PH model.

We’ll start out by focusing on the Cox PH model, and ad-

dress some of the following questions:

• What does the term λ0(t) mean?

• What’s “proportional” about the PH model?

• How do we estimate the parameters in the model?

• How do we interpret the estimated values?

• How can we construct tests of whether the covariates

have a significant effect on the distribution of survival

times?

• How do these tests compare to the logrank test or the

Wilcoxon test?
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The Cox Proportional Hazards model

λ(t;Z) = λ0(t) exp(βZ)

This is the most common model used for survival data.

Why?

• flexible choice of covariates

• fairly easy to fit

• standard software exists

References: Collett, Chapter 3*

Lee, Chapter 10*

Hosmer & Lemeshow, Chapters 3-7

Allison, Chapter 5

Cox and Oakes, Chapter 7

Kleinbaum, Chapter 3

Klein and Moeschberger, Chapters 8 & 9

Kalbfleisch and Prentice

Note: some books (like Collett and H & L) use h(t;X) as

their standard notation for the hazard instead of λ(t;Z), and

H(t) for the cumulative hazard instead of Λ(t).
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Why do we call it proportional hazards?

Think of the first example, where Z = 1 for treated and Z =

0 for control. Then if we think of λ1(t) as the hazard rate

for the treated group, and λ0(t) as the hazard for control,

then we can write:

λ1(t) = λ(t;Z = 1) = λ0(t) exp(βZ)

= λ0(t) exp(β)

This implies that the ratio of the two hazards is a constant,

φ, which does NOT depend on time, t. In other words, the

hazards of the two groups remain proportional over time.

φ =
λ1(t)

λ0(t)
= eβ

φ is referred to as the hazard ratio.

What is the interpretation of β here?
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The Baseline Hazard Function

In the example of comparing two treatment groups, λ0(t) is

the hazard rate for the control group.

In general, λ0(t) is called the baseline hazard function,

and reflects the underlying hazard for subjects with all co-

variates Z1, ..., Zp equal to 0 (i.e., the “reference group”).

The general form is:

λ(t;Z) = λ0(t) exp(β1Z1 + β2Z2 + · · · + βpZp)

So when we substitute all of the Zj’s equal to 0, we get:

λ(t,Z = 0) = λ0(t) exp(β1 ∗ 0 + β2 ∗ 0 + · · · + βp ∗ 0)
= λ0(t)

In the general case, we think of the i-th individual having a

set of covariates Zi = (Z1i, Z2i, ..., Zpi), and we model their

hazard rate as some multiple of the baseline hazard rate:

λi(t,Zi) = λ0(t) exp(β1Z1i + · · · + βpZpi)
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This means we can write the log of the hazard ratio for the

i-th individual to the reference group as:

log



λi(t)

λ0(t)


 = β1Z1i + β2Z2i + · · · + βpZpi

The Cox Proportional Hazards model is a

linear model for the log of the hazard ratio

One of the biggest advantages of the framework of the Cox

PH model is that we can estimate the parameters β which

reflect the effects of treatment and other covariates without

having to make any assumptions about the form of λ0(t).

In other words, we don’t have to assume that λ0(t) follows

an exponential model, or a Weibull model, or any other par-

ticular parametric model.

That’s what makes the model semi-parametric.

Questions:

1. Why don’t we just model the hazard ratio,

φ = λi(t)/λ0(t), directly as a linear function of the

covariates Z?

2. Why doesn’t the model have an intercept?
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How do we estimate the model parameters?

The basic idea is that under PH, information about β can

be obtained from the relative orderings (i.e., ranks) of the

survival times, rather than the actual values. Why?

Suppose T follows a PH model:

λ(t;Z) = λ0(t)e
βZ

Now consider T ∗ = g(T ), where g is a monotonic increasing

function. We can show that T ∗ also follows the PH model,

with the same multiplier, eβZ.

Therefore, when we consider likelihood methods for estimat-

ing the model parameters, we only have to worry about the

ranks of the survival times.
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Likelihood Estimation for the PH Model

Kalbfleisch and Prentice derive a likelihood involving only

β and Z (not λ0(t)) based on the marginal distribution of

the ranks of the observed failure times (in the absence of

censoring).

Cox (1972) derived the same likelihood, and generalized it

for censoring, using the idea of a partial likelihood

Suppose we observe (Xi, δi,Zi) for individual i, where

• Xi is a censored failure time random variable

• δi is the failure/censoring indicator (1=fail,0=censor)

• Zi represents a set of covariates

The covariates may be continuous, discrete, or time-varying.
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Suppose there are K distinct failure (or death) times, and

let τ1, ....τK represent the K ordered, distinct death times.

For now, assume there are no tied death times.

Let R(t) = {i : xi ≥ t} denote the set of individuals who

are “at risk” for failure at time t.

More about risk sets:

• I will refer toR(τj) as the risk set at the jth failure time

• I will refer to R(Xi) as the risk set at the failure time of

individual i

• There will still be rj individuals in R(τj).

• rj is a number, whileR(τj) identifies the actual subjects

at risk
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What is the partial likelihood?

Intuitively, it is a product over the set of observed death

times of the conditional probabilities of seeing the observed

deaths, given the set of individuals at risk at those times.

At each death time τj, the contribution to the likelihood is:

Lj(β) = Pr(individual j fails|1 failure from R(τj))

=
Pr(individual j fails| at risk at τj)

∑
`∈R(τj) Pr(individual ` fails| at risk at τj)

=
λ(τj;Zj)

∑
`∈R(τj) λ(τj;Z`)

Under the PH assumption, λ(t;Z) = λ0(t)e
βZ, so we get:

Lpartial(β) =
K∏

j=1

λ0(τj)e
βZj

∑
`∈R(τj) λ0(τj)e

βZ`

=
K∏

j=1

eβZj

∑
`∈R(τj) e

βZ`
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Another derivation:

In general, the likelihood contributions for censored data fall

into two categories:

• Individual is censored at Xi:

Li(β) = S(Xi) = exp[−
∫ Xi

0
λi(u)du]

• Individual fails at Xi:

Li(β) = S(Xi)λi(Xi) = λi(Xi) exp[−
∫ Xi

0
λi(u)du]

Thus, everyone contributes S(Xi) to the likelihood, and only

those who fail contribute λi(Xi).

This means we get a total likelihood of:

L(β) =
n∏

i=1
λi(Xi)

δi exp[−
∫ Xi

0
λi(u)du]

The above likelihood holds for all censored survival data,

with general hazard function λ(t). In other words, we haven’t

used the Cox PH assumption at all yet.
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Now, let’s multiply and divide by the term
[∑

j∈R(Xi) λi(Xi)
]δi
:

L(β) =
n∏

i=1


 λi(Xi)
∑

j∈R(Xi) λi(Xi)



δi



∑

j∈R(Xi)

λi(Xi)




δi

exp[−
∫ Xi

0
λi(u)du]

Cox (1972) argued that the first term in this product con-

tained almost all of the information about β, while the sec-

ond two terms contained the information about λ0(t), i.e.,

the baseline hazard.

If we just focus on the first term, then under the Cox PH

assumption:

L(β) =
n∏

i=1




λi(Xi)
∑
j∈R(Xi) λi(Xi)




δi

=
n∏

i=1




λ0(Xi) exp(βZi)
∑
j∈R(Xi) λ0(Xi) exp(βZj)




δi

=
n∏

i=1




exp(βZi)
∑
j∈R(Xi) exp(βZj)




δi

This is the partial likelihood defined by Cox. Note that it

does not depend on the underlying hazard function λ0(·).
Cox recommends treating this as an ordinary likelihood for

making inferences about β in the presence of the nuisance

parameter λ0(·).

179



A simple example:

individual Xi δi Zi
1 9 1 4

2 8 0 5

3 6 1 7

4 10 1 3

Now let’s compile the pieces that go into the partial likeli-

hood contributions at each failure time:

ordered

failure Likelihood contribution

j time Xi R(Xi) ij
[
eβZi/

∑
j∈R(Xi) e

βZj
]δi

1 6 {1,2,3,4} 3 e7β/[e4β + e5β + e7β + e3β]

2 8 {1,2,4} 2 1

3 9 {1,4} 1 e4β/[e4β + e3β]

4 10 {4} 4 e3β/e3β = 1

The partial likelihood would be the product of these four

terms.
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Notes on the partial likelihood:

L(β) =
n∏

j=1




eβZj

∑
`∈R(Xj) e

βZ`




δj

=
K∏

j=1

eβZj

∑
`∈R(τj) e

βZ`

where the product is over the K death (or failure) times.

• contributions only at the death times

• the partial likelihood is NOT a product of independent

terms, but of conditional probabilities

• There are other choices besides Ψ(Z) = eβZ, but this

is the most common and the one for which software is

generally available.
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Partial Likelihood inference

Inference can be conducted by treating the partial likelihood

as though it satisfied all the regular likelihood properties.

The log-partial likelihood is:

`(β) = log



n∏

j=1

eβZj

∑
`∈R(τj) e

βZ`




δj

= log



K∏

j=1

eβZj

∑
`∈R(τj) e

βZ`




=
K∑

j=1


βZj − log[

∑

`∈R(τj)
eβZ`]




=
K∑

j=1
lj(β)

where lj is the log-partial likelihood contribution at the j-th

ordered death time.
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Suppose there is only one covariate (β is one-dimensional):

The partial likelihood score equations are:

U(β) =
∂

∂β
`(β) =

n∑

j=1
δj


Zj −

∑
`∈R(τj)Z`e

βZ`

∑
`∈R(τj) e

βZ`




We can express U(β) intuitively as a sum of “observed” mi-

nus “expected” values:

U(β) =
∂

∂β
`(β) =

n∑

j=1
δj(Zj − Z̄j)

where Z̄j is the “weighted average” of the covariate Z over

all the individuals in the risk set at time τj. Note that β is

involved through the term Z̄j.

The maximum partial likelihood estimators can be found by

solving U(β) = 0.
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Analogous to standard likelihood theory, it can be shown

(though not easily) that

(β̂ − β)

se(β̂)
∼ N(0, 1)

The variance of β̂ can be obtained by inverting the second

derivative of the partial likelihood,

var(β̂) ∼

− ∂2

∂β2
`(β)




−1

From the above expression for U(β), we have:

∂2

∂β2
`(β) =

n∑

j=1
δj


−

∑
`∈R(τj)(Zj − Z̄j)

2eβZ`

∑
`∈R(τj) e

βZ`




Note:

The true variance of β̂ ends up being a function of β, which

is unknown. We calculate the “observed” information by

substituting in our partial likelihood estimate of β into the

above formula for the variance
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Simple Example for 2-group comparison: (no ties)

Group 0: 4+, 7, 8+, 9, 10+ =⇒ Zi = 0

Group 1: 3, 5, 5+, 6, 8+ =⇒ Zi = 1

ordered failure Number at risk Likelihood contribution

j time Xi Group 0 Group 1
[
eβZi/

∑
j∈R(Xi) e

βZj
]δi

1 3 5 5 eβ/[5 + 5eβ]

2 5 4 4 eβ/[4 + 4eβ]

3 6 4 2 eβ/[4 + 2eβ]

4 7 4 1 eβ/[4 + 1eβ]

5 9 2 0 e0/[2 + 0] = 1/2

Again, we take the product over the likelihood contributions,

then maximize to get the partial MLE for β.

What does β represent in this case?
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Notes

• The “observed” information matrix is generally used be-

cause in practice, people find it has better properties.

Also, the “expected” is very hard to calculate.

• There is a nice analogy with the score and informa-

tion matrices from more standard regression problems,

except that here we are summing over observed death

times, rather than individuals.

• Newton Raphson is used by many of the computer pack-

ages to solve the partial likelihood equations.

186



Fitting Cox PH model with Stata

Uses the “stcox” command.

First, try typing “help stcox”

----------------------------------------------------------------------

help for stcox

----------------------------------------------------------------------

Estimate Cox proportional hazards model

---------------------------------------

stcox [varlist] [if exp] [in range]

[, nohr strata(varnames) robust cluster(varname) noadjust

mgale(newvar) esr(newvars)

schoenfeld(newvar) scaledsch(newvar)

basehazard(newvar) basechazard(newvar) basesurv(newvar)

{breslow | efron | exactm | exactp} cmd estimate noshow

offset level(#) maximize-options ]

stphtest [, km log rank time(varname) plot(varname) detail

graph-options ksm-options]

stcox is for use with survival-time data; see help st. You must

have stset your data before using this command; see help stset.

Description

-----------

stcox estimates maximum-likelihood proportional hazards models on st data.

Options (many more!)

-------

nohr reports the estimated coefficients rather than hazard ratios; i.e.,

b rather than exp(b). Standard errors and confidence intervals are

similarly transformed. This option affects how results are displayed,

not how they are estimated.
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Ex. Leukemia Data

. stcox trt

Iteration 0: log likelihood = -93.98505

Iteration 1: log likelihood = -86.385606

Iteration 2: log likelihood = -86.379623

Iteration 3: log likelihood = -86.379622

Refining estimates:

Iteration 0: log likelihood = -86.379622

Cox regression -- Breslow method for ties

No. of subjects = 42 Number of obs = 42

No. of failures = 30

Time at risk = 541

LR chi2(1) = 15.21

Log likelihood = -86.379622 Prob > chi2 = 0.0001

------------------------------------------------------------------------------

_t |

_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

trt | .2210887 .0905501 -3.685 0.000 .0990706 .4933877

------------------------------------------------------------------------------

. stcox trt , nohr

(same iterations for log-likelihood)

Cox regression -- Breslow method for ties

No. of subjects = 42 Number of obs = 42

No. of failures = 30

Time at risk = 541

LR chi2(1) = 15.21

Log likelihood = -86.379622 Prob > chi2 = 0.0001

------------------------------------------------------------------------------

_t |

_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

trt | -1.509191 .4095644 -3.685 0.000 -2.311923 -.7064599

------------------------------------------------------------------------------
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Fitting PH models in SAS - PROC PHREG

Ex. Leukemia data

Title ’Cox and Oakes example’;

data leukemia;

input weeks remiss trtmt;

cards;

6 0 1

6 1 1

6 1 1

6 1 1 /* data for 6MP group */

7 1 1

9 0 1

etc

1 1 0

1 1 0 /* data for placebo group */

2 1 0

2 1 0

etc

;

proc phreg data=leukemia;

model weeks*remiss(0)=trtmt;

title ’Cox PH Model for leukemia data’;

run;
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PROC PHREG Output:

The PHREG Procedure

Data Set: WORK.LEUKEM

Dependent Variable: FAILTIME Time to Relapse

Censoring Variable: FAIL

Censoring Value(s): 0

Ties Handling: BRESLOW

Summary of the Number of

Event and Censored Values

Percent

Total Event Censored Censored

42 30 12 28.57

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 187.970 172.759 15.211 with 1 DF (p=0.0001)

Score . . 15.931 with 1 DF (p=0.0001)

Wald . . 13.578 with 1 DF (p=0.0002)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

TRTMT 1 -1.509191 0.40956 13.57826 0.0002 0.221

190



Fitting PH models in S-plus: coxph function

Here are some of the data in leuk.dat:

t f x

1 1 0

1 1 0

2 1 0

2 1 0

3 1 0

...

19 0 1

20 0 1

22 1 1

23 1 1

25 0 1

32 0 1

32 0 1

34 0 1

35 0 1

leuk_read.table("leuk.dat",header=T)

#specify Breslow handling of ties

print(coxph(Surv(t,f) ~ x, leuk, method="breslow"))

#specify Efron handling of ties (default)

print(coxph(Surv(t,f) ~ x, leuk))
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coxph Output:

Call:

coxph(formula = Surv(t, f) ~ x, data = leuk, method = "breslow")

coef exp(coef) se(coef) z p

x -1.51 0.221 0.41 -3.68 0.00023

Likelihood ratio test=15.2 on 1 df, p=0.0000961 n= 42

Call:

coxph(formula = Surv(t, f) ~ x, data = leuk)

coef exp(coef) se(coef) z p

x -1.57 0.208 0.412 -3.81 0.00014

Likelihood ratio test=16.4 on 1 df, p=0.0000526 n= 42
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Compare this with the logrank test

from Proc Lifetest

(Using the “Test” statement)

The LIFETEST Procedure

Rank Tests for the Association of FAILTIME with Covariates

Pooled over Strata

Univariate Chi-Squares for the LOG RANK Test

Test Standard Pr >

Variable Statistic Deviation Chi-Square Chi-Square

TRTMT 10.2505 2.5682 15.9305 0.0001

Notes:

• The logrank test=score test from Proc phreg!

In general, the score test would be for all of the variables

in the model, but in this case, we have only “trtmt”.

• Stata does not provide a score test in its output from

the Cox model. However, the stcox command with

the breslow option for ties yields the same LR test as

the CMH-version logrank test from the sts test, cox

command.
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More Notes:

• The Cox Proportional hazards model has the advantage

over a simple logrank test of giving us an estimate of

the “risk ratio” (i.e., φ = λ1(t)/λ0(t)). This is more

informative than just a test statistic, and we can also

form confidence intervals for the risk ratio.

• In this case, φ̂ = 0.221, which can be interpreted to mean

that the hazard for relapse among patients treated with

6-MP is less than 25% of that for placebo patients.

• From the sts list command in Stata orProc lifetest

in SAS, we were able to get estimates of the entire sur-

vival distribution Ŝ(t) for each treatment group; we can’t

immediately get this from our Cox model without fur-

ther assumptions. Why not?
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Adjustments for ties

The proportional hazards model assumes a continuous haz-

ard – ties are not possible. There are four proposed modifi-

cations to the likelihood to adjust for ties.

(1) Cox’s (1972) modification: “discrete” method

(2) Peto-Breslow method

(3) Efron’s (1977) method

(4) Exact method (Kalbfleisch and Prentice)

(5) Exact marginal method (stata)

Some notation:

τ1, ....τK the K ordered, distinct death times

dj the number of failures at τj

Hj the “history” of the entire data set, up to the

j-th death or failure time, including the time

of the failure, but not the identities of the dj
who fail there.

ij1, ...ijdj the identities of the dj individuals who fail at τj
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(1) Cox’s (1972) modification: “discrete” method

Cox’s method assumes that if there are tied failure times,

they truly happened at the same time. It is based on a

discrete likelihood.

The partial likelihood is:

L(β) =
K∏

j=1
Pr(ij1, ...ijdj fail | dj fail at τj, from R)

=
K∏

j=1

Pr(ij1, ...ijdj fail | in R(τj))
∑
`∈s(j,dj) Pr(`1, ....`dj fail | in R(τj))

=
K∏

j=1

exp(βZij1) · · · exp(βZijdj )
∑
`∈s(j,dj) exp(βZ`1) · · · exp(βZ`dj )

=
K∏

j=1

exp(βSj)
∑
`∈s(j,dj) exp(βSj`)

where

• s(j, dj) is the set of all possible sets of dj individuals that
can possibly be drawn from the risk set at time τj

• Sj is the sum of the Z’s for all the dj individuals who

fail at τj

• Sj` is the sum of the Z’s for all the dj individuals in the

`-th set drawn out of s(j, dj)
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What does this all mean??!!

Let’s modify our previous simple example to include ties.

Simple Example (with ties)

Group 0: 4+, 6, 8+, 9, 10+ =⇒ Zi = 0

Group 1: 3, 5, 5+, 6, 8+ =⇒ Zi = 1

Ordered
failure Number at risk Likelihood Contribution

j time Xi Group 0 Group 1 eβSj/
∑

`∈s(j,dj) e
βSj`

1 3 5 5 eβ/[5 + 5eβ]

2 5 4 4 eβ/[4 + 4eβ]

3 6 4 2 eβ/[6 + 8eβ + e2β]

4 9 2 0 e0/2 = 1/2

The tie occurs at t = 6, whenR(τj) = {Z = 0 : (6, 8+, 9, 10+),

Z = 1 : (6, 8+)}. Of the
(6
2

)
= 15 possible pairs of subjects

at risk at t=6, there are 6 pairs formed where both are from

group 0 (Sj = 0), 8 pairs formed with one in each group

(Sj = 1), and 1 pairs formed with both in group 1 (Sj = 2).

Problem: With large numbers of ties, the denominator can

have many many terms and be difficult to calculate.
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(2) Breslow method: (default)

Breslow and Peto suggested replacing the term
∑
`∈s(j,dj) e

βSj`

in the denominator by the term
(∑

`∈R(τj) e
βZ`

)dj
, so that the

following modified partial likelihood would be used:

L(β) =
K∏

j=1

eβSj
∑
`∈s(j,dj) e

βSj`
≈

K∏

j=1

eβSj
(∑

`∈R(τj) e
βZ`

)dj

Justification:

Suppose individuals 1 and 2 fail from {1, 2, 3, 4} at time τj.
Let φ(i) be the hazard ratio for individual i (compared to
baseline).

eβSj
∑

`∈s(j,dj) e
βSj`

=
φ(1)

φ(1) + φ(2) + φ(3) + φ(4)
× φ(2)

φ(2) + φ(3) + φ(4)

+
φ(2)

φ(1) + φ(2) + φ(3) + φ(4)
× φ(1)

φ(1) + φ(3) + φ(4)

≈ 2φ(1)φ(2)

[φ(1) + φ(2) + φ(3) + φ(4)]2

The Peto (Breslow) approximation will break down when

the number of ties are large relative to the size of the risk

sets, and then tends to yield estimates of β which are biased

toward 0.

198



(3) Efron’s (1977) method:

Efron suggested an even closer approximation to the discrete

likelihood:

L(β) =
K∏

j=1

eβSj
(
∑
`∈R(τj) e

βZ` + j−1
dj

∑
`∈D(τj) e

βZ`

)dj

Like the Breslow approximation, Efron’s method will yield

estimates of β which are biased toward 0 when there are

many ties.

However, Allison (1995) recommends the Efron approxima-

tion since it is much faster than the exact methods and tends

to yield much closer estimates than the default Breslow ap-

proach.
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(4) Exact method (Kalbfleisch and Prentice):

The “discrete” option that we discussed in (1) is an exact

method based on a discrete likelihood (assuming that tied

events truly ARE tied).

This second exact method is based on the continuous like-

lihood, under the assumption that if there are tied events,

that is due to the imprecise nature of our measurement, and

that there must be some true ordering.

All possible orderings of the tied events are calculated, and

the probabilities of each are summed.

Example with 2 tied events (1,2) from riskset (1,2,3,4):

eβSj
∑

`∈s(j,dj) e
βSj`

=
eβS1

eβS1 + eβS2 + eβS3 + eβS4

× eβS2

eβS2 + eβS3 + eβS4

+
eβS2

eβS1 + eβS2 + eβS3 + eβS4

× eβS1

eβS1 + eβS3 + eβS4
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Bottom Line: Implications of Ties

(See Allison (1995), p.127-137)

(1)When there are no ties, all options give exactly the

same results.

(2)When there are only a few ties, it won’t make

much difference which method is used. However, since

the exact methods won’t take much extra computing

time, you might as well use one of them.

(3)When there are many ties (relative to the number

at risk), the Breslow option (default) performs poorly

(Farewell & Prentice, 1980; Hsieh, 1995). Both of the

approximate methods, Breslow and Efron, yield coeffi-

cients that are attenuated (biased toward 0).

(4) The choice of which exact method to use should

be based on substantive grounds - are the tied event

times truly tied? ...or are they the result of imprecise

measurement?

(5) Computing time of exact methods is much longer

than that of the approximate methods. However, in most

cases it will still be less than 30 seconds even for the exact

methods.

(6) Best approximate method - the Efron approxi-

mation nearly always works better than the Breslow

method, with no increase in computing time, so use this

option if exact methods are too computer-intensive.
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Example: The fecundability study

Women who had recently given birth (or had tried to get

pregnant for at least a year) were asked to recall how long

it took them to become pregnant, and whether or not they

smoked during that time. The outcome of interest is time to

pregnancy (measured in menstrual cycles).

data fecund;

input smoke cycle status count;

cards;

0 1 1 198

0 2 1 107

0 3 1 55

0 4 1 38

0 5 1 18

0 6 1 22

..........................................

1 10 1 1

1 11 1 1

1 12 1 3

1 12 0 7

;

proc phreg;

model cycle*status(0) = smoke /ties=breslow; /* default */

freq count;

proc phreg;

model cycle*status(0) = smoke /ties=discrete;

freq count;

proc phreg;

model cycle*status(0) = smoke /ties=exact;

freq count;

proc phreg;

model cycle*status(0) = smoke /ties=efron;

freq count;
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SAS Output for Fecundability study:

Accounting for Ties

***************************************************************************

Ties Handling: BRESLOW

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

SMOKE 1 -0.329054 0.11412 8.31390 0.0039 0.720

***************************************************************************

Ties Handling: DISCRETE

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

SMOKE 1 -0.461246 0.13248 12.12116 0.0005 0.630

***************************************************************************

Ties Handling: EXACT

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

SMOKE 1 -0.391548 0.11450 11.69359 0.0006 0.676

***************************************************************************

Ties Handling: EFRON

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

SMOKE 1 -0.387793 0.11402 11.56743 0.0007 0.679

***************************************************************************

For this particular dataset, does it seem like it

would be important to consider the effect of tied

failure times? Which method would be best?
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Stata Commands for PH Model with Ties:

Stata also offers four options for adjustments with tied data:

• breslow (default)

• efron
• exactp (same as the “discrete” option in SAS)

• exactm - an exact marginal likelihood calculation

(different than the “exact” option in SAS)

Fecundability Data Example:

. stcox smoker, efron nohr

failure _d: status

analysis time _t: cycle

Iteration 0: log likelihood = -3113.5313

Iteration 1: log likelihood = -3107.3102

Iteration 2: log likelihood = -3107.2464

Iteration 3: log likelihood = -3107.2464

Refining estimates:

Iteration 0: log likelihood = -3107.2464

Cox regression -- Efron method for ties

No. of subjects = 586 Number of obs = 586

No. of failures = 567

Time at risk = 1844

LR chi2(1) = 12.57

Log likelihood = -3107.2464 Prob > chi2 = 0.0004

------------------------------------------------------------------------------

_t |

_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

smoker | -.3877931 .1140202 -3.401 0.001 -.6112685 -.1643177

------------------------------------------------------------------------------
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A special case: the two-sample problem

Previously, we derived the logrank test from an intuitive per-

spective, assuming that we have (X01, δ01) . . . (X0n0
, δ0n0

) from

group 0 and (X11, δ11), . . . , (X1n1
, δ1n1

) from group 1.

Just as a χ2 test for binary data can be derived from a logistic

model, we will see here that the logrank test can be derived

as a special case of the Cox Proportional Hazards model.

First, let’s re-define our notation in terms of (Xi, δi, Zi):

(X01, δ01), . . . , (X0n0
, δ0n0

) =⇒ (X1, δ1, 0), . . . , (Xn0, δn0, 0)

(X11, δ11), . . . , (X1n1
, δ1n1

) =⇒ (Xn0+1, δn0+1, 1), . . . , (Xn0+n1, δn0+n1, 1)

In other words, we have n0 rows of data (Xi, δi, 0) for the

group 0 subjects, then n1 rows of data (Xi, δi, 1) for the

group 1 subjects.

Using the proportional hazards formulation, we have

λ(t;Z) = λ0(t) e
βZ

Group 0 hazard: λ0(t)

Group 1 hazard: λ0(t) e
β
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The log-partial likelihood is:

logL(β) = log



K∏

j=1

eβZj

∑
`∈R(τj) e

βZ`




=
K∑

j=1


βZj − log[

∑

`∈R(τj)
eβZ`]




Taking the derivative with respect to β, we get:

U(β) =
∂

∂β
`(β)

=
n∑

j=1
δj


Zj −

∑
`∈R(τj)Z`e

βZ`

∑
`∈R(τj) e

βZ`




=
n∑

j=1
δj(Zj − Z̄j)

where Z̄j =

∑
`∈R(τj)Z`e

βZ`

∑
`∈R(τj) e

βZ`

U(β) is called the “score”.
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As we discussed earlier in the class, one useful form of a

likelihood-based test is the score test. This is obtained by

using the score U(β) evaluated at Ho as a test statistic.

Let’s look more closely at the form of the score:

δjZj observed number of deaths in group 1 at τj

δjZ̄j expected number of deaths in group 1 at τj

Why? Under H0 : β = 0, Z̄j is simply the number of

individuals from group 1 in the risk set at time τj (call this

r1j), divided by the total number in the risk set at that time

(call this rj). Thus, Z̄j approximates the probability that

given there is a death at τj, it is from group 1.

Thus, the score statistic is of the form:
n∑

j=1
(Oj − Ej)

When there are ties, the likelihood has to be replaced by one

that allows for ties.

In SAS or Stata:

discrete/exactp → Mantel-Haenszel logrank test

breslow → linear rank version of the logrank test
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I already showed you the equivalence of the linear rank lo-

grank test and the Breslow (default) Cox PH model in SAS

(p.24-25)

Here is the output from SAS for the leukemia data using the

method=discrete option:

Logrank test with proc lifetest - strata statement

Test of Equality over Strata

Pr >

Test Chi-Square DF Chi-Square

Log-Rank 16.7929 1 0.0001

Wilcoxon 13.4579 1 0.0002

-2Log(LR) 16.4852 1 0.0001

The PHREG Procedure

Data Set: WORK.LEUKEM

Dependent Variable: FAILTIME Time to Relapse

Censoring Variable: FAIL

Censoring Value(s): 0

Ties Handling: DISCRETE

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 165.339 149.086 16.252 with 1 DF (p=0.0001)

Score . . 16.793 with 1 DF (p=0.0001)

Wald . . 14.132 with 1 DF (p=0.0002)
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More on the Cox PH model

I. Confidence intervals and hypothesis tests

– Two methods for confidence intervals

– Wald tests and likelihood ratio tests

– Interpretation of parameter estimates

– An example with real data from an AIDS

clinical trial

II. Predicted survival under proportional hazards

III. Predicted medians and P-year survival
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I. Constructing Confidence intervals and tests for

the Hazard Ratio (see H & L 4.2, Collett 3.4):

Many software packages provide estimates of β, but the haz-

ard ratio HR= exp(β) is usually the parameter of interest.

We can use the delta method to get standard errors for

exp(β̂):

V ar(ĤR) = V ar(exp(β̂)) = exp(2β̂)V ar(β̂)

Constructing confidence intervals for exp(β)

Two options: (assuming that β is a scalar)

I. Using se(exp β̂) obtained above via the delta method as

se(exp β̂) =
√
[V ar(exp(β̂))], calculate the endpoints as:

[L,U ] = [ÔR− 1.96 se(ÔR), ÔR + 1.96 se(ÔR)]

II. Form a confidence interval for β̂, and then exponentiate

the endpoints.

[L,U ] = [eβ̂−1.96se(β̂), eβ̂+1.96se(β̂)]

Which approach do you think would be the most

preferable?
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Hypothesis Tests:

For each covariate of interest, the null hypothesis is

Ho : HRj = 1⇔ βj = 0

A Wald test2 of the above hypothesis is constructed as:

Z =
β̂j

se(β̂j)
or χ2 =




β̂j

se(β̂j)




2

This test for βj = 0 assumes that all other terms in the

model are held fixed.

Note: if we have a factor A with a levels, then we would need

to construct a χ2 test with (a − 1) df, using a test statistic

based on a quadratic form:

χ2(a−1) = β̂
′
AV ar(β̂A)

−1β̂A

where βA = (β2, ..., βa)
′ are the (a − 1) coefficients cor-

responding to Z2, ..., Za (or Z1, ..., Za−1, depending on the

reference group).

2The first follows a normal distribution, and the second follows a χ2 with 1 df.
STATA gives the Z statistic, while SAS gives the χ2

1
test statistic (the p-values

are also given, and don’t depend on which form, Z or χ2, is provided)
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Likelihood Ratio Tests:

Suppose there are (p + q) explanatory variables measured:

Z1, . . . , Zp, Zp+1, . . . , Zp+q

and proportional hazards are assumed.

Consider the following models:

•Model 1: (contains only the first p covariates)

λi(t,Z)

λ0(t)
= exp(β1Z1 + · · · + βpZp)

•Model 2: (contains all (p + q) covariates)

λi(t,Z)

λ0(t)
= exp(β1Z1 + · · · + βp+qZp+q)

These are nested models. For such nested models, we can

construct a likelihood ratio test of

H0 : βp+1 = · · · = βp+q = 0

as:

χ2LR = −2
[
log(L̂(1))− log(L̂(2))

]

Under Ho, this test statistic is approximately distributed as

χ2 with q df.
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Some examples using the Stata stcox command:

Model 1:

. use mac

. stset mactime macstat

. stcox karnof rif clari, nohr

failure _d: macstat

analysis time _t: mactime

Cox regression -- Breslow method for ties

No. of subjects = 1151 Number of obs = 1151

No. of failures = 121

Time at risk = 489509

LR chi2(3) = 32.01

Log likelihood = -754.52813 Prob > chi2 = 0.0000

-----------------------------------------------------------------------

_t |

_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+-------------------------------------------------------------

karnof | -.0448295 .0106355 -4.215 0.000 -.0656747 -.0239843

rif | .8723819 .2369497 3.682 0.000 .4079691 1.336795

clari | .2760775 .2580215 1.070 0.285 -.2296354 .7817903

-----------------------------------------------------------------------
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Model 2:

. stcox karnof rif clari cd4, nohr

failure _d: macstat

analysis time _t: mactime

Cox regression -- Breslow method for ties

No. of subjects = 1151 Number of obs = 1151

No. of failures = 121

Time at risk = 489509

LR chi2(4) = 63.74

Log likelihood = -738.66225 Prob > chi2 = 0.0000

-------------------------------------------------------------------------

_t |

_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

karnof | -.0368538 .0106652 -3.456 0.001 -.0577572 -.0159503

rif | .880338 .2371111 3.713 0.000 .4156089 1.345067

clari | .2530205 .2583478 0.979 0.327 -.253332 .7593729

cd4 | -.0183553 .0036839 -4.983 0.000 -.0255757 -.0111349

-------------------------------------------------------------------------

214



Notes:

• If we omit the nohr option, we will get the estimated

hazard ratio along with 95% confidence intervals using

Method II (i.e., forming a CI for the log HR (beta), and

then exponentiating the bounds)

------------------------------------------------------------------------

_t |

_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------

karnof | .9638171 .0102793 -3.456 0.001 .9438791 .9841762

rif | 2.411715 .5718442 3.713 0.000 1.515293 3.838444

clari | 1.28791 .3327287 0.979 0.327 .7762102 2.136936

cd4 | .9818121 .0036169 -4.983 0.000 .9747486 .9889269

------------------------------------------------------------------------

• We can also compute the hazard ratio ourselves, by ex-

ponentiating the coefficients:

HRcd4 = exp(−0.01835) = 0.98

Why is this HR so close to 1, and yet still

highly significant?

What is the interpretation of this HR?

• The likelihood ratio test for the effect of CD4 is twice

the difference in minus log-likelihoods between the two

models:

χ2LR = 2 ∗ (754.533− (738.66)) = 31.74

How does this test statistic compare to the Wald χ2 test?
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• In the mac study, there were three treatment arms (rif,

clari, and the rif+clari combination). Because we have

only included the rif and clari effects in the model,

the combination therapy is the “reference” group.

• We can conduct an overall test of treatment using the

test command in Stata:

. test rif clari

( 1) rif = 0.0

( 2) clari = 0.0

chi2( 2) = 17.01

Prob > chi2 = 0.0002

for a 2 df Wald chi-square test of whether both treatment

coefficients are equal to 0. This test command can be

used to conduct an overall test for any number of effects.

• The test command can also be used to test whether

there is a difference between the rif and clari treat-

ment arms:

. test rif=clari

( 1) rif - clari = 0.0

chi2( 1) = 8.76

Prob > chi2 = 0.0031
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Some examples using SAS PROC PHREG

proc phreg data=alloi;

model dthtime*dthstat(0)=mlogrna cd4grp1 cd4grp2 combther

/ risklimits;

cd4level: test cd4grp1, cd4grp2;

title1 ’Proportional hazards regression model for time to Death’;

title2 ’Baseline viral load and CD4 predictors’;

proc phreg data=alloi;

model dthtime*dthstat(0)=mlogrna cd4grp1 cd4grp2 combther decrs8 incrs8

/ risklimits;

cd4level: test cd4grp1, cd4grp2;

wk8resp: test decrs8, incrs8;

Notes:

• The “risklimits” option on the model statement provides 95%
confidence intervals using Method II from page 2. (i.e., forming
a CI for the log HR (beta), and then exponentiating the bounds)

• The “test” statement has the following form:
Label: test varname1, varname2, ..., varnamek;

for a k df Wald chi-square test of whether the k coefficients are
all equal to 0.

• We can use the same approach described by Freedman to assess
the effects of intermediate endpoints (incrs8, decrs8) on the
treatment effect (i.e., assess their use as surrogate markers).
The percentage of treatment effect explained, γ, is estimated
by:

γ̂ = 1− β̂trt,M2

β̂trt,M1

where M1 is the model without the intermediate endpoint and
M2 is the model with the marker.
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OUTPUT FROM PROC PHREG (Model 1)

Proportional hazards regression model for time to Death

Baseline viral load and CD4 predictors

Data Set: WORK.ALLOI

Dependent Variable: DTHTIME Time to death (days)

Censoring Variable: DTHSTAT Death status (1=died,0=censored)

Censoring Value(s): 0

Ties Handling: BRESLOW

Summary of the Number of

Event and Censored Values

Percent

Total Event Censored Censored

690 89 601 87.10

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1072.543 924.167 148.376 with 4 DF (p=0.0001)

Score . . 189.702 with 4 DF (p=0.0001)

Wald . . 127.844 with 4 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr >

Variable DF Estimate Error Chi-Square Chi-Square

MLOGRNA 1 0.833237 0.17808 21.89295 0.0001

CD4GRP1 1 2.364612 0.32436 53.14442 0.0001

CD4GRP2 1 1.171137 0.34434 11.56739 0.0007

COMBTHER 1 -0.497161 0.24389 4.15520 0.0415
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OUTPUT FROM PROC PHREG, continued

Output from “risklimits” and “test” statements

Analysis of Maximum Likelihood Estimates

Conditional Risk Ratio and

95% Confidence Limits

Risk

Variable Ratio Lower Upper Label

MLOGRNA 2.301 1.623 3.262 log baseline rna (roche assay)

CD4GRP1 10.640 5.634 20.093 CD4<=100

CD4GRP2 3.226 1.643 6.335 100<CD4<=200

COMBTHER 0.608 0.377 0.981 Combination therapy with AZT/ddI/ddC/Nvp

Linear Hypotheses Testing

Wald Pr >

Label Chi-Square DF Chi-Square

CD4LEVEL 55.0794 2 0.0001
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OUTPUT FROM PROC PHREG, (Model 2)

Proportional hazards regression model for time to Death

Baseline viral load and CD4 predictors

Data Set: WORK.ALLOI

Dependent Variable: DTHTIME Time to death (days)

Censoring Variable: DTHSTAT Death status (1=died,0=censored)

Censoring Value(s): 0

Ties Handling: BRESLOW

Summary of the Number of

Event and Censored Values

Percent

Total Event Censored Censored

690 89 601 87.10

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1072.543 912.009 160.535 with 6 DF (p=0.0001)

Score . . 198.537 with 6 DF (p=0.0001)

Wald . . 132.091 with 6 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr >

Variable DF Estimate Error Chi-Square Chi-Square

MLOGRNA 1 0.893838 0.18062 24.48880 0.0001

CD4GRP1 1 2.023005 0.33594 36.26461 0.0001

CD4GRP2 1 1.001046 0.34907 8.22394 0.0041

COMBTHER 1 -0.456506 0.24687 3.41950 0.0644

DECRS8 1 -0.410919 0.26383 2.42579 0.1194

INCRS8 1 -0.834101 0.32884 6.43367 0.0112
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OUTPUT FROM PROC PHREG, continued

Output from “risklimits” and “test” statements

Analysis of Maximum Likelihood Estimates

Conditional Risk Ratio and

95% Confidence Limits

Risk

Variable Ratio Lower Upper Label

MLOGRNA 2.444 1.716 3.483 log baseline rna (roche assay)

CD4GRP1 7.561 3.914 14.606 CD4<=100

CD4GRP2 2.721 1.373 5.394 100<CD4<=200

COMBTHER 0.633 0.390 1.028 Combination therapy with AZT/ddI/ddC/Nvp

DECRS8 0.663 0.395 1.112 Decrease>=0.5 log rna at week 8?

INCRS8 0.434 0.228 0.827 Increase>=50 CD4 cells, week 8?

Linear Hypotheses Testing

Wald Pr >

Label Chi-Square DF Chi-Square

CD4LEVEL 37.6833 2 0.0001

WK8RESP 10.4312 2 0.0054

The percentage of treatment effect explained by including

the RNA and CD4 response to treatment by Week 8 is:

γ̂ = 1− −0.456

−0.497
≈ 0.08

or 8%. The percentage of treatment effect on time to first

opportunistic infection or death is much higher (about 24%).
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II. Predicted Survival using PH

The Cox PH model says that λi(t,Z) = λ0(t) exp(βZ).

What does this imply about the survival function, Sz(t), for

the i-th individual with covariates Zi?

For the baseline (reference) group, we have:

S0(t) = e−
∫ t
0 λ0(u)du = e−Λ0(t)

This is by definition of a survival function (see intro notes).

For the i-th patient with covariates Zi, we have:

Si(t) = e−
∫ t
0 λi(u)du = e−Λi(t)

= e−
∫ t
0 λ0(u) exp(βZi)du

= e− exp(βZi)
∫ t
0 λ0(u)du

=
[

e−
∫ t
0 λ0(u)du

]exp(βZi)

= [S0(t)]
exp(βZi)

(This uses the mathematical relationship [eb]a = eab)
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Say we are interested in the survival pattern for single males

in the nursing home study. Based on the previous formula,

if we had an estimate for the survival function in the refer-

ence group, i.e., Ŝ0(t), we could get estimates of the survival

function for any set of covariates Zi.

How can we estimate the survival function, S0(t)?

We could use the KM estimator, but there are a few disad-

vantages of that approach:

• It would only use the survival times for observations con-

tained in the reference group, and not all the rest of the

survival times.

• It would tend to be somewhat choppy, since it would

reflect the smaller sample size of the reference group.

• It’s possible that there are no subjects in the dataset

who are in the “reference” group (ex. say covariates are

age and sex; there is no one of age=0 in our dataset).
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Instead, we will use a baseline hazard estimator which takes

advantage of the proportional hazards assumption to get a

smoother estimate.

Ŝi(t) = [Ŝ0(t)]
exp(

̂
βZi)

Using the above formula, we substitute β̂ based on fitting the

Cox PH model, and calculate Ŝ0(t) by one of the following

approaches:

• Breslow estimator (Stata)

• Kalbfleisch/Prentice estimator (SAS)
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(1) Breslow Estimator:

Ŝ0(t) = exp−Λ̂0(t)

where Λ̂0(t) is the estimated cumulative baseline hazard:

Λ̂(t) =
∑

j:τj<t




dj
∑
k∈R(τj) exp(β1Z1k + . . . βpZpk)




(2) Kalbfleisch/Prentice Estimator

Ŝ0(t) =
∏

j:τj<t
α̂j

where α̂j, j = 1, ...d are the MLE’s obtained by assum-

ing that S(t;Z) satisfies

S(t;Z) = [S0(t)]
eβZ =




∏

j:τj<t
αj




eβZ

=
∏

j:τj<t
αe

βZ

j
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Breslow Estimator: further motivation

The Breslow estimator is based on extending the concept

of the Nelson-Aalen estimator to the proportional hazards

model.

Recall that for a single sample with no covariates, theNelson-

Aalen Estimator of the cumulative hazard is:

Λ̂(t) =
∑

j:τj<t

dj
rj

where dj and rj are the number of deaths and the number

at risk, respectively, at the j-th death time.

When there are covariates and assuming the PHmodel above,

one can generalize this to estimate the cumulative baseline

hazard by adjusting the denominator:

Λ̂(t) =
∑

j:τj<t




dj
∑
k∈R(τj) exp(β1Z1k + . . . βpZpk)




Heuristic: The expected number of failures in (t, t+ δt) is

dj ≈ δt× ∑

k∈R(t)
λ0(t)exp(zkβ̂)

Hence,

δt× λ0(tj) ≈
dj

∑
k∈R(t) exp(zkβ̂)

226



Kalbfleisch/Prentice Estimator: further motivation

This method is analogous to the Kaplan-Meier Estimator.

Consider a discrete time model with hazard (1− αj) at the

j-th observed death time.

(Note: we use αj = (1− λj) to simplify the algebra!)

Thus, for someone with z=0, the survivorship function is

S0(t) =
∏

j:τj<t
αj

and for someone with Z 6= 0, it is:

S(t;Z) = S0(t)
eβZ =




∏

j:τj<t
αj




eβZ

=
∏

j:τj<t
αe

βZ

j

The likelihood contributions under this model are:

• for someone censored at t: S(t;Z)

• for someone who fails at tj:

S(t(j−1);Z)− S(tj;Z) =



∏

k<j
αj




eβz

[1− αe
βZ

j ]

The solution for αj satisfies:

∑

k∈Dj

exp(Zkβ)

1− α
exp(Zkβ)
j

=
∑

k∈Rj

exp(Zkβ)

(Note what happens when Z = 0)

227



Obtaining Ŝ0(t) from software packages

• Stata provides the Breslow estimator of S0(t;Z), but not

predicted survivals at specified covariate values..... you

have to construct these yourself

• SAS uses the Kalbfleisch/Prentice estimator of the base-

line hazard, and can provide estimates of survival at ar-

bitrary values of the covariates with a little bit of pro-

gramming.

In practice, they are incredibly close! (see Fleming and

Harrington 1984, Communications in Statistics)
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Using Stata to Predict Survival

The Stata command basesurv calculates the predicted sur-

vival values for the reference group, i.e., those subjects with

all covariates=0.

(1) Baseline Survival:

To obtain the estimated baseline survival Ŝ0(t), follow

the example below (for the nursing home data):

. use nurshome

. stset los fail

. stcox married health, basesurv(prsurv)

. sort los

. list los prsurv
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Estimating the Baseline Survival with Stata

los prsurv

1. 1 .99252899

2. 1 .99252899

3. 1 .99252899

4. 1 .99252899

5. 1 .99252899

.

.

.

22. 1 .99252899

23. 2 .98671824

24. 2 .98671824

25. 2 .98671824

26. 2 .98671824

27. 2 .98671824

28. 2 .98671824

29. 2 .98671824

30. 2 .98671824

31. 2 .98671824

32. 2 .98671824

33. 2 .98671824

34. 2 .98671824

35. 2 .98671824

36. 2 .98671824

37. 2 .98671824

38. 2 .98671824

39. 2 .98671824

40. 3 .98362595

41. 3 .98362595

.

.

.

Stata creates a predicted baseline survival estimate for

every observed event time in the dataset, even if there

are duplicates.
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(2) Predicted Survival for Subgroups

To obtain the estimated survival Ŝi(t) for any other sub-

group (i.e., not the reference or baseline group), follow

the Stata commands below:

. predict betaz, xb

. gen newterm=exp(betaz)

. gen predsurv=prsurv^newterm

. sort married health los

. list married health los predsurv
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Predicting Survival for Subgroups with Stata

married health los predsurv

1. 0 2 1 .9896138

8. 0 2 2 .981557

11. 0 2 3 .9772769

13. 0 2 4 .9691724

16. 0 2 5 .9586483

................................................................

300. 0 3 1 .9877566

302. 0 3 2 .9782748

304. 0 3 3 .9732435

305. 0 3 4 .9637272

312. 0 3 5 .9513916

................................................................

768. 0 4 1 .9855696

777. 0 4 2 .9744162

779. 0 4 3 .9685058

781. 0 4 4 .9573418

785. 0 4 5 .9428996

.

.

.

1468. 1 4 1 .9806339

1469. 1 4 2 .9657326

1472. 1 4 3 .9578599

1473. 1 4 5 .9239448

................................................................

1559. 1 5 1 .9771894

1560. 1 5 2 .9596928

1562. 1 5 3 .9504684

1564. 1 5 4 .9331349
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Using SAS to Predict Survival

The SAS command BASELINE calculates the predicted sur-

vival values at the event times for a given set of covariate

values.

(1) To get the estimated baseline survival Ŝ0(t), create a

dataset with 0’s for values of all covariates in the model

(2) To get the estimated survival Ŝi(t) for any other sub-

group (i.e., not the reference or baseline group), create a

data set which inputs the baseline values of the covari-

ates for the subgroup of interest.

For either case, we then supply the corresponding dataset

name to the BASELINE command under PROC PHREG.

By giving the input dataset several lines, each corresponding

to a different combination of covariate values, we can com-

pute predicted survival values for more than one group at

once.
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(1) Baseline Survival Estimate

(note that the baseline survival function does not correspond

to any observations in our sample, since health status values

range from 2-5)

*** Estimating Baseline Survival Function under PH;

data inrisks;

input married health;

cards;

0 0

;

proc phreg data=pop out=survres;

model los*fail(0)=married health;

baseline covariates=inrisks out=outph survival=ps/nomean;

proc print data=outph;

title1 ’Nursinghome data: Baseline Survival Estimate’;
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Estimating the Baseline Survival with SAS

Nursinghome data: Baseline Survival Estimate

OBS MARRIED HEALTH LOS PS

1 0 0 0 1.00000

2 0 0 1 0.99253

3 0 0 2 0.98672

4 0 0 3 0.98363

5 0 0 4 0.97776

6 0 0 5 0.97012

7 0 0 6 0.96488

8 0 0 7 0.95856

9 0 0 8 0.95361

10 0 0 9 0.94793

11 0 0 10 0.94365

12 0 0 11 0.93792

13 0 0 12 0.93323

14 0 0 13 0.92706

15 0 0 14 0.92049

16 0 0 15 0.91461

17 0 0 16 0.91017

18 0 0 17 0.90534

19 0 0 18 0.90048

20 0 0 19 0.89635

21 0 0 20 0.89220

22 0 0 21 0.88727

23 0 0 22 0.88270

.

.

.
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(2) Predicted Survival Estimate for Subgroup

The following SAS commands will generate the predicted

survival probability for each combination of covariates, at

every observed event time in the dataset.

*** Estimating Baseline Survival Function under PH;

data inrisks;

input married health;

cards;

0 2

0 5

1 2

1 5

;

proc phreg data=pop out=survres;

model los*fail(0)=married health;

baseline covariates=inrisks out=outph survival=ps/nomean;

proc print data=outph;

title1 ’Nursinghome data: predicted survival by subgroup’;
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Survival Estimates by Marital and Health Status

Nursinghome data: Predicted Survival by Subgroup

OBS MARRIED HEALTH LOS PS

1 0 2 0 1.00000

2 0 2 1 0.98961

3 0 2 2 0.98156

4 0 2 3 0.97728

................................................................

171 0 2 184 0.50104

172 0 2 185 0.49984

................................................................

396 0 5 0 1.00000

397 0 5 1 0.98300

398 0 5 2 0.96988

399 0 5 3 0.96295

................................................................

474 0 5 78 0.50268

475 0 5 80 0.49991

................................................................

791 1 2 0 1.00000

792 1 2 1 0.98605

793 1 2 2 0.97527

794 1 2 3 0.96955

................................................................

897 1 2 108 0.50114

898 1 2 109 0.49986

................................................................

1186 1 5 0 1.00000

1187 1 5 1 0.97719

1188 1 5 2 0.95969

1189 1 5 3 0.95047

................................................................

1233 1 5 47 0.50519

1234 1 5 48 0.49875
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We can get a visual picture of what the propor-

tional hazards assumption implies by looking at

these four subgroups

S u b g r o u p S i n g l e ,  h e a l t h y S i n g l e ,  u n h e a l t h
M a r r i e d ,  h e a l t h y M a r r i e d ,  u n h e a l t

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

L O S
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
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III. Predicted medians and P-year survival

Predicted Medians

Suppose we want to find the predicted median survival for an

individual with a specified combination of covariates (e.g., a

single person with health status 5).

Three possible approaches:

(1) Calculate the median from the subset of individuals with

the specified covariate combination (using KM approach)

(2) Generate predicted survival curves for each combination

of covariates, and obtain the medians directly

OBS MARRIED HEALTH LOS PREDSURV

171 0 2 184 0.50104

172 0 2 185 0.49984

474 0 5 78 0.50268

475 0 5 80 0.49991

897 1 2 108 0.50114

898 1 2 109 0.49986

1233 1 5 47 0.50519

1234 1 5 48 0.49875

Recall that previously we defined the median as the

smallest value of t for which Ŝ(t) ≤ 0.5, so the medians

from above would be 185, 80, 109, and 48 days for single

healthy, single unhealthy, married healthy, and married

unhealthy, respectively.
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(3) Generate the predicted survival curve from the estimated

baseline hazard, as follows:

We want the estimated median (M) for an individual

with covariates Zi. We know

S(M ;Z) = [S0(M)]e
βZi = 0.5

Hence, M satisfies (multiplying both sides by e−βZi):

S0(M) = [0.5]e
−βZ

Ex. Suppose we want to estimate the median survival

for a single unhealthy subject from the nursing home

data. The reciprocal of the hazard ratio for unhealthy

(health=5) is: e−0.165∗5 = 0.4373, (where β̂ = 0.165 for

health status)

So, we want M such that S0(M) = (0.5)0.4373 = 0.7385

So the median for single unhealthy subject is the 73.8th

percentile of the baseline group.

OBS MARRIED HEALTH LOS PREDSURV

79 0 0 78 0.74028

80 0 0 80 0.73849

81 0 0 81 0.73670

So the estimated median would still be 80 days. Note: simi-

lar logic can be followed to estimate other quantiles besides

the median.
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Estimating P-year survival

Suppose we want to find the P-year survival rate for an indi-

vidual with a specified combination of covariates, Ŝ(P ;Zi)

For an individual with Zi = 0, the P-year survival can be

obtained from the baseline survivorship function, Ŝ0(P )

For individuals with Zi 6= 0, it can be obtained as:

Ŝ(P ;Zi) = [Ŝ0(P )]e
β̂Zi

Notes:

• Although I say “P-year” survival, the units of time in a

particular dataset may be days, weeks, or months. The

answer here will be in the same units of time as the

original data.

• If β̂Zi is positive, then the P-year survival rate for the i-

th individual will be lower than for a baseline individual.

Why is this true?
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Model Selection in Survival Analysis

Suppose we have a censored survival time that we want to

model as a function of a (possibly large) set of covariates.

Two important questions are:

• How to decide which covariates to use

• How to decide if the final model fits well

To address these topics, we’ll consider a new example:

Survival of Atlantic Halibut - Smith et al

Survival Tow Diff Length Handling Total
Obs Time Censoring Duration in of Fish Time log(catch)
# (min) Indicator (min.) Depth (cm) (min.) ln(weight)
100 353.0 1 30 15 39 5 5.685
109 111.0 1 100 5 44 29 8.690
113 64.0 0 100 10 53 4 5.323
116 500.0 1 100 10 44 4 5.323
...

Hosmer & Lemeshow
Chapter 5: Model Development

Chapter 6: Assessment of Model Adequacy

(sections 6.1-6.2)
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Process of Model Selection

Collett (Section 3.6) has an excellent discussion of various

approaches for model selection. In practice, model selection

proceeds through a combination of

• knowledge of the science

• trial and error, common sense

• automatic variable selection procedures

– forward selection

– backward selection

– stepwise selection

Many advocate the approach of first doing a univariate anal-

ysis to “screen” out potentially significant variables for con-

sideration in the multivariate model (see Collett).

Let’s start with this approach.
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Univariate KM plots of Atlantic Halibut survival

(continuous variables have been dichotomized)
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Which covariates look like they might be important?
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Automatic Variable selection procedures

in Stata and SAS

Statistical Software:

• Stata: sw command before cox command

• SAS: selection= option on model statement of

proc phreg

Options:

(1) forward

(2) backward

(3) stepwise

(4) best subset (SAS only, using score option)

One drawback of these options is that they can only handle

variables one at a time. When might that be a disadvantage?
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Collett’s Model Selection Approach

Section 3.6.1

This approach assumes that all variables are considered to

be on an equal footing, and there is no a priori reason to

include any specific variables (like treatment).

Approach:

(1) Fit a univariate model for each covariate, and identify

the predictors significant at some level p1, say 0.20.

(2) Fit a multivariate model with all significant univariate

predictors, and use backward selection to eliminate non-

significant variables at some level p2, say 0.10.

(3) Starting with final step (2) model, consider each of the

non-significant variables from step (1) using forward se-

lection, with significance level p3, say 0.10.

(4) Do final pruning of main-effects model (omit variables

that are non-significant, add any that are significant),

using stepwise regression with significance level p4. At

this stage, you may also consider adding interactions be-

tween any of the main effects currently in the model,

under the hierarchical principle.

Collett recommends using a likelihood ratio test for all vari-

able inclusion/exclusion decisions.
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Stata Command for Forward Selection:

Forward Selection =⇒ use pe(α) option, where α is the

significance level for entering a variable into the model.

. use halibut

. stset survtime censor

. sw cox survtime towdur depth length handling logcatch,

> dead(censor) pe(.05)

begin with empty model

p = 0.0000 < 0.0500 adding handling

p = 0.0000 < 0.0500 adding logcatch

p = 0.0010 < 0.0500 adding towdur

p = 0.0003 < 0.0500 adding length

Cox Regression -- entry time 0 Number of obs = 294

chi2(4) = 84.14

Prob > chi2 = 0.0000

Log Likelihood = -1257.6548 Pseudo R2 = 0.0324

---------------------------------------------------------------------------

survtime |

censor | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+-----------------------------------------------------------------

handling | .0548994 .0098804 5.556 0.000 .0355341 .0742647

logcatch | -.1846548 .051015 -3.620 0.000 .2846423 -.0846674

towdur | .5417745 .1414018 3.831 0.000 .2646321 .818917

length | -.0366503 .0100321 -3.653 0.000 -.0563129 -.0169877

---------------------------------------------------------------------------
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Stata Command for Backward Selection:

Backward Selection =⇒ use pr(α) option, where α is

the significance level for a variable to remain in the model.

. sw cox survtime towdur depth length handling logcatch,

> dead(censor) pr(.05)

begin with full model

p = 0.1991 >= 0.0500 removing depth

Cox Regression -- entry time 0 Number of obs = 294

chi2(4) = 84.14

Prob > chi2 = 0.0000

Log Likelihood = -1257.6548 Pseudo R2 = 0.0324

--------------------------------------------------------------------------

survtime |

censor | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+----------------------------------------------------------------

towdur | .5417745 .1414018 3.831 0.000 .2646321 .818917

logcatch | -.1846548 .051015 -3.620 0.000 -.2846423 -.0846674

length | -.0366503 .0100321 -3.653 0.000 -.0563129 -.0169877

handling | .0548994 .0098804 5.556 0.000 .0355341 .0742647

--------------------------------------------------------------------------
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Stata Command for Stepwise Selection:

Stepwise Selection =⇒ use both pe(.) and pr(.) options,

with pr(.) > pe(.)

. sw cox survtime towdur depth length handling logcatch,

> dead(censor) pr(0.10) pe(0.05)

begin with full model

p = 0.1991 >= 0.1000 removing depth

Cox Regression -- entry time 0 Number of obs = 294

chi2(4) = 84.14

Prob > chi2 = 0.0000

Log Likelihood = -1257.6548 Pseudo R2 = 0.0324

-------------------------------------------------------------------------

survtime |

censor | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

towdur | .5417745 .1414018 3.831 0.000 .2646321 .818917

handling | .0548994 .0098804 5.556 0.000 .0355341 .0742647

length | -.0366503 .0100321 -3.653 0.000 -.0563129 -.0169877

logcatch | -.1846548 .051015 -3.620 0.000 -.2846423 -.0846674

-------------------------------------------------------------------------

It is also possible to do forward stepwise regression by in-

cluding both pr(.) and pe(.) options with forward option
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SAS programming statements for model selection

data fish;

infile ’fish.dat’;

input ID SURVTIME CENSOR TOWDUR DEPTH LENGTH HANDLING LOGCATCH;

run;

title ’Survival of Atlantic Halibut’;

*** automatic variable selection procedures;

proc phreg data=fish;

model survtime*censor(0)= towdur depth length handling logcatch

/selection=stepwise slentry=0.1 slstay=0.1 details;

title2 ’Stepwise selection’;

run;

proc phreg data=fish;

model survtime*censor(0)= towdur depth length handling logcatch

/selection=forward slentry=0.1 details;

title2 ’Forward selection’;

run;

proc phreg data=fish;

model survtime*censor(0)= towdur depth length handling logcatch

/selection=backward slstay=0.1 details;

title2 ’Backward selection’;

run;

proc phreg data=fish;

model survtime*censor(0)= towdur depth length handling logcatch

/selection=score;

title2 ’Best subsets selection’;

run;
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Final model for stepwise selection approach

Survival of Atlantic Halibut

Stepwise selection

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

TOWDUR 1 0.007740 0.00202 14.68004 0.0001 1.008

LENGTH 1 -0.036650 0.01003 13.34660 0.0003 0.964

HANDLING 1 0.054899 0.00988 30.87336 0.0001 1.056

LOGCATCH 1 -0.184655 0.05101 13.10166 0.0003 0.831

Analysis of Variables Not in the Model

Score Pr >

Variable Chi-Square Chi-Square

DEPTH 1.6661 0.1968

Residual Chi-square = 1.6661 with 1 DF (p=0.1968)

NOTE: No (additional) variables met the 0.1 level for entry into the

model.

Summary of Stepwise Procedure

Variable Number Score Wald Pr >

Step Entered Removed In Chi-Square Chi-Square Chi-Square

1 HANDLING 1 47.1417 . 0.0001

2 LOGCATCH 2 18.4259 . 0.0001

3 TOWDUR 3 11.0191 . 0.0009

4 LENGTH 4 13.4222 . 0.0002
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Output from PROC SAS “score” option

NUMBER OF SCORE VARIABLES INCLUDED

VARIABLES VALUE IN MODEL

1 47.1417 HANDLING

1 29.9604 TOWDUR

1 12.0058 LENGTH

1 4.2185 DEPTH

1 1.4795 LOGCATCH

---------------------------------

2 65.6797 HANDLING LOGCATCH

2 59.9515 TOWDUR HANDLING

2 56.1825 LENGTH HANDLING

2 51.6736 TOWDUR LENGTH

2 47.2229 DEPTH HANDLING

2 32.2509 TOWDUR LOGCATCH

2 30.6815 TOWDUR DEPTH

2 16.9342 DEPTH LENGTH

2 14.4412 LENGTH LOGCATCH

2 9.1575 DEPTH LOGCATCH

-------------------------------------

3 76.8829 LENGTH HANDLING LOGCATCH

3 76.3454 TOWDUR HANDLING LOGCATCH

3 75.5291 TOWDUR LENGTH HANDLING

3 69.0334 DEPTH HANDLING LOGCATCH

3 60.0340 TOWDUR DEPTH HANDLING

3 56.4207 DEPTH LENGTH HANDLING

3 55.8374 TOWDUR LENGTH LOGCATCH

3 52.4130 TOWDUR DEPTH LENGTH

3 34.7563 TOWDUR DEPTH LOGCATCH

3 24.2039 DEPTH LENGTH LOGCATCH

--------------------------------------------

4 94.0062 TOWDUR LENGTH HANDLING LOGCATCH

4 81.6045 DEPTH LENGTH HANDLING LOGCATCH

4 77.8234 TOWDUR DEPTH HANDLING LOGCATCH

4 75.5556 TOWDUR DEPTH LENGTH HANDLING

4 59.1932 TOWDUR DEPTH LENGTH LOGCATCH

-------------------------------------------------

5 96.1287 TOWDUR DEPTH LENGTH HANDLING LOGCATCH

------------------------------------------------------
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Best multivariate model for all 3 options

Survival of Atlantic Halibut

Best Multivariate Model

The PHREG Procedure

Data Set: WORK.FISH

Dependent Variable: TIME

Censoring Variable: CENSOR

Censoring Value(s): 0

Ties Handling: BRESLOW

Summary of the Number of

Event and Censored Values

Percent

Total Event Censored Censored

294 273 21 7.14

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 2599.449 2515.310 84.140 with 4 DF (p=0.0001)

Score . . 94.006 with 4 DF (p=0.0001)

Wald . . 90.247 with 4 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

TOWDUR 1 0.007740 0.00202 14.68004 0.0001 1.008

LENGTH 1 -0.036650 0.01003 13.34660 0.0003 0.964

HANDLING 1 0.054899 0.00988 30.87336 0.0001 1.056

LOGCATCH 1 -0.184655 0.05101 13.10166 0.0003 0.831
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Notes:

• When the halibut data was analyzed with the forward,

backward and stepwise options, the same final model was

reached. However, this will not always be the case.

• Variables can be forced into the model using the lockterm

option in Stata and the include option in SAS. Any

variables that you want to force inclusion of must be

listed first in your model statement.

• Stata uses the Wald test for both forward and backward

selection, although it has an option to use the likelihood

ratio test instead (lrtest). SAS uses the score test to

decide what variables to add and the Wald test for what

variables to remove.

• If you fit a range of models manually, you can apply the

AIC criteria described by Collett:

minimize AIC = −2 log(L̂) + (α ∗ q)
where q is the number of unknown parameters in the

model and α is typically between 2 and 6 (they suggest

α = 3).

The model is then chosen which minimizes the AIC (sim-

ilar to maximizing log-likelihood, but with a penalty for

number of variables in the model)
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Questions:

• When might we want to force certain variables into the

model?

(1) to examine interactions

(2) to keep main effects in the model

(3) to calculate a score test for a paricular effect

• Would it be possible to get different final models from

SAS and Stata?

• Based on what we’ve seen in the behavior of Wald tests,

would SAS or Stata be more likely to add a covariate to

a model in a forward selection model?

• If we use the AIC criteria with α = 3, how does that

compare to the likelihood ratio test?
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Assessing overall model fit

How do we know if the model fits well?

• Always look at univariate plots (Kaplan-Meiers)

Construct a Kaplan-Meier survival plot for each of the impor-
tant predictors, like the ones shown at the beginning of these
notes.

• Check proportionality assumption (this will be the topic

of the next lecture)

• Check residuals!
(a) generalized (Cox-Snell)

(b) martingale

(c) deviance

(d) Schoenfeld

(e) weighted Schoenfeld
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Residuals for survival data are slightly different than for

other types of models, due to the censoring. Before we start

talking about residuals, we need an important basic result:

Inverse CDF:

If Ti (the survival time for the i-th individual) has

survivorship function Si(t), then the transformed

random variable Si(Ti) (i.e., the survival function

evaluated at the actual survival time Ti) should

be from a uniform distribution on [0, 1], and hence

− log[Si(Ti)] should be from a unit exponential dis-

tribution

More mathematically:

If Ti ∼ Si(t)

then Si(Ti) ∼ Uniform[0, 1]

and − logSi(Ti) ∼ Exponential(1)
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(a) Generalized (Cox-Snell) Residuals:

The implication of the last result is that if the model is cor-

rect, the estimated cumulative hazard for each individual at

the time of their death or censoring should be like a censored

sample from a unit exponential. This quantity is called the

generalized or Cox-Snell residual.

Here is how the generalized residual might be used. Suppose

we fit a PH model:

S(t;Z) = [S0(t)]
exp(βZ)

or, in terms of hazards:

λ(t;Z) = λ0(t) exp(βZ)

= λ0(t) exp(β1Z1 + β2Z2 + · · · + βkZk)

After fitting, we have:

• β̂1, . . . , β̂k
• Ŝ0(t)
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So, for each person with covariates Zi, we can get

Ŝ(t;Zi) = [Ŝ0(t)]
exp(βZi)

This gives a predicted survival probability at each time t in

the dataset (see notes from the previous lecture).

Then we can calculate

Λ̂i = − log[Ŝ(Ti;Zi)]

In other words, first we find the predicted sur-

vival probability at the actual survival time for

an individual, then log-transform it.
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Example: Nursing home data

Say we have

• a single male

• with actual duration of stay of 941 days (Xi = 941)

We compute the entire distribution of survival probabilities

for single males, and obtain Ŝ(941) = 0.260.

− log[Ŝ(941, single male)] = − log(0.260) = 1.347

We repeat this for everyone in our dataset. These should be

like a censored sample from an exponential (1) distribution

if the model fits the data well.

Based on the properties of a unit exponential model

• plotting − log(Ŝ(t)) vs t should yield a straight line

• plotting log[− logS(t)] vs log(t) should yield a straight

line through the origin with slope=1.

To convince yourself of this, start with S(t) = e−λt and

calculate log[− logS(t)]. What do you get for the slope and

intercept?

(Note: this does not necessarily mean that the underlying

distribution of the original survival times is exponential!)
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Obtaining the generalized residuals from Stata

• Fit a Cox PH model with the stcox command, along

with the mgale(newvar) option

• Use the predict command with the csnell option

• Define a survival dataset using the Cox-Snell residuals

as the “pseudo” failure times

• Calculate the estimated KM survival

• Take the log[− log(S(t))] based on the above

• Generate the log of the Cox-Snell residuals

• Graph log[− logS(t)] vs log(t)

. stcox towdur handling length logcatch, mgale(mg)

. predict csres, csnell

. stset csres censor

. sts list

. sts gen survcs=s

. gen lls=log(-log(survcs))

. gen loggenr=log(csres)

. graph lls loggenr
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Allison states “Cox-Snell residuals... are not very informative for

Cox models estimated by partial likelihood.” He instead prefers

deviance residuals (later).
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Obtaining the generalized residuals from SAS

The generalized residuals can be obtained from SAS

after fitting a PH model using the output statement with

the logsurv option.

proc phreg data=fish;

model survtime*censor(0) = towdur handling logcatch length;

output out=phres logsurv=genres;

*** take negative log Pr(survival) at each persons survtime;

data phres;

set phres;

genres=-genres;

*** Now we treat the generalized residuals as the input dataset;

*** to evaluate whether the assumption of an exponential;

*** distribution is appropriate;

proc lifetest data=phres outsurv=survres;

time genres*censor(0);

data survres;

set survres;

lls=log(-log(survival));

loggenr=log(genres);

proc gplot data=survres;

plot lls*loggenr;

run;
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(b) Martingale Residuals

(see Fleming and Harrington, p.164)

Martingale residuals are defined for the i-th individual as:

ri = δi − Λ̂(Ti)

Properties:

• ri’s have mean 0

• range of ri’s is between −∞ and 1

• approximately uncorrelated (in large samples)

• Interpretation: - the residual ri can be viewed as the

difference between the observed number of deaths (0 or

1) for subject i between time 0 and Ti, and the expected

numbers based on the fitted model.
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The martingale residuals can be obtained from Stata

using the mgale option shown previously.

Once the martingale residual is created, you can plot it versus

the predicted log HR (i.e., βZi), or any of the individual

covariates.

. stcox towdur handling length logcatch, mgale(mg)

. predict betaz=xb

. graph mg betaz

. graph mg logcatch

. graph mg towdur

. graph mg handling

. graph mg length

265



The martingale residuals can be obtained from SAS

after fitting a PH model using the output statement with

the resmart option.

Once you have them, you can

• plot against predicted values

• plot against covariates

proc phreg data=fish;

model survtime*censor(0) = towdur handling logcatch length;

output out=phres resmart=mres xbeta=xb;

proc gplot data=phres;

plot mres*xb; /* predicted values */

plot mres*towdur;

plot mres*handling;

plot mres*logcatch;

plot mres*length;

run;

Allison still prefers the deviance residuals (next)

266



Martingale Residuals
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(c) Deviance Residuals

One problem with the martingale residuals is that they tend

to be asymmetric.

A solution is to use deviance residuals. For person i,

these are defined as a function of the martingale residuals

(ri):

D̂i = sign(r̂i)
√
−2[r̂i + δilog(δi − r̂i)]

In Stata, the deviance residuals are generated using the same

approach as the Cox-Snell residuals.

. stcox towdur handling length logcatch, mgale(mg)

. predict devres, deviance

and then they can be plotted versus the predicted log(HR)

or the individual covariates, as shown for the Martingale

residuals.

In SAS, just use resdev option instead of resmart.

Deviance residuals behave much like residuals from OLS re-

gression (i.e., mean=0, s.d.=1). They are negative for obser-

vations with survival times that are smaller than expected.
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Deviance Residuals
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(d) Schoenfeld Residuals

These are defined at each observed failure time as:

rsij = Zij(ti)− Z̄j(ti)

Notes:

• represent the difference between the observed covariate

and the average over the risk set at that time

• calculated for each covariate

• not defined for censored failure times.

• useful for assessing time trend or lack or proportionality,

based on plotting versus event time

• sum to zero, have expected value zero, and are uncorre-

lated (in large samples)

In Stata, the Schoenfeld residuals are generated in the stcox

command itself, using the schoenf(newvar(s)) option:

. stcox towdur handling length logcatch, schoenf(towres handres lenres

logres)

. graph towres survtime

In SAS, add to the output line

RESSCH=name1 name2 ... namek

for up to k regressors in the model.
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Schoenfeld Residuals
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(e) Weighted Schoenfeld Residuals

These are actually used more often than the previous un-

weighted version, because they are more like the typical OLS

residuals (i.e., symmetric around 0).

They are defined as:

rwij = nV̂ rsij

where V̂ is the estimated variance of β̂. The weighted resid-

uals can be used in the same way as the unweighted ones to

assess time trends and lack of proportionality.

In Stata, use the command:

. stcox towdur length logcatch handling depth, scaledsch(towres2

> lenres2 logres2 handres2 depres2)

. graph logres2 survtime

In SAS, add to the output line

WTRESSCH=name1 name2 ... namek

for up to k regressors in the model.
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Weighted Schoenfeld Residuals
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Using Residual plots to explore relationships

If you calculate martingale or deviance residuals without any

covariates in the model and then plot against covariates, you

obtain a graphical impression of the relationship between the

covariate and the hazard.

In Splus, it is easy to do this (also possible in stata using the

“estimate” option)

** read in the dataset and fit a cox PH model

fish_read.table(’fish.data’,header=T)

x_fish$towdur

fishres_coxreg(fish$time, fish$censor, x, resid="martingale",iter.max=0)

** the 2 commands below set up the postscript file, with 4 graphs

postscript("fishres.plt",horizontal=F,height=10,width=7)

par(mfrow=c(2,2),oma=c(0,0,2,0))

** plot the martingale residuals vs each of the other covariates

** and add a lowess smoothed fit to the plot

plot(fish$depth, fishres$resid, xlab="depth")

lines(lowess(fish$depth,fishres$resid,iter=0))

plot(fish$length, fishres$resid, xlab="length")

lines(lowess(fish$length,fishres$resid,iter=0))

plot(fish$handling, fishres$resid, xlab="handling")

lines(lowess(fish$handling,fishres$resid,iter=0))

plot(fish$logcatch, fishres$resid, xlab="logcatch")

lines(lowess(fish$logcatch,fishres$resid,iter=0))

274



Splus Plots of Martingale Residuals for Cox Model

containing only towing duration as a predictor,

vs other covariates
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(f) Deletion diagnostics

Deletion diagnostics are defined generally as:

δi = β̂ − β̂(i)

In other words, they are the difference between the estimated

regression coefficient using all observations and that without

the i-th individual. This can be useful for assessing the in-

fluence of an individual.

In SAS PROC PHREG, we use the dfbeta option:

(Note that there is a separate dfbeta calculated for each of

the predictors.)

proc phreg data=fish;

model survtime*censor(0)=towdur handling logcatch length;

id id;

output out=phinfl dfbeta=dtow dhand dlogc dlength ld=lrchange;

proc univariate data=phinfl;

var dtow dhand dlogc dlength lrchange;

id id;

run;

The proc univariate procedure will supply the 5 smallest val-

ues and the 5 largest values. The “id” statement means that

these will be labeled with the value of id from the dataset.
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(g) Other Influence diagnostics

Other influence diagnostics:

The LD option is another method for checking influence. It

calculates how much the log-likelihood (x2) would change if

the i-th person was removed from the sample.

LDi = 2
[
logL(β̂)− logL(β̂−i)

]

β̂ = MLE for all parameters with everyone included

β̂−i = MLE with i-th subject omitted

Again, the proc univariate procedure in SAS will identify

the observations with the largest and smallest values of the

lrchange diagnostic measure.
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Can we improve the model?

The plots appear to have some structure, which indicate that

we could be leaving something out. It is always a good idea

to check for interactions:

In this case, there are several important interactions. I used

a backward selection model forcing all main effects to be

included, and considering all pairwise interactions. Here are

the results:

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

TOWDUR 1 -0.075452 0.01740 18.79679 0.0001 0.927

DEPTH 1 0.123293 0.06400 3.71107 0.0541 1.131

LENGTH 1 -0.077300 0.02551 9.18225 0.0024 0.926

HANDLING 1 0.004798 0.03221 0.02219 0.8816 1.005

LOGCATCH 1 -0.225158 0.07156 9.89924 0.0017 0.798

TOWDEPTH 1 0.002931 0.0004996 34.40781 0.0001 1.003

TOWLNGTH 1 0.001180 0.0003541 11.10036 0.0009 1.001

TOWHAND 1 0.001107 0.0003558 9.67706 0.0019 1.001

DEPLNGTH 1 -0.006034 0.00136 19.77360 0.0001 0.994

DEPHAND 1 -0.004104 0.00118 12.00517 0.0005 0.996

Interpretation:

Handling alone doesn’t seem to affect survival, unless it is

combined with a longer towing duration or shallower trawl-

ing depths.
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An alternative modeling strategy when we have

fewer covariates

With a dataset with only 5 main effects, it would make sense

to consider interactions from the start. How many would

there be?

• Fit model with all main effects and pairwise interactions

• Then use backward selection to eliminate non-significant

pairwise interactions (remember to force the main effects

into the model at this stage)

• Once non-significant pairwise interactions have been elim-

inated, you could consider backwards selection to elim-

inate any non-significant main effects that are not in-

volved in remaining interaction terms

• After obtaining final model, use residuals to check fit of

model.
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Assessing the PH Assumption

So far, we’ve been considering the following Cox PH model:

λ(t,Z) = λ0(t) exp(βZ)

= λ0(t) exp (
∑
βjZj)

where βj is the parameter for the the j-th covariate (Zj).

Important features of this model:

(1) the baseline hazard depends on t, but not on the covari-

ates Z1, ..., Zp

(2) the hazard ratio, i.e., exp(βZ), depends on the covariates

Z = (Z1, ..., Zp), but not on time t.

Assumption (2) is what led us to call this a proportional

hazards model. That’s because we could take the ratio of

the hazards for two individuals with covariates Zi and Zi′,

and write it as a constant in terms of the covariates.
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Proportional Hazards Assumption

Hazard Ratio:

λ(t,Zi)

λ(t,Zi′)
=

λ0(t) exp(βZi)

λ0(t) exp(βZi′)

=
exp(βZi)

exp(βZi′)

= exp[β(Zi − Zi′)]

= exp[
∑
βj(Zij − Zi′j)] = θ

In the last formula, Zij is the value of the j-th covariate for

the i-th individual. For example, Z42 might be the value of

gender (0 or 1) for the the 4-th person.

We can also write the hazard for the i-th person as a constant

times the hazard for the i′-th person:

λ(t,Zi) = θ λ(t,Zi′)

Thus, the HR between two types of individuals is constant

(i.e., =θ) over time. These are mathematical ways of stating

the proportional hazards assumption.
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There are several options for checking the assumption of pro-

portional hazards:

I. Graphical

(a) Plots of survival estimates for two subgroups

(b) Plots of log[− log(Ŝ)] vs log(t) for two subgroups

(c) Plots of weighted Schoenfeld residuals vs time

(d) Plots of observed survival probabilities versus ex-

pected under PH model (see Kleinbaum, ch.4)

II. Use of goodness of fit tests - we can construct

a goodness-of-fit test based on comparing the observed

survival probability (from sts list) with the expected

(from stcox) under the assumption of proportional haz-

ards - see Kleinbaum ch.4

III. Including interaction terms between a covari-

ate and t (time-dependent covariates)
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How do we interpret the above?

Kleinbaum (and other texts) suggest a strategy of assuming

that PH holds unless there is very strong evidence to counter

this assumption:

• estimated survival curves are fairly separated, then cross

• estimated log cumulative hazard curves cross, or look

very unparallel over time

• weighted Schoenfeld residuals clearly increase or decrease

over time (you could fit a OLS regression line and see if

the slope is significant)

• test for time × covariate interaction term is significant

(this relates to time-dependent covariates)

If PH doesn’t exactly hold for a particular covariate but we

fit the PH model anyway, then what we are getting is sort

of an average HR, averaged over the event times.

In most cases, this is not such a bad estimate. Allison claims

that too much emphasis is put on testing the PH assumption,

and not enough to other important aspects of the model.
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Implications of proportional hazards

Consider a PH model with a single covariate, Z:

λ(t;Z) = λ0(t)e
βZ

What does this imply for the relation between the survivor-

ship functions at various values of Z?

Under PH,

log[− log[S(t;Z)]] = log[− log[S0(t)]] + βZ

In general, we have the following relationship:

Λi(t) =
∫ t
0
λi(u)du

=
∫ t
0
λ0(u) exp(βZi)du

= exp(βZi)
∫ t
0
λ0(u)du

= exp(βZi) Λ0(t)

This means that the ratio of the cumulative hazards is the

same as the ratio of hazard rates:

Λi(t)

Λ0(t)
= exp(βZi) = exp(β1Z1i + · · · + βpZpi)
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Using the above relationship, we can show that:

βZi = log



Λi(t)

Λ0(t)




= log Λi(t)− log Λ0(t)

= log[− logSi(t)]− log[− logS0(t)]

so log[− logSi(t)] = log[− logS0(t)] + βZi

Thus, to assess if the hazards are actually proportional to

each other over time (using graphical option I(b))

• calculate Kaplan Meier Curves for various levels of Z

• compute log[− log(Ŝ(t;Z))] (i.e., log cumulative hazard)

• plot vs log-time to see if they are parallel (lines or curves)

Note: If Z is continuous, break into categories.
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Question: Why not just compare the underlying

hazard rates to see if they are proportional?

Here’s two simulated examples with hazards which are truly

proportional between the two groups:

Weibull-type hazard: U-shaped hazard:

P l o t s  o f  h a z a r d  f u n c t i o n  v s  t i m e
S i m u l a t e d  d a t a  w i t h  H R = 2  f o r  m e n  v s  w o m e n

G e n d e r W o m e n M e n

H A Z A R D

0 . 0 0 0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

0 . 0 0 8

0 . 0 1 0

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0

P l o t s  o f  h a z a r d  f u n c t i o n  v s  t i m e
S i m u l a t e d  d a t a  w i t h  H R = 2  f o r  m e n  v s  w o m e n

G e n d e r W o m e n M e n

H A Z A R D

0 . 0 0 0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

0 . 0 0 8

0 . 0 1 0

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0

Reason 1: It’s hard to eyeball these figures and

see that the hazard rates are proportional - it

would be easier to look for a constant shift be-

tween lines.
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Reason 2: Estimated hazard rates tend to be

more unstable than the cumulative hazard rate

Consider the nursing home example (where we think PH is

reasonable). If we group the data into intervals and calculate

the hazard rate using actuarial method, we get these plots:

200 day intervals: 100 day intervals:

P l o t s  o f  h a z a r d  f u n c t i o n  v s  t i m e

G e n d e r W o m e n M e n

0 . 0 0 0

0 . 0 0 1

0 . 0 0 2

0 . 0 0 3

0 . 0 0 4

0 . 0 0 5

0 . 0 0 6

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

P l o t s  o f  h a z a r d  f u n c t i o n  v s  t i m e

G e n d e r W o m e n M e n

0 . 0 0 0
0 . 0 0 1
0 . 0 0 2
0 . 0 0 3
0 . 0 0 4
0 . 0 0 5
0 . 0 0 6
0 . 0 0 7
0 . 0 0 8
0 . 0 0 9

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

50 day intervals: 25 day intervals:

P l o t s  o f  h a z a r d  f u n c t i o n  v s  t i m e

G e n d e r W o m e n M e n

0 . 0 0 0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

0 . 0 0 8

0 . 0 1 0

0 . 0 1 2

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0

P l o t s  o f  h a z a r d  f u n c t i o n  v s  t i m e

G e n d e r W o m e n M e n

0 . 0 0 0
0 . 0 0 2
0 . 0 0 4
0 . 0 0 6
0 . 0 0 8
0 . 0 1 0
0 . 0 1 2
0 . 0 1 4

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0
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In contrast, the log cumulative hazard plots are

easier to interpret and tend to give more stable

estimates

Ex: Nursing Home - gender and marital status

proc lifetest data=pop outsurv=survres;

time los*fail(0);

strata gender;

format gender sexfmt.;

title ’Duration of Length of Stay in nursing homes’;

data survres;

set survres;

label log_los=’Log(Length of stay in days)’;

if los > 0 then log_los=log(los);

if survival<1 then lls=log(-log(survival));

proc gplot data=survres;

plot lls*log_los=gender;

format gender sexfmt.;

title2 ’Plots of log-log KM versus log-time’;

run;

The statements for marital status are similar, substituting married

for gender.

Note: This is equivalent to comparing plots of the log cumu-

lative hazard, log(Λ̂(t)), between the covariate levels, since

Λ(t) =
∫ t
0
λ(u;Z)du = − log[S(t)]
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Assessment of proportional hazards for gender

and marital status in nursing home data (Mor-

ris)

P l o t s  o f  l o g - l o g  K M  v e r s u s  l o g - t i m e

G e n d e r W o m e n M e n

L L S

- 6

- 5

- 4

- 3

- 2

- 1

0

1

L o g ( L e n g t h  o f  s t a y  i n  d a y s )
0 1 2 3 4 5 6

P l o t s  o f  l o g - l o g  K M  v e r s u s  l o g - t i m e

M a r i t a l  S t a t u s S i n g l e M a r r i e d

L L S

- 6

- 5

- 4

- 3

- 2

- 1

0

1

L o g ( L e n g t h  o f  s t a y  i n  d a y s )
0 1 2 3 4 5 6
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Assessing proportionality with several covariates

If there is enough data and you only have a couple of covari-

ates, create a new covariate that takes a different value for

every combination of covariate values.

Example: Health status and gender for nursing home

data pop;

infile ’ch12.dat’;

input los age rx gender married health fail;

if gender=0 and health=2 then hlthsex=1;

if gender=1 and health=2 then hlthsex=2;

if gender=0 and health=5 then hlthsex=3;

if gender=1 and health=5 then hlthsex=4;

proc format;

value hsfmt

1=’Healthier Women’

2=’Healthier Men’

3=’Sicker Women’

4=’Sicker Men’;

proc lifetest data=pop outsurv=survres;

time los*fail(0);

strata hlthsex;

format hlthsex hsfmt.;

title ’Length of Stay in nursing homes’;

data survres;

set survres;

label log_los=’Log(Length of stay in days)’;

label hlthsex=’Health/Gender Status’;

if los > 0 then log_los=log(los);

if survival<1 lls=log(-log(survival));

proc gplot data=survres;

plot lls*log_los=hlthsex;

format hlthsex hsfmt.;

title2 ’Plots of log-log KM versus log-time’;

run;
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Log[-log(survival)] Plots for Health status*gender

P l o t s  o f  l o g - l o g  K M  v e r s u s  l o g - t i m e

H e a l t h / G e n d e r  S t a t u s H e a l t h i e r  W o m e n H e a l t h i e r  M e n
S i c k e r  W o m e n S i c k e r  M e n

L L S

- 5

- 4

- 3

- 2

- 1

0

1

L o g ( L e n g t h  o f  s t a y  i n  d a y s )
0 1 2 3 4 5 6

If there are too many covariates (or not enough data) for this,

then there is a way to test proportionality for each variable,

one at a time, using the stratification option.
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What if proportional hazards fails?

• do a stratified analysis

• include a time-varying covariate to allow changing haz-

ard ratios over time

• include interactions with time

The second two options relate to time-dependent covariates,

which will be covered in future lectures.

We will focus on the first alternative, and then the second

two options will be briefly described.
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Stratified Analyses

Suppose:

• we are happy with the proportionality assumption on Z1

• proportionality simply does not hold between various

levels of a second variable Z2.

If Z2 is discrete (with a levels) and there is enough data, fit

the following stratified model:

λ(t;Z1, Z2) = λZ2(t)e
βZ1

For example, a new treatment might lead to a 50% decrease

in hazard of death versus the standard treatment, but the

hazard for standard treatment might be different for each

hospital.

A stratified model can be useful both for primary

analysis and for checking the PH assumption.
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Assessing PH Assumption for Several Covariates

Suppose we have several covariates (Z = Z1, Z2, ... Zp), and

we want to know if the following PH model holds:

λ(t;Z) = λ0(t) e
β1Z1+...+βpZp

To start, we fit a model which stratifies by Zk:

λ(t;Z) = λ0Zk
(t) eβ1Z1+...+βk−1Zk−1+βk+1Zk+1+...+βpZp

Since we can estimate the survival function for any subgroup,

we can use this to estimate the baseline survival function,

S0Zk
(t), for each level of Zk.

Then we compute − logS(t) for each level of Zk, controlling

for the other covariates in the model, and graphically check

whether the log cumulative hazards are parallel across strata

levels.
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Ex: PH assumption for gender (nursing home data):

• include married and health as covariates in a Cox PH

model, but stratify by gender.

• calculate the baseline survival function for each level of

the variable gender (i.e., males and females)

• plot the log-cumulative hazards for males and females

and evaluate whether the lines (curves) are parallel

In the above example, we make the PH assumption for married

and health, but not for gender.

This is like getting a KM survival estimate for each gen-

der without assuming PH, but is more flexible since we can

control for other covariates.

We would repeat the stratification for each variable for which

we wanted to check the PH assumption.
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SAS Code for Assessing PH within Stratified Model:

data pop;

infile ’ch12.dat’;

input los age rx gender married health fail;

if los<=0 then delete;

data inrisks;

input married health;

cards;

0 2

;

proc format;

value sexfmt

1=’Male’

0=’Female’;

proc phreg data=pop;

model los*fail(0)=married health;

strata gender;

baseline covariates=inrisks out=outph

loglogs=lls / nomean;

proc print data=outph;

title ’Log Cumulative Hazard Estimates by Gender’;

title2 ’Controlling for Marital and Health Status’;

data outph;

set outph;

if los>0 then log_los=log(los);

label log_los=’Log(LOS)’

lls=’Log Cumulative Hazard’;

proc gplot data=outph;

plot lls*log_los=gender;

format gender sexfmt.;

title1 ’Log-log Survival versus log-time by Gender’;

run;
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Log[-log(survival)] Plots for Gender

Controlling for Marital and Health Status

G E N D E R F e m a l e M a l e

- 5

- 4

- 3

- 2

- 1

0

1

2

L o g ( L O S )
5 . 8 5 . 9 6 . 0 6 . 1 6 . 2 6 . 3 6 . 4 6 . 5 6 . 6 6 . 7 6 . 8 6 . 9 7 . 0
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Models with Time-dependent Interactions

Consider a PH model with two covariates Z1 and Z2. The

standard PH model assumes

λ(t;Z) = λ0(t) e
β1Z1+β2Z2

However, if the log-hazards are not really parallel between

the groups defined by Z2, then you can try adding an inter-

action with time:

λ(t;Z) = λ0(t) e
β1Z1+β2Z2+β3Z2∗t

A test of the coefficient β3 would be a test of the proportional

hazards assumption for Z2.

If β3 is positive, then the hazard ratio would be increasing

over time; if negative, then decreasing over time.

Changes in covariate status sometimes occur naturally dur-

ing a study (ex. patient gets a kidney transplant), and are

handled by introducing time-dependent covariates.
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Using Stata to Assess Proportional Hazards

Stata has two commands which can be used to graphically

assess the proportional hazards assumption, using graphical

options (b) and (d) described previously:

• stphplot: plots − log[− log(−(S(t))] curves for each

category of a nominal or ordinal independent variable

versus log(time). Optionally, these estimates can be ad-

justed for other covariates.

• stcoxkm: plots Kaplan-Meier observed survival curves

and compares them to the Cox predicted curves for the

same variable. (No need to run stcox prior to this com-

mand, it will be done automatically)

For either command, you must have stset your data first.

You must specify by() with stcoxkm and you must specify

either by() or strata() with stphplot.

299



Assessing PH Assumption for a Single Covariate

by Comparing − log[− log(S(t))] Curves

. use nurshome

. stset los fail

. stphplot, by(gender)

Note that the lines will be going from top left to bottom right,

rather than bottom left to top right, since we are plotting

− log[− log(S(t))] rather than log[− log(S(t))].

This will give a plot similar to that on p.10 (top).

Of course, you’ll want to make your plot prettier by adding

titles and labels, as follows:

. stphplot, by(gender) xlab ylab b2(log(Length of Stay))

>title(Evaluation of PH Assumption) saving(phplot)
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Assessing PH Assumption for Several Covariates

by Comparing − log[− log(S(t))] Curves

. use nurshome

. stset los fail

. gen hlthsex=1

. replace hlthsex=2 if health==2 & gender==1

. replace hlthsex=3 if health==5 & gender==0

. replace hlthsex=4 if health==5 & gender==1

. tab hlthsex

. stphplot, by(hlthsex)

This will give a plot similar to that on p.12.
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Assessing PH Assumption for a Single Covariate

Controlling for the Levels of Other Covariates

. use nurshome

. stset los fail

. stphplot, strata(gender) adjust(married health)

This will produce a plot similar to that on p.18.
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Assessing PH Assumption for a Covariate

By Comparing Cox PH Survival to KM Survival

To construct plots based on option I(d), use the stcoxkm

command, either for a single covariate or for a newly gen-

erated covariate (like hlthsex) which represents combined

levels of more than one covariate.

. use nurshome

. stset los fail

. stcoxkm, by(gender)

. stcoxkm, by(hlthsex)

As usual, you’ll want to add titles, labels, and save your

graph for later use.
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Time varying (or time-dependent) covariates

References:

Allison (*) p.138-153

Hosmer & Lemeshow Chapter 7, Section 3

Kalbfleisch & Prentice Section 5.3

Collett Chapter 7

Kleinbaum Chapter 6

Cox & Oakes Chapter 8

Andersen & Gill Page 168 (Advanced!)

So far, we’ve been considering the following Cox PH model:

λ(t,Z) = λ0(t) exp(βZ)

= λ0(t) exp(
∑
βjZj)

where βj is the parameter for the the j-th covariate (Zj).

Important features of this model:

(1) the baseline hazard depends on t, but not on the covari-

ates Z1, ..., Zp

(2) the hazard ratio exp(βZ) depends on the covariatesZ1, ..., Zp,

but not on time t.

Now we want to relax the second assumption, and allow the

hazard ratio to depend on time t.
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Example to motivate time-dependent covariates

Stanford Heart transplant example:

Variables:

• survival - time from program enrollment until death or cen-
soring

• dead - indicator of death (1) or censoring (0)

• transpl - whether patient ever had transplant
(1 if yes, 2 if no)

• surgery - previous heart surgery prior to program

• age - age at time of acceptance into program

• wait - time from acceptance into program until transplant
surgery (=. for those without transplant)

Initially, a Cox PH model was fit for predicting survival time:

λ(t,Z) = λ0(t) exp(β1 ∗ transpl + β2 ∗ surgery + β3 ∗ age)

However, this model could give misleading results, since pa-

tients who died more quickly had less time available to get

transplants. A model with a time dependent indicator of

whether a patient had a transplant at each point in time

might be more appropriate:

λ(t,Z) = λ0(t) exp(β1 ∗ trnstime+ β2 ∗ surgery + β3 ∗ age)

where trnstime = 1 if transpl=1 and wait> t
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SAS code for these two models

Time-independent covariate for transpl:

proc phreg data=stanford;

model survival*dead(0)=transpl surgery age;

run;

Time-dependent covariate for transpl:

proc phreg data=stanford;

model survival*dead(0)=trnstime surgery age;

if wait>survival or wait=. then trnstime=0;

else trnstime=1;

run;
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If we add time-dependent covariates or interactions with time

to the Cox proportional hazards model, then it is not “pro-

portional hazards” model any longer.

We refer to it as an “extended Cox model”.

Comparison with a single binary predictor (like heart trans-

plant):

• A standard Cox PH model would compare the survival

distributions between those without a transplant (ever)

to those with a transplant. A subject’s transplant status

at the end of the study would determine which category

they were put into for the entire study follow-up.

• An extended Cox model would compare the risk of an

event between transplant and non-transplant at each

event time, but would re-evaluate which risk group each

person belonged in based on whether they’d had a trans-

plant by that time.
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Recidivism Example: (see Allison, p.42)

Recidivism study:

432 male inmates were followed for one year after release

from prison, to evaluate risk of re-arrest as function of finan-

cial aid (fin), age at release (age), race (race), full-time

work experience prior to first arrest (wexp), marital sta-

tus (mar), parole status (paro=1 if released with parole,

0 otherwise), and number of prior convictions (prio). Data

were also collected on employment status over time during

the year.

Time-independent model:

A time independent model might include the employment

status of the individual at the beginning of the study (1 if

employed, 0 if unemployed), or perhaps at any point during

the year.

Time-dependent model:

However, employment status changes over time, and it may

be the more recent employment status that would affect the

hazard for re-arrest. For example, we might want to define

a time-dependent covariate for each month of the study that

indicates whether the individual was employed during the

past month.
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Extended Cox Model

Framework:

For individual i, suppose we have their failure time, failure

indicator, and a summary of their covariate values over time:

(Xi, δi, {Zi(t), t ∈ [0, Xi]}),

{Zi(t), t ∈ [0, Xi]} represents the covariate path for the

i-th individual while they are in the study, and the covariates

can take different values at different times.

Assumptions:

• conditional on an individual’s covariate history, the haz-

ard for failure at time t depends only on the value of the

covariates at that time:

λ(t; {Zi(u), u ∈ [0, t]}) = λ(t;Zi(t))

• the Cox model for the hazard holds:

λ(t;Zi(t)) = λ0(t) e
βZi(t)

Survivor function:

S(t;Z) = exp{−
∫ t
0
exp(βZ(u)) λ0(u)du}

and depends on the values of the time dependent variables

over the interval from 0 to t.

This is the classic formulation of the time varying Cox re-

gression survival model.
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Kinds of time-varying covariates:

• internal covariates:
variables that relate to the individuals, and can only be

measured when an individual is alive, e.g. white blood

cell count, CD4 count

• external covariates:
– variable which changes in a known way, e.g. age, dose

of drug

– variable that exists totally independently of all indi-

viduals, e.g. air temperature
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Applications and Examples

The extended Cox model is used:

I. When important covariates change during a study

• Framingham Heart study
5209 subjects followed since 1948 to examine relation-

ship between risk factors and cardiovascular disease. A

particular example:

Outcome: time to congestive heart failure

Predictors: age, systolic blood pressure, # cigarettes

per day

• Liver Cirrhosis (Andersen and Gill, p.528)

Clinical trial comparing treatment to placebo for cirrho-

sis. The outcome of interest is time to death. Patients

were seen at the clinic after 3, 6 and 12 months, then

yearly.

Fixed covariates: treatment, gender, age (at diagno-

sis)

Time-varying covariates: alcohol consumption, nu-

tritional status, bleeding, albumin, bilirubin, alkaline

phosphatase and prothrombin.

• Recidivism Study (Allison, p.42)
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II. For cross-over studies, to indicate change in treatment

• Stanford heart study (Cox and Oakes p.129)

Between 1967 and 1980, 249 patients entered a program

at Stanford University where they were registered to re-

ceive a heart transplant. Of these, 184 received trans-

plants, 57 died while waiting, and 8 dropped out of the

program for other reasons. Does getting a heart trans-

plant improve survival? Here is a sample of the data:

Waiting transplant? survival post total final

time transplant survival status

------------------------------------------------------------

49 2 . . 1

5 2 . . 1

0 1 15 15 1

35 1 3 38 1

17 2 . . 1

11 1 46 57 1

etc

(survival is not indicated above for those without transplants, but was avail-
able in the dataset)

Naive approach: Compare the total survival of trans-

planted and non-transplanted.

Problem: Length Bias!

312



III. For Competing Risks Analysis

For example, in cancer clinical trials, “tumor response” (or

shrinking of the tumor) is used as an outcome. However,

clinicians want to know whether tumor response correlates

with survival.

For this purpose, we can fit an extended Cox model for time

to death, with tumor response as a time dependent covariate.

IV. For testing the PH assumption

For example, we can fit these two models:

(1) Time independent covariate Z1

λ(t,Z) = λ0(t) exp(β1 ∗ Z1)

The hazard ratio for Z1 is exp(β1).

(2) Time dependent covariate Z1

λ(t,Z) = λ0(t) exp(β1 ∗ Z1 + β2 ∗ Z1 ∗ t)
The hazard ratio for Z1 is exp(β1 + β2t).

(note: we may want to replace t by (t − t0), so that exp(β1)

represents HR at some convenient time, like the median survival

time.)

A test of the parameter β2 is a test of the PH assumption.

(how do we get the test? ...using the Wald test from the

output of second model, or LR test formed by comparing

the log-likelihoods of the two models)
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Partial likelihood with time-varying covariates

Starting out just as before...

Suppose there are K distinct failure (or death) times, and

let (τ1, ....τK) represent the K ordered, distinct death times.

For now, assume there are no tied death times.

Risk Set: Let R(t) = {i : xi ≥ t} denote the set of

individuals who are “at risk” for failure at time t.

Failure: Let ij denote the label or identity of the individual

who fails at time τj, including the value of their time-varying

covariate during their time in the study

{Zij(t), t ∈ [0, τj]}

History: Let Hj denote the “history” of the entire data

set, up to the j-th death or failure time, including the time

of the failure, but not the identity of the one who fails, also

including the values of all covariates for everyone up to and

including time τj.

Partial Likelihood: We have seen previously that the

partial likelihood can be written as

L(β) =
d∏

j=1
P (ij|Hj)

=
d∏

j=1

λ(τj;Zj(τj))
∑
`∈R(τj) λ(τj;Z`(τj))
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Under the PH assumption, this is:

L(β) =
d∏

j=1

exp(βZjj)
∑
`∈R(τj) exp(βZ`j)

where Z`j is a short-cut way to denote the value of the co-

variate vector for the `-th person at the j-th death time,

ie:

Z`j = Z`(τj)

What if Z is not measured for person ` at time τj?

• use the most recent value (assumes step function)

• interpolate

• impute based on some model

Inference (i.e. estimating the regression coefficients, con-

structing score tests, etc.) proceeds similarly to standard

case. The main difference is that the values of Z will change

at each risk set.

Allison notes that it is very easy to write down a Cox model

with time-dependent covariates, but much harder to fit (com-

putationally) and interpret.
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Old Example revisited:

Group 0: 4+, 7, 8+, 9, 10+

Group 1: 3, 5, 5+, 6, 8+

Let Z1 be group, and add another fixed covariate Z2

ID fail censor Z1 Z2 e(β1Z1+β2Z2)

1 3 1 1 1 eβ1+β2

2 4 0 0 1 eβ2

3 5 1 1 1 eβ1+β2

4 5 0 1 0 eβ1

5 6 1 1 1 eβ1+β2

6 7 1 0 0 1
7 8 0 0 1 eβ2

8 8 0 1 0 eβ1

9 9 1 0 1 eβ2

10 10 0 0 0 1

ordered Partial

failure Individuals Likelihood

time (τj) at risk failure ID contribution

3

5

6

7

9
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Example continued:

Now suppose Z2 (a completely different covariate) is a time

varying covariate:

Z2(t)
ID fail censor Z1 3 4 5 6 7 8 9

1 3 1 1 0
2 4 0 0 1 1
3 5 1 1 1 1 1
4 5 0 1 0 0 0
5 6 1 1 0 0 0 0
6 7 1 0 0 0 0 1 1
7 8 0 0 0 0 0 0 0 0
8 8 0 1 0 0 0 0 1 1
9 9 1 0 0 0 0 1 1 1 1
10 10 0 0 0 1 1 1 1 1 1

ordered Partial

failure Individuals Likelihood

time (τj) at risk failure ID contribution

3

5

6

7

9
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SAS solution to previous examples

Title ’Ph regression: small class example’;

data ph;

input time status group z3 z4 z5 z6 z7 z8 z9;

cards;

3 1 1 0 . . . . . .

4 0 0 1 1 . . . . .

5 1 1 1 1 1 . . . .

5 0 1 0 0 0 . . . .

6 1 1 0 0 0 0 . . .

7 1 0 0 0 0 1 1 . .

8 0 0 0 0 0 0 0 0 .

8 0 1 0 0 0 0 1 1 .

9 1 0 0 0 0 1 1 1 1

10 0 0 0 1 1 1 1 1 1

run;

proc phreg ;

model time*status(0)=group z3 ;

run;

proc phreg ;

model time*status(0)=group z ;

z=z3;

if (time >= 4) then z=z4;

if (time >= 5) then z=z5;

if (time >= 6) then z=z6;

if (time >= 7) then z=z7;

if (time >= 8) then z=z8;

if (time >= 9) then z=z9;

run;
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SAS output from fitting both models

Model with z3:

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 16.953 13.699 3.254 with 2 DF (p=0.1965)

Score . . 3.669 with 2 DF (p=0.1597)

Wald . . 2.927 with 2 DF (p=0.2315)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

GROUP 1 1.610529 1.21521 1.75644 0.1851 5.005

Z3 1 1.360533 1.42009 0.91788 0.3380 3.898

Model with time-dependent Z:

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 16.953 14.226 2.727 with 2 DF (p=0.2558)

Score . . 2.725 with 2 DF (p=0.2560)

Wald . . 2.271 with 2 DF (p=0.3212)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

GROUP 1 1.826757 1.22863 2.21066 0.1371 6.214

Z 1 0.705963 1.20630 0.34249 0.5584 2.026
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The Stanford Heart Transplant data

Title ’Stanford heart transplant data: C & O Table 8.1’;

data heart;

infile ’heart.dat’;

input wait trans post surv status ;

run;

data heart;

set heart;

if trans=2 then surv=wait;

run;

*** naive analysis;

proc phreg;

model surv*status(2)=tstat;

tstat=2-trans;

*** analysis with time-dependent covariate;

proc phreg;

model surv*status(2)=tstat;

tstat = 0;

if (trans=1 and surv >= wait) then tstat = 1;

run;

The second model took about twice as long to run as the

first model, which is usually the case for models with time-

dependent covariates.
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RESULTS for Stanford Heart Transplant data:

Naive model with fixed transplant indicator:

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 718.896 674.699 44.198 with 1 DF (p=0.0001)

Score . . 68.194 with 1 DF (p=0.0001)

Wald . . 51.720 with 1 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

TSTAT 1 -1.999356 0.27801 51.72039 0.0001 0.135

Model with time-dependent transplant indicator:

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1330.220 1312.710 17.510 with 1 DF (p=0.0001)

Score . . 17.740 with 1 DF (p=0.0001)

Wald . . 17.151 with 1 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

TSTAT 1 -0.965605 0.23316 17.15084 0.0001 0.381
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Recidivism Example:

Hazard for arrest within one year of release from prison:

Model without employment status

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1350.751 1317.496 33.266 with 7 DF (p=0.0001)

Score . . 33.529 with 7 DF (p=0.0001)

Wald . . 32.113 with 7 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

FIN 1 -0.379422 0.1914 3.931 0.0474 0.684

AGE 1 -0.057438 0.0220 6.817 0.0090 0.944

RACE 1 0.313900 0.3080 1.039 0.3081 1.369

WEXP 1 -0.149796 0.2122 0.498 0.4803 0.861

MAR 1 -0.433704 0.3819 1.290 0.2561 0.648

PARO 1 -0.084871 0.1958 0.188 0.6646 0.919

PRIO 1 0.091497 0.0287 10.200 0.0014 1.096

What are the important predictors of recidivism?
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Recidivism Example: (cont’d)

Now, we use the indicators of employment status for each of

the 52 weeks in the study, recorded as emp1-emp52.

We can fit the model in 2 different ways:

proc phreg data=recid;

model week*arrest(0)=fin age race wexp mar parro prio employed

/ ties=efron;

array emp(*) emp1-emp52;

do i=1 to 52;

if week=i then employed=emp(i);

end;

run;

*** a shortcut;

proc phreg data=recid;

model week*arrest(0)=fin age race wexp mar parro prio employed

/ ties=efron;

array emp(*) emp1-emp52;

employed=emp(week);

run;

The second way takes 23% less time than the first

way, but the results are the same.
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Recidivism Example: Output

Model WITH employment as time-dependent covariate

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

FIN 1 -0.356722 0.1911 3.484 0.0620 0.700

AGE 1 -0.046342 0.0217 4.545 0.0330 0.955

RACE 1 0.338658 0.3096 1.197 0.2740 1.403

WEXP 1 -0.025553 0.2114 0.015 0.9038 0.975

MAR 1 -0.293747 0.3830 0.488 0.4431 0.745

PARO 1 -0.064206 0.1947 0.109 0.7416 0.938

PRIO 1 0.085139 0.0290 8.644 0.0033 1.089

EMPLOYED 1 -1.328321 0.2507 28.070 0.0001 0.265

Is current employment important?

Do the other covariates change much?

Can you think of any problem with using current

employment as a predictor?
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Another option for assessing impact of employ-

ment

Allison suggests using the employment status of the past

week rather than the current week, as follows:

proc phreg data=recid;

where week>1;

model week*arrest(0)=fin age race wexp mar parro prio employed

/ ties=efron;

array emp(*) emp1-emp52;

employed=emp(week-1);

run;

The coefficient for employed changes from -1.33

to -0.79, so the risk ratio is about 0.45 instead of

0.27. It is still highly significant with χ2 = 13.1.

Does this model improve the causal interpreta-

tion?

Other options for time-dependent covariates:

• multiple lags of employment status (week-1, week-2, etc.)

• cumulative employment experience (proportion of weeks

worked)
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Some cautionary notes

• Time-varying covariates must be carefully constructed

to ensure interpretability

• There is no point adding a time-varying covariate whose

value changes the same as study time ..... you will get

the same answer as using a fixed covariate measured at

study entry. For example, suppose we want to study the

effect of age on time to death.

We could

1. use age at start of the study as a fixed covariate

2. age as a time varying covariate

However, the results will be the same! Why?
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Using time-varying covariates to assess model fit

Suppose we have just fit the following model:

λ(t;Z) = λ0(t) exp(β1Z1 + β2Z2 + . . . βpZp)

E.g., the nursing home data with gender, marital status and

health.

Suppose we want to test the proportionality assumption on

health (Zp)

Create a new variable:

Zp+1(t) = Zp ∗ γ(t)

where γ(t) is a known function of time, such as

γ(t) = t

or log(t)

or e−ρt

or I{t>t∗}

Then testing H0 : βp+1 = 0 is a test for non-proportionality
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Illustration: Colon Cancer data

*** model without time*covariate interaction;

proc phreg data=surv;

model survtime*censs(1) = trtm stagen ;

Model without time*stage interaction

Event and Censored Values

Percent

Total Event Censored Censored

274 218 56 20.44

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1959.927 1939.654 20.273 with 2 DF (p=0.0001)

Score . . 18.762 with 2 DF (p=0.0001)

Wald . . 18.017 with 2 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

TRTM 1 0.016675 0.13650 0.01492 0.9028 1.017

STAGEN 1 -0.701408 0.16539 17.98448 0.0001 0.496
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*** model WITH time*covariate interaction;

proc phreg data=surv ;

model survtime*censs(1) = trtm stagen tstage ;

tstage=stagen*exp(-survtime/1000);

Model WITH time*stage interaction

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1959.927 1902.374 57.553 with 3 DF (p=0.0001)

Score . . 35.960 with 3 DF (p=0.0001)

Wald . . 19.319 with 3 DF (p=0.0002)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

TRTM 1 0.008309 0.13654 0.00370 0.9515 1.008

STAGEN 1 1.402244 0.45524 9.48774 0.0021 4.064

TSTAGE 1 -8.322371 2.04554 16.55310 0.0001 0.000

Like Cox and Oakes, we can run a few different models
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Time-varying covariates in Stata

Create a data set with an ID column, and one line per person

for each different value of the time varying covariate.

. infile id time status group z using cox4_stata.dat

or

. input id time status group z

1 3 1 1 0

2 5 0 1 0

3 5 1 1 1

4 6 1 1 0

5 6 0 1 0

5 8 0 1 1

6 4 0 0 1

7 5 0 0 0

7 7 1 0 1

8 8 0 0 0

9 5 0 0 0

9 9 1 0 1

10 3 0 0 0

10 10 0 0 1

. end

. stset time status

. cox time group z, dead(status) tvid(id)

------------------------------------------------------------------------------

time |

status | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

group | 1.826757 1.228625 1.487 0.137 -.5813045 4.234819

z | .7059632 1.206304 0.585 0.558 -1.65835 3.070276

------------------------------------------------------------------------------
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Time-varying covariates in Splus

Create a data set with start and stop values of time:

id start stop status group z

1 0 3 1 1 0

2 0 5 0 1 0

3 0 5 1 1 1

4 0 6 1 1 0

5 0 6 0 1 0

5 6 8 0 1 1

6 0 4 0 0 1

7 0 5 0 0 0

7 5 7 1 0 1

8 0 8 0 0 0

9 0 5 0 0 0

9 5 9 1 0 1

10 0 3 0 0 0

10 3 10 0 0 1
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Then the Splus commands and results are:

Commands:

y_read.table("cox4_splus.dat",header=T)

agreg(y$start,y$stop,y$status,cbind(y$group,y$z))

Results:

Alive Dead Deleted

9 5 0

coef exp(coef) se(coef) z p

[1,] 1.827 6.21 1.23 1.487 0.137

[2,] 0.706 2.03 1.21 0.585 0.558

exp(coef) exp(-coef) lower .95 upper .95

[1,] 6.21 0.161 0.559 69.0

[2,] 2.03 0.494 0.190 21.5

Likelihood ratio test= 2.73 on 2 df, p=0.256

Efficient score test = 2.73 on 2 df, p=0.256
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Piecewise Cox Model: (Collett, Chapter 10)

A time dependent covariate can be used to create a piecewise

PH cox model. Suppose we are interested in comparing two

treatments, and:

• HR=θ1 during the interval (0, t1)

• HR=θ2 during the interval (t1, t2)

• HR=θ3 during the interval (t2,∞)

Define the following covariates:

• X - treatment indicator

(X = 0→ standard, X = 1→ new treatment)

• Z2 - indicator of change in HR during 2nd interval

Z2(t) =




1 if t ∈ (t1, t2) and X = 1

0 otherwise

• Z3 - indicator of change in HR during 3rd interval

Z3(t) =




1 if t ∈ (t2,∞) and X = 1

0 otherwise

The model for the hazard for individual i is:

λi(t) = λ0(t) exp{β1xi + β2z2i(t) + β3z3i(t)}

What are the log hazard ratios for an individual on the new

treatment relative to one on the standard treatment?
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Time varying (or time-dependent) covariates

Case Study of MAC Disease Trial

ACTG 196 was a randomized clinical trial to study the effects
of combination regimens on prevention of MAC (mycobacterium
avium complex) disease, which is one of the most common oppor-
tunistic infections in AIDS patients and is associated with high mor-
tality and morbidity.

The treatment regimens were:

• clarithromycin (new)
• rifabutin (standard)
• clarithromycin plus rifabutin

This trial enrolled patients between April 1993 and February 1994,
and followed patients through August 1995. In February of 1994, the
dosage of rifabutin was reduced from 3 capsules per day (450mg)
to 2 capsules per day (300mg) due to concern over uveitis, an
adverse experience resulting in inflammation of the uveal tract in
the eyes (about 3-4% of patients reported uveitis). All patients were
to reduce their dosage by March 8, 1994. However, some patients
had already discontinued the treatment, died, or discontinued the
study.

The main intent-to-treat analysis compared the 3 treatment arms
without adjusting for this change in dosage.

Other supporting analyses attempted to untangle the effect of this
“study wide dose reduction” (SWDR).

334



Proportion on each treatment arm with SWDR

Treatment by study wide dose reduction

TABLE OF TRTMT BY SWDRSTAT

TRTMT

SWDRSTAT(Study Wide Dose Reduction Status)

Frequency|

Row Pct |No |Yes | Total

---------+--------+--------+

R | 125 | 266 | 391

| 31.97 | 68.03 |

---------+--------+--------+

C+R | 170 | 219 | 389

| 43.70 | 56.30 |

---------+--------+--------+

C | 124 | 274 | 398

| 31.16 | 68.84 |

---------+--------+--------+

Total 419 759 1178

STATISTICS FOR TABLE OF TRTMT BY SWDRSTAT

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 2 16.820 0.001

Likelihood Ratio Chi-Square 2 16.610 0.001

Mantel-Haenszel Chi-Square 1 0.067 0.795

Phi Coefficient 0.119

Contingency Coefficient 0.119

Cramer’s V 0.119

Sample Size = 1178
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Original Logrank test Comparing 3 Treatment Arms
(How would you get pairwise tests?)

Dependent Variable: MACTIME Time to MAC disease (days)

Censoring Variable: MACSTAT MAC status (1=yes,0=censored)

Censoring Value(s): 0

Ties Handling: BRESLOW

Summary of the Number of

Event and Censored Values

Percent

Total Event Censored Censored

1178 121 1057 89.73

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1541.064 1525.932 15.133 with 2 DF (p=0.0005)

Score . . 15.890 with 2 DF (p=0.0004)

Wald . . 15.209 with 2 DF (p=0.0005)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

CLARI 1 0.231842 0.25748 0.81074 0.3679 1.261

RIF 1 0.826883 0.23601 12.27480 0.0005 2.286

Variable Label

CLARI 1=Clarithromycin arm, 0 otherwise

RIF 1=Rifabutin arm, 0 otherwise

Linear Hypotheses Testing

Wald Pr >

Label Chi-Square DF Chi-Square

TEST_TRT 15.2094 2 0.0005
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Kaplan-Meier Survival Plot

Estimated Probabilities of Remaining MAC-free
Sur
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%ps(mactrt.ps,mode=replace);

proc lifetest data=weighted noprint outsurv=survres

graphics nocens plots=(s);

time mactime*macstat(0);

strata trtmt;

title ’Time to MAC by Treatment Regimen’;

format trtmt trtfmt.;

run;
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How well does this model fit?

Let’s take a look at the residual plots...

First, the deviance residuals:
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Plotting deviance residuals vs binary covariates

is not very useful.
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How about the generalized residuals?

(Are they like a sample from a censored unit exponential?)

( i . e . ,  i s  s l o p e = 1 ,  i n t e r c e p t = 0 )

L L S
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- 1

L o g ( g e n e r a l i z e d  r e s i d u a l )
- 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1

intercept=0.056

slope=1.028

(based on fitting a regression line to residuals)
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We can also look at the log cumulative hazard

plots (i.e., log[− log(Ŝ)]) versus log time to see whether

the lines are parallel for the three treatment groups.

P l o t  o f  l o g - l o g  K M  v e r s u s  l o g - t i m e

M A C  P r o p h y l a x i s  T h e r a p y R i f a b u t i n C l a r i t h r o C l a r  +  R i f

L
n
[
-
l
n
(
S
)
]

- 6

- 5

- 4

- 3

- 2

- 1

L o g ( T i m e  t o  M A C )
3 4 5 6

(I have joined the individual points using i=join in the sym-

bol statement, to make them easier to see.)
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Shouldn’t we adjust for Baseline CD4 count?

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1541.064 1488.737 52.328 with 3 DF (p=0.0001)

Score . . 43.477 with 3 DF (p=0.0001)

Wald . . 43.680 with 3 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

CLARI 1 0.198798 0.25747 0.59619 0.4400 1.220

RIF 1 0.837240 0.23598 12.58738 0.0004 2.310

CD4 1 -0.019641 0.00367 28.59491 0.0001 0.981

Analysis of Maximum Likelihood Estimates

Variable Label

CLARI 1=Clarithromycin arm, 0 otherwise

RIF 1=Rifabutin arm, 0 otherwise

CD4 CD4 Cell Count

Is CD4 count a confounder?

(An analysis stratified by CD4 category gave almost identical re-
sults. Other important covariates included CTG (clinical trials
group) and Karnofsky status).
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What do the deviance residuals look like versus

a continuous covariate, like CD4?
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We might want to consider some kind of transformation of CD4
count (like log or square root). If we don’t feel comfortable with
the linearity of CD4 count, we can also dichotomize it (CD4CAT).
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Another way of checking the proportionality as-

sumption is by using the Weighted Schoenfeld

residual plots for each covariate
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So far, the graphical techniques have not indicated any ma-

jor departure from proportional hazards. However, we can

test this formally by creating a time dependent covariate for

rifabutin and clarithromycin:

riftd=rif*((mactime-365)/30);

claritd=clari*((mactime-365)/30);

Even though the dose reduction was only for rifabutin, pa-

tients on all 3 arms had to have the dose reduction ... they

just took 2 capsules of their placebo, and didn’t know whether

it was placebo or active drug.

I have centered the time-dependent covariates at 365 days

(one year), so that the HR for rif alone and clari alone will

apply at one year. Then I have divided by 30, so that the

resulting HR can be interpreted as the change for each month

away from 365 days.

Question: Can we do this within a data step us-

ing the above statements, or do these statements

need to be given in the PROC PHREG proce-

dure?
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Time-dependent covariates for clari and rif

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1541.064 1525.837 15.227 with 4 DF (p=0.0043)

Score . . 16.033 with 4 DF (p=0.0030)

Wald . . 15.327 with 4 DF (p=0.0041)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

CLARI 1 0.229811 0.25809 0.79287 0.3732 1.258

RIF 1 0.823227 0.23624 12.14274 0.0005 2.278

CLARITD 1 0.003065 0.04073 0.00566 0.9400 1.003

RIFTD 1 0.010627 0.03765 0.07965 0.7778 1.011

Analysis of Maximum Likelihood Estimates

Variable Label

CLARI 1=Clarithromycin arm, 0 otherwise

RIF 1=Rifabutin arm, 0 otherwise

Neither time-dependent covariate was significant.
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This analysis also indicated that there are no major de-

partures from proportional hazards for the three treatment

arms.

However, it may still be the case that having the study-wide

dose reduction had some relationship with MAC disease.

We can assess this by creating a time dependent variable for

the SWDR.

We’ll look at the following models:

(1) SWDRSTAT as a simple indicator

(2) SWDRSTAT and SWDRTD, with

swdrtd = swdrstat*((mactime-365)/30)

(3) SWDR as time dependent covariate
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Naive model with fixed SWDR indicator (SWDRSTAT):

Dependent Variable: MACTIME Time to MAC disease (days)

Censoring Variable: MACSTAT MAC status (1=yes,0=censored)

Censoring Value(s): 0

Ties Handling: BRESLOW

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1541.064 1495.857 45.208 with 3 DF (p=0.0001)

Score . . 51.497 with 3 DF (p=0.0001)

Wald . . 48.749 with 3 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

CLARI 1 0.449936 0.26142 2.96236 0.0852 1.568

RIF 1 1.006639 0.23852 17.81114 0.0001 2.736

SWDRSTAT 1 -1.125032 0.19283 34.04055 0.0001 0.325

Analysis of Maximum Likelihood Estimates

Variable Label

CLARI 1=Clarithromycin arm, 0 otherwise

RIF 1=Rifabutin arm, 0 otherwise

SWDRSTAT Study Wide Dose Reduction Status

Reduction of dosage from 450mg to 300mg appears to be
protective, which seems counter-intuitive
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Predicted Baseline Survival Curves:

Another way to see this is through the predicted baseline

survival curves. The two lines are for those not on rifabutin,

while the x’s and +’s are for those on rifabutin. In each case,

the higher line (better prognosis) of the pair is for those who

did have the SWDR.
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Test for proportionality:

proc phreg data=weighted;

model mactime*macstat(0) = clari rif swdrstat swdrtd;

*** create time by covariate interaction for swdr status;

swdrtd=swdrstat*((mactime-365)/30);

test_trt: test clari, rif;

title ’Test of treatment Differences’;

title2 ’and test of proportionality at t=365 days’;

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1541.064 1492.692 48.372 with 4 DF (p=0.0001)

Score . . 55.174 with 4 DF (p=0.0001)

Wald . . 50.719 with 4 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

CLARI 1 0.430051 0.26126 2.70947 0.0998 1.537

RIF 1 1.005416 0.23845 17.77884 0.0001 2.733

SWDRSTAT 1 -1.126498 0.19752 32.52551 0.0001 0.324

SWDRTD 1 0.055550 0.03201 3.01112 0.0827 1.057

Variable Label

CLARI 1=Clarithromycin arm, 0 otherwise

RIF 1=Rifabutin arm, 0 otherwise

SWDRSTAT Study Wide Dose Reduction Status

SWDRTD swdrstat*((mactime-365)/30)
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Interpretation of Hazard Ratios

βswdrstat = −1.1265

βswdrtd = 0.0556

Time Time Hazard
(months) (days) calculation Ratio

6 182.5 exp[−1.1265 + (−6.08)(0.0556)] 0.231

12 365 exp[−1.1265 + (0)(0.0556)] 0.324

18 547.5 exp[−1.1265 + (6.08)(0.0556)] 0.454

24 730 exp[−1.1265 + (12.17)(0.0556)] 0.637

30 912.5 exp[−1.1265 + (18.25)(0.0556)] 0.893

36 1095 exp[−1.1265 + (24.33)(0.0556)] 1.253

HR = exp[βswdrstat + βswdrtd

(
mactime−365)

30

)
]

In the early period after randomization to treatment, reduc-

tion of randomized dosage from 450mg to 300mg is associ-

ated with a decreased risk of MAC disease. After taking the

higher dosage for about 32 months, dropping to the lower

dosage has no impact, and as the treatment time increases

beyond 32 months, a lower dosage tends to be associated

with increased risk of MAC.
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3 different ways to code SWDR as time-dependent

covariate

proc phreg data=weighted;

model mactime*macstat(0) = clari rif swdr;

if (swdrtime>=mactime) then swdr=0;

else do;

if swdrstat=1 then swdr=1;

else swdr=0;

end;

test_trt: test clari, rif;

title2 ’I. Time-dependent indicator of dose reduction’;

proc phreg data=weighted;

model mactime*macstat(0) = clari rif swdr;

if swdrstat=0 or (swdrtime>=mactime) then swdr=0;

else swdr=1;

test_trt: test clari, rif;

title2 ’II. Time-dependent indicator of dose reduction’;

proc phreg data=weighted;

model mactime*macstat(0) = clari rif swdr;

if swdrstat=1 and (swdrtime<mactime) then swdr=1;

else swdr=0;

test_trt: test clari, rif;

title2 ’III. Time-dependent indicator of dose reduction’;
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Output is the same for all 3 cases:

Summary of the Number of

Event and Censored Values

Percent

Total Event Censored Censored

1178 121 1057 89.73

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1541.064 1517.426 23.639 with 3 DF (p=0.0001)

Score . . 24.844 with 3 DF (p=0.0001)

Wald . . 24.142 with 3 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

CLARI 1 0.328849 0.26017 1.59762 0.2062 1.389

RIF 1 0.905299 0.23775 14.49956 0.0001 2.473

SWDR 1 -0.648887 0.21518 9.09389 0.0026 0.523

SWDR is still protective? Does this make sense intuitively?

What other methods can we use to account for change in
dosage?
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Weighted adjusted dose (WAD) analyses

To try to get a better idea of the effect of changing doses

of rifabutin on the hazard for MAC disease, I created the

following weighted dose of randomized rifabutin:

• Between randomization date and SWDR date

=⇒ # Days at 450mg

• Between SWDR date and off-study date

=⇒ # Days at 300mg

• Between randomization date and Off-study date

=⇒ # Total Days

• Weighted randomized dose

rifwadr = (days450 + days300)/totdays

• Transformed to number of capsules per day;

rifwadr=rifwadr/150;

• Also calculated weighted dose while on treatment by

starting with on treatment date, stopping with off-treatment

date, and dividing by the total days on study.
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Weighted adjusted dose (WAD) analyses

Randomized assignment to rifabutin

Dependent Variable: MACTIME Time to MAC disease (days)

Censoring Variable: MACSTAT MAC status (1=yes,0=censored)

Censoring Value(s): 0

Ties Handling: BRESLOW

Summary of the Number of

Event and Censored Values

Percent

Total Event Censored Censored

1178 121 1057 89.73

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1541.064 1493.476 47.588 with 3 DF (p=0.0001)

Score . . 52.770 with 3 DF (p=0.0001)

Wald . . 50.295 with 3 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

CLARI 1 0.453283 0.26119 3.01179 0.0827 1.573

RIF 1 1.004846 0.23826 17.78681 0.0001 2.731

RIFWADR 1 1.530462 0.25681 35.51502 0.0001 4.620

For each additional capsule of rifabutin specified as ran-
domized treatment, the HR for MAC increased by 4.6
times
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Weighted adjusted dose (WAD) analyses

Actual dosage of rifabutin during the study

Dependent Variable: MACTIME Time to MAC disease (days)

Censoring Variable: MACSTAT MAC status (1=yes,0=censored)

Censoring Value(s): 0

Ties Handling: BRESLOW

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1541.064 1489.993 51.071 with 3 DF (p=0.0001)

Score . . 55.942 with 3 DF (p=0.0001)

Wald . . 53.477 with 3 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

CLARI 1 0.489583 0.26256 3.47693 0.0622 1.632

RIF 1 1.019675 0.23873 18.24291 0.0001 2.772

RIFWAD 1 -0.664689 0.10686 38.69332 0.0001 0.514

Here, higher values of RIFWAD probably reflect that the
patient was able to stay on treatment longer, which was
protective. The SWDR variable is also capturing whether a
patient had been able to tolerate the treatment long enough
to have the chance to have the protocol-mandated dose
reduction.

355



What happens if we add treatment discontinua-

tion as a time dependent covariate?

Dependent Variable: MACTIME Time to MAC disease (days)

Censoring Variable: MACSTAT MAC status (1=yes,0=censored)

Censoring Value(s): 0

Ties Handling: BRESLOW

Summary of the Number of

Event and Censored Values

Percent

Total Event Censored Censored

1178 121 1057 89.73

Testing Global Null Hypothesis: BETA=0

Without With

Criterion Covariates Covariates Model Chi-Square

-2 LOG L 1541.064 1501.595 39.469 with 4 DF (p=0.0001)

Score . . 42.817 with 4 DF (p=0.0001)

Wald . . 41.027 with 4 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Risk

Variable DF Estimate Error Chi-Square Chi-Square Ratio

CLARI 1 0.420447 0.26111 2.59284 0.1073 1.523

RIF 1 0.984114 0.23847 17.02975 0.0001 2.675

SWDR 1 -0.139245 0.23909 0.33919 0.5603 0.870

RXSTOP 1 0.902592 0.21792 17.15473 0.0001 2.466

SWDR is no longer significant!
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Last of all, a comparison of some of these models:

AIC
Model terms q −2 logL Criterion

Clari, Rif 2 1525.93 1531.93

Clari, Rif, Cd4cat 3 1497.57 1506.57

Clari, Rif, Cd4 3 1488.74 1497.74

Clari, Rif, Cd4cat, Ctg, Karnof 5 1482.67 1497.67

Clari, Rif, Swdrstat 3 1495.86 1504.86

Clari, Rif, Rifwadr 3 1493.48 1502.48

Clari, Rif, Swdrstat, Rifwadr 4 1493.44 1505.44

Clari, Rif, Rifwad 3 1489.99 1498.99

Models with time-dependent covariates
Clari, Rif, Claritd, Riftd 4 1525.84 1537.84

Clari, Rif, Swdrstat, Swdrtd 4 1492.69 1504.69

Clari, Rif, Swdr 3 1517.43 1526.43

Clari, Rif, Swdr, Rxstop 4 1501.60 1513.60

Clari, Rif, Cd4cat, Karnof, Rxstop 5 1461.90 1476.90

Clari, Rif, Cd4cat, Karnof, Rifwad 5 1448.14 1463.14
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Parametric Survival Analysis

So far, we have focused primarily on nonparametric and

semi-parametric approaches to survival analysis, with heavy

emphasis on the Cox proportional hazards model:

λ(t,Z) = λ0(t) exp(βZ)

We used the following estimating approach:

• We estimated λ0(t) nonparametrically, using the Kaplan-

Meier estimator, or using the Kalbfleisch/Prentice esti-

mator under the PH assumption

• We estimated β by assuming a linear model between the

log HR and covariates, under the PH model

Both estimates were based on maximum likelihood theory.
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There are several reasons why we should consider some al-

ternative approaches based on parametric models:

• The assumption of proportional hazards might not be

appropriate (based on major departures)

• If a parametric model actually holds, then we would

probably gain efficiency

• We may want to handle non-standard situations like

– interval censoring

– incorporating population mortality

• We may want to make some connections with other fa-

miliar approaches (e.g. use of the Poisson likelihood)

• We may want to obtain some estimates for use in design-

ing a future survival study.
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A simple start: Exponential Regression

• Observed data: (Xi, δi,Zi) for individual i,

Zi = (Zi1, Zi2, ..., Zip) represents a set of p covariates.

• Right censoring: Assume that Xi = min(Ti, Ui)

• Survival distribution: Assume Ti follows an expo-

nential distribution with a parameter λ that depends on

Zi, say λi = Ψ(Zi). Then we can write:

Ti ∼ exponential(Ψ(Zi))

First, let’s review some facts about the exponential distribu-

tion (from our first survival lecture):

f (t) = λe−λt for t ≥ 0

S(t) = P (T ≥ t) =
∫ ∞
t
f (u)du = e−λt

F (t) = P (T < t) = 1− e−λt

λ(t) =
f (t)

S(t)
= λ constant hazard!

Λ(t) =
∫ t
0
λ(u) du =

∫ t
0
λ du = λt
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Now, we say that λ is a constant over time t, but we want

to let it depend on the covariate values, so we are setting

λi = Ψ(Zi)

The hazard rate would therefore be the same for any two

individuals with the same covariate values.

Although there are many possible choices for Ψ, one simple

and natural choice is:

Ψ(Zi) = exp[β0 + Zi1β1 + Zi2β2 + ... + Zipβp]

WHY?

• ensures a positive hazard

• for an individual with Z = 0, the hazard is eβ0.

The model is called exponential regression because of

the natural generalization from regular linear regression
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Exponential regression for the 2-sample case:

• Assume we have only a single covariate Z = Z,

i.e., p = 1.

Hazard Rate:

Ψ(Zi) = exp(β0 + Ziβ1)

• Define:
Zi = 0 if individual i is in group 0

Zi = 1 if individual i is in group 1

•What is the hazard for group 0?

•What is the hazard for group 1?

•What is the hazard ratio of group 1 to group
0?

•What is the interpretation of β1?
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Likelihood for Exponential Model

Under the assumption of right censored data, each person

has one of two possible contributions to the likelihood:

(a) they have an event at Xi (δi = 1) ⇒ contribution is

Li = S(Xi)︸ ︷︷ ︸
· λ(Xi)︸ ︷︷ ︸

= e−λXi λ

survive to Xi fail at Xi

(b) they are censored at Xi (δi = 0) ⇒ contribution is

Li = S(Xi)︸ ︷︷ ︸
= e−λXi

survive to Xi

The likelihood is the product over all of the individuals:

L =
∏

i
Li

=
∏

i

(
λe−λXi

)δi

︸ ︷︷ ︸

(
e−λXi

)(1−δi)

︸ ︷︷ ︸
events censorings

=
∏

i
λδi

(
e−λXi

)
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Maximum Likelihood for Exponential

How do we use the likelihood?

• first take the log

• then take the partial derivative with respect to β

• then set to zero and solve for β̂

• this gives us the maximum likelihood estimators

The log-likelihood is:

logL = log


∏

i
λδi

(
e−λXi

)


=
∑

i
[δi log(λ)− λXi]

=
∑

i
[δi log(λ)]−

∑

i
λXi

For the case of exponential regression, we now substitute the

hazard λ = Ψ(Zi) in the above log-likelihood:

logL =
∑

i
[δi log(Ψ(Zi))]−

∑

i
Ψ(Zi)Xi (1)
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General Form of Log-likelihood

for Right Censored Data

In general, whenever we have right censored data, the likeli-

hood and corresponding log likelihood will have the following

forms:

L =
∏

i
[λi(Xi)]

δi Si(Xi)

logL =
∑

i
[δi log (λi(Xi))]−

∑

i
Λi(Xi)

where

• λi(Xi) is the hazard for the individual i who fails at Xi

• Λi(Xi) is the cumulative hazard for an individual at their

failure or censoring time

For example, see the derivation of the likelihood for a Cox

model on p.11-13 of Lecture 4 notes. We started with the

likelihood above, then substituted the specific forms for λ(Xi)

under the PH assumption.
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Consider our model for the hazard rate:

λ = Ψ(Zi) = exp[β0 + Zi1β1 + Zi2β2 + ... + Zipβp]

We can write this using vector notation, as follows:

Let Zi = (1, Zi1, ...Zip)
T

and β = (β0, β1, ...βp)

(Since β0 is the intercept (i.e., the log hazard rate for the

baseline group), we put a “1” as the first term in the vector

Zi.)

Then, we can write the hazard as:

Ψ(Zi) = exp[βZi]

Now we can substitute Ψ(Zi) = exp[βZi] in the log-likelihood

shown in (1):

logL =
n∑

i=1
δi(βZi)−

n∑

i=1
Xi exp(βZi)
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Score Equations

Taking the derivative with respect to β0, the score equation

is:

∂ logL
∂β0

=
n∑

i=1
[δi −Xi exp(βZi)]

For βk, k = 1, ...p, the equations are:

∂ logL
∂βk

=
n∑

i=1
[δiZik −XiZik exp(βZi)]

=
n∑

i=1
Zik[δi −Xi exp(βZi)]

To find the MLE’s, we set the above equations to 0 and

solve (simultaneously). The equations above imply that

the MLE’s are obtained by setting the weighted number of

failures (
∑
iZikδi) equal to the weighted cumulative hazard

(
∑
iZikΛ(Xi)).

367



To find the variance of the MLE’s, we need to take the second

derivatives:

− ∂2 logL
∂βk∂βj

=
n∑

i=1
ZikZijXi exp(βZi)

Some algebra (see Cox and Oakes section 6.2) reveals that

V ar(β̂) = I(β)−1 =
[
Z(I− Π)ZT

]−1

where

• Z = (Z1, . . . ,Zn) is a (p + 1)× n matrix

(p covariates plus the “1” for the intercept β0)

• Π = diag(π1, . . . , πn) (this means that Π is a diagonal

matrix, with the terms π1, . . . , πn on the diagonal)

• πi is the probability that the i-th person is censored, so

(1− πi) is the probability that they failed.

• Note: The information I(β) (inverse of the variance)

is proportional to the number of failures, not the sample

size. This will be important when we talk about study

design.
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The Single Sample Problem (Zi = 1 for everyone):

First, what is the MLE of β0?

We set ∂ logL
∂β0

=
∑n
i=1[δi−Xi exp(β0Zi)] equal to 0 and solve:

⇒
n∑

i=1
δi =

n∑

i=1
[Xi exp(β0)]

d = exp(β0)
n∑

i=1
Xi

exp(β̂0) =
d

∑n
i=1Xi

λ̂ =
d

t

where d is the total number of deaths (or events), and t =
∑
Xi is the total person-time contributed by all individuals.

If d/t is the MLE for λ, what does this imply

about the MLE of β0?
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Using the previous formula V ar(β̂) =
[
Z(I− Π)ZT

]−1
,

what is the variance of β̂0?:

With some matrix algebra, you can show that it is:

V ar(β̂0) =
1

∑n
i=1(1− πi)

=
1

d

What about λ̂ = eβ̂0?

By the delta method,

V ar(λ̂) = λ̂2 V ar(β̂0)

= ?
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The Two-Sample Problem:

Zi Subjects Events Follow-up

Group 0: Zi = 0 n0 d0 t0 =
∑n0
i=1Xi

Group 1: Zi = 1 n1 d1 t1 =
∑n1
i=1Xi

The log-likelihood:

logL =
n∑

i=1
δi(β0 + β1Zi)−

n∑

i=1
Xi exp(β0 + β1Zi)

so
∂ logL
∂β0

=
n∑

i=1
[δi −Xi exp(β0 + β1Zi)]

= (d0 + d1)− (t0e
β0 + t1e

β0+β1)

∂ logL
∂β1

=
n∑

i=1
Zi[δi −Xi exp(β0 + β1Zi)]

= d1 − t1e
β0+β1

This implies: λ̂1 = eβ̂0+β̂1 =?

λ̂0 = eβ̂0 =?

β̂0 = ?

β̂1 = ?
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Important Result:

The maximum likelihood estimates
(MLE’s) of the hazard rates under
the exponential model are the num-
ber of events divided by the person-
years of follow-up!

(this result will be relied on heavily when we dis-
cuss study design)
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Exponential Regression:

Means and Medians

Mean Survival Time

For the exponential distribution, E(T ) = 1/λ.

• Control Group:
T 0 = 1/λ̂0 = 1/ exp(β̂0)

• Treatment Group:
T 1 = 1/λ̂1 = 1/ exp(β̂0 + β̂1)

Median Survival Time

This is the value M at which S(t) = e−λt = 0.5, so M =

median = − log(0.5)
λ

• Control Group:

M̂0 =
− log(0.5)

λ̂0
=
− log(0.5)

exp(β̂0)

• Treatment Group:

M̂1 =
− log(0.5)

λ̂1
=

− log(0.5)

exp(β̂0 + β̂1)
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Exponential Regression:

Variance Estimates and Test Statistics

We can also calculate the variances of the MLE’s as simple

functions of the number of failures:

var(β̂0) =
1

d0

var(β̂1) =
1

d0
+

1

d1

So our test statistics are formed as:

For testing Ho : β0 = 0:

χ2
w =

(
β̂0

)2

var(β̂0)

=
[log(d0/t0)]

2

1/d0

For testing Ho : β1 = 0:

χ2
w =

(
β̂1

)2

var(β̂1)

=

[
log(d1/t1

d0/t0
)
]2

1
d0

+ 1
d1

How would we form confidence intervals for the hazard
ratio?
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The Likelihood Ratio Test Statistic:

(An alternative to the Wald test)

A likelihood ratio test is based on 2 times the log of the ratio

of the likelihoods under the null and alternative. We reject

H0 if 2 log(LR) > χ21,0.05, where

LR =
L(H1)

L(H0)
=
L(λ̂0, λ̂1)
L(λ̂)

For a sample of n independent exponential random variables

with parameter λ, the Likelihood is:

L =
n∏

i=1
[λδi exp(−λxi)]

= λd exp(−λ∑
xi)

= λd exp(−λnx̄)
where d is the number of deaths or failures.

The log-likelihood is

` = d log(λ)− λnx̄

and the MLE is

λ̂ = d/(nx̄)
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2-Sample Case: LR test calculations

Data:

Group 0: d0 failures among the n0 females

mean failure time is x̄0 = (
∑n0
i Xi)/n0

Group 1: d1 failures among the n1 males

mean failure time is x̄1 = (
∑n1
i Xi)/n1

Under the alternative hypothesis:

L = λd1
1 exp(−λ1n1x̄1)× λd0

0 exp(−λ0n0x̄0)
log(L) = d1 log(λ1)− λ1n1x̄1 + d0 log(λ0)− λ0n0x̄0

The MLE’s are:

λ̂1 = d1/(n1x̄1) for males

λ̂0 = d0/(n0x̄0) for females

Under the null hypothesis:

L = λd1+d0 exp[−λ(n1x̄1 + n0x̄0)]

log(L) = (d1 + d0) log(λ)− λ[n1x̄1 + n0x̄0]

The corresponding MLE is

λ̂ = (d1 + d0)/[n1x̄1 + n0x̄0]
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A likelihood ratio test can be constructed by taking twice the

difference of the log-likelihoods under the alternative and the

null hypotheses:

−2


(d0 + d1) log



d0 + d1
t0 + t1


− d1 log[d1/t1]− d0 log[d0/t0]




Nursing home example:

For the females:

• n0 = 1173

• d0 = 902

• t0 = 310754

• x̄0 = 265

For the males:

• n1 = 418

• d1 = 367

• t1 = 75457

• x̄1 = 181

Plugging these values in, we get a LR test statistic of 64.20.
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Hand Calculations using events and follow-up:

By adding up “los” for males to get t1 and for females to

get t0, I obtained:

• d0 = 902 (females)

d1 = 367 (males)

• t0 = 310754 (female follow-up)

t1 = 75457 (male follow-up)

• This yields an estimated log HR:

β̂1 = log


d1/t1

d0/t0


 = log


 367/75457

902/310754


 = log(1.6756) = 0.5162

• The estimated standard error is:
√
var(β̂1) =

√√√√ 1

d1
+
1

d0
=

√√√√ 1

902
+
1

367
= 0.06192

• So the Wald test becomes:

χ2
W =

β̂2
1

var(β̂1)
=
(0.51619)2

0.061915
= 69.51

• We can also calculate β̂0 = log(d0/t0) = −5.842,
along with its standard error se(β̂0) =

√
(1/d0) = 0.0333
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Exponential Regression in STATA

. use nurshome

. stset los fail

. streg gender, dist(exp) nohr

failure _d: fail

analysis time _t: los

Iteration 0: log likelihood = -3352.5765

Iteration 1: log likelihood = -3321.966

Iteration 2: log likelihood = -3320.4792

Iteration 3: log likelihood = -3320.4766

Iteration 4: log likelihood = -3320.4766

Exponential regression -- log relative-hazard form

No. of subjects = 1591 Number of obs = 1591

No. of failures = 1269

Time at risk = 386211

LR chi2(1) = 64.20

Log likelihood = -3320.4766 Prob > chi2 = 0.0000

-------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------|--------------------------------------------------------------

gender | .516186 .0619148 8.337 0.000 .3948352 .6375368

_cons |-5.842142 .0332964 -175.459 0.000 -5.907402 -5.776883

-------------------------------------------------------------------------

Since Z = 8.337, the chi-square test is Z2 = 69.51.
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Exponential Regression in SAS - proc lifereg

proc format;

value censfmt 1=’Censored’

0=’Dead’;

value grpfmt 0=’Group 0 (F)’

1=’Group 1 (M)’;

Title ’Exponential Hazard Model for Nursing Home Patients’;

data morris;

infile ’ch12.dat’;

input los age trt gender marstat hltstat cens;

data morris2;

set morris;

if los=0 then delete;

proc freq data=morris2;

table cens*gender/ norow nocol nopercent;

format cens censfmt. gender grpfmt.;

proc lifereg data=pop covout outest=survres;

model los*censor(1)=gender /dist=exponential;

run;

RESULTS:

TABLE OF CENS BY GENDER

CENS GENDER

Frequency|Group 0 |Group 1 | Total

|(F) |(M) |

---------+--------+--------+

Event | 902 | 367 | 1269

---------+--------+--------+

Censored | 271 | 51 | 322

---------+--------+--------+

Total 1173 418 1591

380



PROC LIFEREG RESULTS:

Exponential Hazard Model for Nursing Home Patients

Lifereg Procedure

Data Set =WORK.MORRIS2

Dependent Variable=Log(LOS)

Censoring Variable=CENS

Censoring Value(s)= 1

Noncensored Values= 1269 Right Censored Values= 322

Left Censored Values= 0 Interval Censored Values= 0

Log Likelihood for EXPONENT -3320.476626

Lifereg Procedure

Variable DF Estimate Std Err ChiSquare Pr>Chi Label/Value

INTERCPT 1 5.84213388 0.033296 30786 0.0001 Intercept

GENDER 1 -0.5161878 0.061915 69.50734 0.0001

SCALE 0 1 0 Extreme value scale

Note that the estimates for β0 and β1 above are

the opposites of what we calculated. I’ll explain

why the output has this form when we get to

AFT models.
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The Weibull Regression Model

At the beginning of the course, we saw that the survivorship

function for a Weibull random variable is:

S(t) = exp[−λ(tκ)]
and the hazard function is:

λ(t) = κλ t(κ−1)

The Weibull regression model assumes that for someone with

covariates Zi, the survivorship function is

S(t;Zi) = exp[−Ψ(Zi)(t
κ)]

where Ψ(Zi) is defined as in exponential regression to be:

Ψ(Zi) = exp[β0 + Zi1β1 + Zi2β2 + ...Zipβp]

For the 2-sample problem, we have:

Ψ(Zi) = exp[β0 + Zi1β1]
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Weibull MLEs for the 2-sample problem:

Log-likelihood:

logL =
n∑

i=1

δi log
[
κ exp(β0 + β1Zi)X

κ−1
i

]
−

n∑

i=1

Xκ
i exp(β0 + β1Zi)

⇒ exp(β̂0) = d0/t0κ

exp(β̂0 + β̂1) = d1/t1κ

where tjκ =
nj∑

i=1
X κ̂
i among nj subjects

λ̂0(t) = κ̂ exp(β̂0) t
κ̂−1

λ̂1(t) = κ̂ exp(β̂0 + β̂1) t
κ̂−1

ĤR = λ̂1(t)/λ̂0(t) = exp(β̂1)

= exp



d1/t1κ
d0/t0κ



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Weibull Regression:

Means and Medians

Mean Survival Time

For the Weibull distribution, E(T ) = λ(−1/κ)Γ[(1/κ) + 1].

• Control Group:
T 0 = λ̂

(−1/κ̂)
0 Γ[(1/κ̂) + 1]

• Treatment Group:
T 1 = λ̂

(−1/κ̂)
1 Γ[(1/κ̂) + 1]

Median Survival Time

For the Weibull distribution, M = median =
[− log(0.5)

λ

]1/κ

• Control Group:

M̂0 =



− log(0.5)

λ̂0




1/κ̂

• Treatment Group:

M̂1 =



− log(0.5)

λ̂1




1/κ̂

where λ̂0 = exp(β̂0) and λ̂1 = exp(β̂0 + β̂1).
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Note: the symbol Γ is the “gamma” function. If x is an

integer, then

Γ(x) = (x− 1)!

In cases where x is not an integer, this function has to be

evaluated numerically.

The Weibull regression model is very easy to fit:

• In sas: use model option dist=weibull within the

proc lifereg procedure

• In stata: Just specify dist(weibull) instead

of dist(exp) within the streg command

Note: to get more information on these modeling procedures,

use the online help facilities. For example, in Stata, you

can type:

.help streg
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Weibull in Stata:

. streg gender, dist(weibull) nohr

failure _d: fail

analysis time _t: los

Fitting constant-only model:

Iteration 0: log likelihood = -3352.5765

Iteration 1: log likelihood = -3074.978

Iteration 2: log likelihood = -3066.1526

Iteration 3: log likelihood = -3066.143

Iteration 4: log likelihood = -3066.143

Fitting full model:

Iteration 0: log likelihood = -3066.143

Iteration 1: log likelihood = -3045.8152

Iteration 2: log likelihood = -3045.2772

Iteration 3: log likelihood = -3045.2768

Iteration 4: log likelihood = -3045.2768

Weibull regression -- log relative-hazard form

No. of subjects = 1591 Number of obs = 1591

No. of failures = 1269

Time at risk = 386211

LR chi2(1) = 41.73

Log likelihood = -3045.2768 Prob > chi2 = 0.0000

------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------

gender | .4138082 .0621021 6.663 0.000 .2920903 .5355261

_cons | -3.536982 .0891809 -39.661 0.000 -3.711773 -3.362191

---------+--------------------------------------------------------------

/ln_p | -.4870456 .0232089 -20.985 0.00 -.5325343 -.4415569

------------------------------------------------------------------------

p | .614439 .0142605 .5871152 .6430345

1/p | 1.627501 .0377726 1.555127 1.703243

------------------------------------------------------------------------
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Weibull in SAS

proc lifereg data=morris2 covout outest=survres;

model los*censor(1)=gender / dist=weibull;

run;

Data Set =WORK.MORRIS2

Dependent Variable=Log(LOS)

Censoring Variable=CENS

Censoring Value(s)= 1

Noncensored Values= 1269 Right Censored Values= 322

Left Censored Values= 0 Interval Censored Values= 0

Log Likelihood for WEIBULL -3045.276811

Lifereg Procedure

Variable DF Estimate Std Err ChiSquare Pr>Chi Label/Value

INTERCPT 1 5.75644118 0.0542 11280.04 0.0001 Intercept

GENDER 1 -0.6734732 0.101067 44.40415 0.0001

SCALE 1 1.62750085 0.037773 Extreme value scale

387



In SAS, both the exponential and Weibull are special cases

of the general class of accelerated life models and the

parameter interpretations follow from this approach.

To translate the output of SAS (or Stata using the ereg

command) for Weibull regression, we have to take the nega-

tive of the numbers in the output, divided by the “ scale ”

parameter (σ, or 1/κ).

• β̂0 = −intercpt/ scale

• β̂1 = −covariate/ scale

Then we calculate the estimated HR as exp(β̂1).

The MLE’s are:

• β̂0 = −intercpt/ scale = −5.756/1.627 = −3.537

• β̂1 = −covariate/ scale = 0.6735/1.625 = 0.414

and the estimated HR is ĤR = exp(β̂1) = exp(0.414) =

1.513.
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Weibull Regression:

Variance Estimates and Test Statistics

It is not so easy to get variance estimates from the output

of proc lifereg in SAS or weibull in stata, at least for

the parameters we’re interested in.

The variances depend on inverting a (3 × 3) matrix corre-

sponding to the parameters β0, β1, and κ. The MLE for κ̂

has to be obtained numerically (i.e., no closed form), so the

standard errors also have to be obtained by computer.

Main objective: to obtain s.e.(β̂1), so that we can form

tests and confidence intervals for the hazard ratio.

The output gives us β̂∗1 and s.e.(β̂∗1), where β̂1 = −β̂∗1/σ̂. If
σ was a constant, then we could just compute

var(β̂1) =
1

σ̂2
var(β̂∗1)

but σ is also a random variable! Instead, you need to use

an approximation for the variance of a ratio of two random

variables:

var(β̂1) =
1

σ̂4

[
σ̂2var(β̂∗1) + (β̂∗1)

2var(σ̂)− 2β̂∗1 σ̂cov(β̂
∗
1 , σ̂)

]

where you get var(β̂∗1) and var(σ̂) by squaring the standard

errors of the covariate term and scale term, respec-

tively, from the proc lifereg or weibull output.
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Comparison of Exponential with Kaplan-Meier

We can see how well the Exponential model fits by compar-

ing the survival estimates for males and females under the

exponential model, i.e., P (T ≥ t) = e(−λ̂zt), to the Kaplan-

Meier survival estimates:

S
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v
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0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0
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Comparison of Weibull with Kaplan-Meier

We can see how well the Weibull model fits by comparing

the survival estimates, P (T ≥ t) = e(−λ̂zt
κ̂), to the Kaplan-

Meier survival estimates.

S
u
r
v
i
v
a
l

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

L e n g t h  o f  S t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0

Which do you think fits best?
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Other useful plots for evaluating fit to exponen-

tial and Weibull models

• − log(Ŝ(t)) vs t

• log[− log(Ŝ(t))] vs log(t)

Why are these useful?

If T is exponential, then S(t) = exp(−λt))
so log(S(t)) = −λt
and Λ(t) = λ t

a straight line in t with slope λ and intercept=0

If T is Weibull, then S(t) = exp(−(λt)κ)

so log(S(t)) = −λtκ
then Λ(t) = λtκ

and log(− log(S(t))) = log(λ) + κ ∗ log(t)

a straight line in log(t) with slope κ and intercept log(λ).
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So we can calculate our estimated Λ(t) and plot it versus t,

and if it seems to form a straight line, then the exponential

distribution is probably appropriate for our dataset.

Plots for nursing home data: Λ̂(t) vs t

Ne
ga

ti
ve

 L
og

 S
DF

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0

L O S
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0 1 2 0 0
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Or we can plot log Λ̂(t) versus log(t), and if it seems to

form a straight line, then the Weibull distribution is probably

appropriate for our dataset.

Plots for nursing home data: log[−log(Ŝ(t))] vs log(t)
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Comparison of Methods

for the Two-sample problem:

Data:

Zi Subjects Events Follow-up

Group 0: Zi = 0 n0 d0 t0 =
∑n0
i=1Xi

Group 1: Zi = 1 n1 d1 t1 =
∑n1
i=1Xi

In General:

λz(t) = λ(t, Z = z) for z = 0 or 1.

The hazard rate depends on the value of the covariate Z.

In this case, we are assuming that we only have a single

covariate, and it is binary (Z = 1 or Z = 0)
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MODELS

Exponential Regression:

λz(t) = exp(β0 + β1Z)

⇒ λ0 = exp(β0)

λ1 = exp(β0 + β1)

HR = exp(β1)

Weibull Regression:

λz(t) = κ exp(β0 + β1Z) tκ−1

⇒ λ0 = κ exp(β0) t
κ−1

λ1 = κ exp(β0 + β1) t
κ−1

HR = exp(β1)

Proportional Hazards Model:

λz(t) = λ0(t) exp(β1)

⇒ λ0 = λ0(t)

λ1 = λ0(t) exp(β1)

HR = exp(β1)
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Remarks

• Exponential model is a special case of the Weibull model

with κ = 1 (note: Collett uses γ instead of κ)

• Exponential and Weibull models are both special cases

of the Cox PH model.

How can you show this?

• If either the exponential model or the Weibull model is

valid, then these models will tend to be more efficient

than PH (smaller s.e.’s of estimates). This is because

they assume a particular form for λ0(t), rather than es-

timating it at every death time.
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For the Exponential model, the hazards are constant over

time, given the value of the covariate Zi:

Zi = 0⇒ λ̂0 = exp(β̂0)

Zi = 1⇒ λ̂0 = exp(β̂0 + β̂1)

For the Weibull model, we have to estimate the hazard as a

function of time, given the estimates of β0, β1 and κ:

Zi = 0⇒ λ̂0(t) = κ̂ exp(β̂0) t
κ̂−1

Zi = 1⇒ λ̂1(t) = κ̂ exp(β̂0 + β̂1) t
κ̂−1

However, the ratio of the hazards is still just exp(β̂1), since

the other terms cancel out.

398



Here’s what the estimated hazards look like for

the nursing home data:

E x p o n e n t i a l  H a z a r d :  F e m a l e
E x p o n e n t i a l  H a z a r d :  M a l e
W e i b u l l  H a z a r d :  F e m a l e
W e i b u l l  H a z a r d :  M a l eH

a
z
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r
d
 
R
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e

0 . 0 0 0

0 . 0 0 5

0 . 0 1 0

0 . 0 1 5

0 . 0 2 0

0 . 0 2 5

0 . 0 3 0

L e n g t h  o f  s t a y  ( d a y s )
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
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Comparison with Proportional Hazards Model

. stcox gender, nohr

failure _d: fail

analysis time _t: los

Iteration 0: log likelihood = -8556.5713

Iteration 1: log likelihood = -8537.8013

Iteration 2: log likelihood = -8537.5605

Iteration 3: log likelihood = -8537.5604

Refining estimates:

Iteration 0: log likelihood = -8537.5604

Cox regression -- Breslow method for ties

No. of subjects = 1591 Number of obs = 1591

No. of failures = 1269

Time at risk = 386211

LR chi2(1) = 38.02

Log likelihood = -8537.5604 Prob > chi2 = 0.0000

-----------------------------------------------------------------------

_t |

_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+-------------------------------------------------------------

gender | .3943588 .0621004 6.350 0.000 .2726441 .5160734

-----------------------------------------------------------------------

For the PH model, β̂1 = 0.394 and ĤR = e0.394 = 1.483.

400



Comparison with the Logrank andWilcoxon Tests

. sts test gender

failure _d: fail

analysis time _t: los

Log-rank test for equality of survivor functions

------------------------------------------------

| Events

gender | observed expected

-------+-------------------------

0 | 902 995.40

1 | 367 273.60

-------+-------------------------

Total | 1269 1269.00

chi2(1) = 41.08

Pr>chi2 = 0.0000

. sts test gender, wilcoxon

failure _d: fail

analysis time _t: los

Wilcoxon (Breslow) test for equality of survivor functions

----------------------------------------------------------

| Events Sum of

gender | observed expected ranks

-------+--------------------------------------

0 | 902 995.40 -99257

1 | 367 273.60 99257

-------+--------------------------------------

Total | 1269 1269.00 0

chi2(1) = 41.47

Pr>chi2 = 0.0000
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Comparison of Hazard Ratios and Test Statistics

for effect of Gender

Wald
Model/Method λ0 λ1 HR log(HR) se(log HR) Statistic

Exponential 0.0029 0.0049 1.676 0.5162 0.0619 69.507

Weibull
t = 50 0.0040 0.0060 1.513 0.4138 0.0636 42.381
t = 100 0.0030 0.0046 1.513
t = 500 0.0016 0.0025 1.513

Logrank 41.085

Wilcoxon 41.468

Cox PH
Ties=Breslow 1.483 0.3944 0.0621 40.327

Ties=Discrete 1.487 0.3969 0.0623 40.565

Ties=Efron 1.486 0.3958 0.0621 40.616

Ties=Exact 1.486 0.3958 0.0621 40.617

Score (Discrete) 41.085
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Comparison of Mean and Median Survival

Times by Gender

Mean Survival Median Survival
Model/Method Female Male Female Male

Exponential 344.5 205.6 238.8 142.5

Weibull 461.6 235.4 174.2 88.8

Kaplan-Meier 318.6 200.7 144 70

Cox PH 131 72
(Kalbfleisch/Prentice)
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The Accelerated Failure Time Model

The general form of an accelerated failure time (AFT) model

is:

log(Ti) = βAFTZi + σε

where

• log(Ti) is the log of a survival time

• βAFT is the vector of AFT model parameters corre-

sponding to the covariate vector Zi

• ε is a random “error” term

• σ is a scale factor

In other words, we can model the log-survival

times as a linear function of the covariates.

proc lifereg in SAS and the streg command in stata

(without the exponential or weibull option) all use this “log-

linear” model formulation for fitting parametric models.
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By choosing different distributions for ε, we can obtain dif-

ferent parametric distributions:

• Exponential

• Weibull

• Gamma

• Log-logistic

• Normal

• Lognormal

We can compare the predicted survival under any of these

parametric distributions to the KM estimated survival to see

which one seems to fit best.

Once we decide on a certain class of model (say, Gamma),

we can evaluate the contributions of covariates by finding

the MLE’s, and constructing Wald, Score, or LR tests of the

covariate effects.
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We can motivate the AFT model by first demonstrating the

following two relationships:

• 1. For the Exponential Model:
If the failure times Ti = T (Zi) follow an exponential

distribution, i.e., Si(t) = e−λit with λi = exp(βZi),

then

log(Ti) = −βZi + ε

where ε follows an extreme value distribution (which just

means that eε follows a unit exponential distribution).

• 2. For the Weibull Model:
If the failure times Ti = T (Zi) follow a Weibull distri-

bution, i.e., Si(t) = eλit
κ
with λi = exp(βZi), then

log(Ti) = −σβZi + σε

where ε again follows an extreme value distribution, and

σ = 1/κ.

In other words, both the Exponential and Weibull model can

be written in the form of a log-linear model for the survival

times, if we choose the right distribution for ε.
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The log-linear form for the exponential can be derived by:

(1) Creating a new variable T0 = TZ × exp(βZi)

(2) Taking the log of TZ , yielding log(TZ) = log
(

T0

exp(βZi)

)

Step (1): For an exponential model, recall that:

Si(t) = Pr(TZ ≥ t) = e−λt, with λ = exp(βZi)

It follows that T0 ∼ exp(1):

S0(t) = Pr(T0 ≥ t) = Pr(TZ · exp(βZ) ≥ t)

= Pr(TZ ≥ t exp(−βZ))
= exp [−λ t exp(−βZ)]
= exp [− exp(βZ) t exp(−βZ)]
= exp(−t)

Step (2): Now take the log of the survival time:

log(TZ) = log




T0
exp(βZi)




= log(T0)− log (exp(βZi))

= −βZi + log(T0)

= −βZi + ε

where ε = log(T0) follows the extreme value distribution.
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Relationship between Exponential and Weibull

If TZ has a Weibull distribution, i.e., S(t) = e−λt
κ

with λ = exp(βZi), then you can show that the new variable

T ∗Z = T κ
Z

follows an exponential distribution with parameter exp(βZi).

Based on the previous page, we can therefore write:

log(T ∗) = −βZ + ε

(where ε has an extreme value distribution.)

But since log(T ∗) = log(T κ) = κ× log(T ), we can write:

log(T ) = log(T ∗)/κ

= (1/κ) (−βZi + ε)

= −σβZi + σε

where σ = 1/κ.
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This motivates the following general definition of the

Accelerated Failure Time Model by:

log(Ti) = βAFTZi + σε

where ε is a random “error” term, σ is a scale factor, Y is

the log of a survival random variable, and

βAFT = −σβe
where βe came from the hazard λ = exp(βZ).

The defining feature of an AFT model is:

S(t;Z) = Si(t) = S0(φ t)

That is, the effect of covariates is to accelerate
(stretch) or decelerate (shrink) the time-scale.

Effect of AFT on hazard:

λi(t) = φ λ0(φt)
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One way to interpret the AFT model is via its effect on

median survival times. If Si(t) = 0.5, then S0(φt) = 0.5.

This means:

Mi = φM0

Interpretation:

• For φ < 1, there is an acceleration of the endpoint

(if M0 = 2yrs in control and φ = 0.5, then Mi = 1yr.

• For φ > 1, there is a stretching or delay in endpoint

• In general, the lifetime of individual i is φ times what

they would have experienced in the reference group

Since φ must be positive and a function of the covariates, we

model φ = exp(βZi).
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When does Proportional hazards = AFT?

According to the proportional hazards model:

S(t) = S0(t)
exp(βZi)

and according to the accelerated failure time model:

S(t) = S0(t exp(βZi))

Say Ti ∼ Weibull(λ, κ). Then λ(t) = λκt(κ−1)

Under the AFT model:

λi(t) = φ λ0(φt)

= eβZi λ0(e
βZit)

= eβZi λ0κ
(
eβZit

)(κ−1)

=
(
eβZi

)κ
λ0κt

(κ−1)

=
(
eβZi

)κ
λ0(t)

But this looks just like the PH model:

λi(t) = exp(β∗Zi) λ0(t)

It turns out that the Weibull distribution (and exponential,

since this is just a special case of a Weibull with κ = 1)

is the only one for which the accelerated failure time and

proportional hazards models coincide.
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Special cases of AFT models

• Exponential regression: σ = 1, ε following the extreme

value distribution.

• Weibull regression: σ arbitrary, ε following the extreme

value distribution.

• Lognormal regression: σ arbitrary, ε following the nor-

mal distribution.

Examples in stata: Using the streg command, one

has the following options of distributions for the log-survival

times:

. streg trt, dist(lognormal)

• exponential

• weibull

• gompertz

• lognormal

• loglogistic

• gamma
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. streg gender, dist(exponential) nohr

------------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

gender | .516186 .0619148 8.337 0.000 .3948352 .6375368

------------------------------------------------------------------------------

. streg gender, dist(weibull) nohr

------------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

gender | .4138082 .0621021 6.663 0.000 .2920903 .5355261

1/p | 1.627501 .0377726 1.555127 1.703243

------------------------------------------------------------------------------

. streg gender, dist(lognormal)

------------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

gender | -.6743434 .1127352 -5.982 0.000 -.8953002 -.4533866

_cons | 4.957636 .0588939 84.179 0.000 4.842206 5.073066

sigma | 1.94718 .040584 1.86924 2.028371

------------------------------------------------------------------------------

. streg gender, dist(gamma)

------------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

gender | -.6508469 .1147116 -5.674 0.000 -.8756774 -.4260163

_cons | 4.788114 .1020906 46.901 0.000 4.58802 4.988208

sigma | 1.97998 .0429379 1.897586 2.065951

------------------------------------------------------------------------------
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This gives a good idea of the sensitivity of the test of gender

to the choice of model. It is also easy to get predicted sur-

vival curves under any of the parametric models using the

following:

. streg gender, dist(gamma)

. stcurv, survival

The options hazard and cumhaz can also be substituted

for survival above to obtain plots.

414



AFT models in SAS

proc lifereg data=pop covout outest=survres;

model los*censor(1)=gender /dist=exponential;

model los*censor(1)=gender /dist=weibull;

model los*censor(1)=gender /dist=gamma;

model los*censor(1)=gender /dist=normal;

Other options are lognormal, logistic, and log-logistic. The

default is to model log of response. Can specify ”NOLOG”

for no log-transformation. In this case, ”normal” is the same

as ”lognormal.”
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Lifereg Procedure

Log Likelihood for EXPONENT -3320.476626

Variable DF Estimate Std Err ChiSquare Pr>Chi Label/Value

INTERCPT 1 5.84213388 0.033296 30786 0.0001 Intercept

GENDER 1 -0.5161878 0.061915 69.50734 0.0001

SCALE 0 1 0 Extreme value scale

Lagrange Multiplier ChiSquare for Scale 337.5998 Pr>Chi is 0.0001.

Log Likelihood for WEIBULL -3045.276811

Variable DF Estimate Std Err ChiSquare Pr>Chi Label/Value

INTERCPT 1 5.75644118 0.0542 11280.04 0.0001 Intercept

GENDER 1 -0.6734732 0.101067 44.40415 0.0001

SCALE 1 1.62750085 0.037773 Extreme value scale

Log Likelihood for GAMMA -2970.388508

Variable DF Estimate Std Err ChiSquare Pr>Chi Label/Value

INTERCPT 1 4.78811071 0.104333 2106.114 0.0001 Intercept

GENDER 1 -0.6508468 0.114748 32.17096 0.0001

SCALE 1 1.97998063 0.043107 Gamma scale parameter

SHAPE 1 -0.1906006 0.094752 Gamma shape parameter

Log Likelihood for NORMAL -9593.512838

Variable DF Estimate Std Err ChiSquare Pr>Chi Label/Value

INTERCPT 1 303.824624 9.919629 938.1129 0.0001 Intercept

GENDER 1 -107.09585 18.97784 31.84577 0.0001

SCALE 1 330.093584 6.918237 Normal scale parameter
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Designing a Survival Study

We will focus on the power of tests based on the exponential

distribution and the logrank test.

• As in standard designs, the power depends on

– The Type I error (significance level)

– The difference of interest, ∆, under Ha.

• A notable difference from the usual scenario is that power

depends on the number of failures, not the total

sample size.

• In practice, designing a survival study involves deciding

how many patients or individuals to enter, as well as how

long they should be followed.

• Designs may be fixed sample size or sequential

(More on this later!)

References:

Collett Chapter 12

Pocock Chapter 9 of Clinical Trials

Williams Chapter 10 of AIDS Clinical Trials

(eds. Finkelstein and Schoenfeld)
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Review of power calculations for 2-sample normal

Suppose we have the following data:

Group 1: (Y11, . . . Y1n1)

Group 0: (Y01, . . . Y0n0)

and make the following assumptions:

Y1j ∼ N (µ1, σ
2) Y0j ∼ N (µ0, σ

2)

Our objective is to test:

H0 : µ1 = µ0 ⇒ H0 : 4 = 0 where 4 = µ1 − µ0

The standard test is based on the Z statistic:

Z =
Y1 − Y0√
s2( 1

n1
+ 1

n0
)

where s2 is the pooled sample variance (we are assuming

equal variances here). This test statistic follows a N (0, 1)

distribution under H0.

If the sample sizes are equal in the two arms, n0 = n1 = n/2,

(which will maximize the power), then we have the simpler

form:

Z =
Y1 − Y0√

s2( 1
n/2 +

1
n/2)

=
Y1 − Y0
2s/
√
n
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The steps to follow in calculating the sample size are:

(1) Determine the critical value, c, for rejecting the null

when it is true.

(2) Calculate the probability of rejecting the null when the

alternative is true, substituting c from above.

(3) Rewrite the expression in terms of the sample size for a

given power.

Step (1):

Set the significance level, α, equal to the probability of re-

jecting the null hypothesis when it is true:

α = Pr (|Y1 − Y0| > c | H0)

= Pr



|Y1 − Y0|
2s/
√
n

>
c

2s/
√
n
| H0




= Pr


|Z| > c

2s/
√
n


 = 2 · Φ




c

2s/
√
n




so z1−α/2 =
c

2s/
√
n

or c =
z1−α/2 2 s√

n

Note that zγ is the value such that Φ(zγ) = Pr(Z < zγ) =

γ.
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Step (2):

Calculate the probability of rejecting the null when Ha is

true. Start out by writing down the probability of a Type II

error:

β = Pr (accept H0 | Ha)

so 1− β = Pr (reject H0 | Ha)

= Pr (|Y1 − Y0| > c | Ha)

= Pr



|Y1 − Y0| −∆

2s/
√
n

>
c−∆

2s/
√
n
| Ha




= Pr


Z >

c−∆

2s/
√
n




so we get zβ = −z1−β =
c−∆

2s/
√
n

Now we substitute c from Step (1):

−z1−β =
z1−α/2 2 s/

√
n−∆

2s/
√
n

= z1−α/2 −
∆

2 s /
√
n
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Step (3):

Now rewrite the equation in terms of sample size for a given

power, 1− β, and significance level, α:

z1−α/2 + z1−β =
∆

2s/
√
n

=
∆
√
n

2s

=⇒ n =
(z1−α/2 + z1−β)24s2

∆2

Notes:

The power is an increasing function of the standardized dif-

ference:

µT (4) =
4

2s/
√
n

This is just the number of standard errors between the two

means, under the assumption of equal variances.

1. As n increases, the power increases.

2. For fixed n, the power increases with 4.

3. For fixed n and 4, the power decreases with s.

4. Assigning equal numbers of patients to the two groups

(n1 = n0 = n/2) is best in terms of maximizing power.
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An Example:

n =

(
z1−α

2
+ z1−β

)2
4s2

42

Say we want to derive the total sample size required to yield

90% power for detecting a difference of 0.5 standard devia-

tions between means, based on a two-sided 0.05 level test.

α = 0.05

z1−α
2

= 1.96

β = 0.10

z1−β = z0.90 = 1.28

n =
(1.96 + 1.28)2 4s2

42
≈ 42 s2

42

For a 0.5 standard deviation difference, ∆/s = 0.5, so

n ≈ 42

(0.5)2
= 168

If you end up with n < 30, then you should be using the

t-distribution rather than the normal to calculate critical

values, and then the process is iterative.
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Survival Studies: Comparing Proportions of Events

In some cases, the sample size for a survival trial is based

on a crude comparison of the proportion of events at some

fixed point in time.

In this case, we can apply the results just shown to get sample

sizes, based on the normal approximation to the binomial:

Define:

Pc probability of event in control arm by time t

Pe probability of event in “experimental” arm by time t

The number of patients required per treatment arm based

on a chi-square test comparing binomial proportions is:

N =
{z1−α

2

√
2P (1− P ) + z1−β

√
Pe(1− Pe) + Pc(1− Pc)}2

(Pc − Pe)2

where P = (Pe + Pc)/2

(This looks slightly different because the variance is not the

same under Ho and Ha, as was the case in the normal pre-

vious example.)
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Notes on comparing proportions of failures:

• Use of chi-square test is best when 0.2 < Pe, Pc < 0.8

• Should have ≥ 15 patients in each cell of the (2x2) table

• For smaller sample sizes, use Fisher’s exact test to mo-

tivate power calculations

• Efficiency vs logrank test is near 100% for studies with

short durations relative to the median event time

What does this mean in terms of the event

rates? High or low?

• Calculation of sample size for comparing proportions of-

ten provides an upper bound to those based on compar-

ison of survival distributions
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Sample size based on the logrank test

Recap: Consider a two group survival problem, with equal

numbers of individuals in the two groups (say n0 in group 0

and n1 in group 1). Let τ1, ..., τK represent the K ordered,

distinct failure times, and at the j-th event time:

Die/Fail

Group Yes No Total

0 d0j r0j − d0j r0j

1 d1j r1j − d1j r1j

Total dj rj − dj rj

where d0j and d1j are the number of deaths (events) in group

0 and 1, respectively, at the j-th event time, and r0j and r1j
are the corresponding numbers at risk.

The logrank test is: (z-statistic version)

ZLR =
∑K
j=1(d1j − ej)
√
∑K
j=1 vj

with ej = dj r1j/rj

vj = r1jr0jdj(rj − dj)/[r
2
j (rj − 1)]
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Distribution of the logrank statistic

Suppose that the hazard rates in the two groups are λ0(t)

and λ1(t), with hazard ratio

θ = eβ =
λ1(t)

λ0(t)

and suppose we are interested in testing Ho : β = ln(θ) = 0

(which is equivalent to testing Ho : θ = 1.)

[Note: we will use ln(θ) rather than β in the following, so that there
is no confusion with the Type II error rate]

It is possible to show that

• if there are no ties, and

• we are “near” H0 :

then:

• E(d1j − ej|d1j, d0j, r1j, r0j) ≈ ln(θ)/4

• vj ≈ 1/4

So, at a point ln(θ) in the alternative, we get:

ZLR ≈
∑K
j=1 ln(θ)/4√∑K

j=1 1/4
=

d ln(θ)/4
√
d/4

=

√
d ln(θ)

2

and ZLR ∼ N( ln(θ)
√
d/2 , 1 )
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Heuristic Proof:

E(d1j|d1j, d0j, r1j, r0j) = Pr(d1j = 1|dj = 1, r1j, r0j)

=
r1jλ0θ

r1jλ0θ + r0jλ0

=
r1jθ

r1jθ + r0j

=
r1j

r1j + r0j
+ ln(θ)




r1jr0j
(r1j + r0j)2




But ej = r1j/(r1j + r0j), so:

E(d1j|d1j, d0j, r1j, r0j)− ej = ln(θ)




r1jr0j
(r1j + r0j)2




If n0 = n1, then near H0 :, r1j ≈ r0j, hence,

E(d1j|d1j, d0j, r1j, r0j)− ej = ln(θ)/4

Similarly, with no ties, we have

vj = r1jr0j/r
2
j ≈ 1/4
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This can also be derived via the partial likelihood:

We can write the partial likelihood as:

l(β) = log




n∏

j=1




eβZj

∑
`∈R(τj) e

βZ`




δj



=
n∑

j=1

δj


βZj − log




∑

`∈R(τj)

eβZ`







and then the “score” (partial derivative of log-likelihood) becomes:

U(β) =
∂

∂β
`(β)

=
n∑

j=1

δj


Zj −

∑
`∈R(τj)Z` e

βZ`

∑
`∈R(τj) e

βZ`




We can write the “information” (minus second partial derivative
of the log-likelihood) as:

− ∂2

∂β2`(β) =
n∑

j=1

δj



∑

`∈R(τj) e
βZ`

∑
`∈R(τj)Z`e

βZ` − (∑`∈R(τj)Z`e
βZ`)2

∑
`∈R(τj) e

βZ`




The logrank statistic (with no ties) is equivalent to the score statistic
for testing β = 0:

ZLR
U(0)√
I(0)

By a Taylor series expansion:

U(0) ∼= U(β)− β
∂U

∂β
(0)

E[U(0)] ∼= βd/4 and I(0) ∼= d/4
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Power of the Logrank Test

Using a similar argument to before, the power of the logrank

test (based on a two-sided α level test) is approximately:

Power(θ) ≈ 1− Φ
[
z1−α

2
− ln(θ)

√
d/2

]

Note: Power depends only on d and θ!

We can easily solve for the required number of events to

achieve a certain power at a specified value of θ:

To yield power(θ) = 1− β, we want d so that

1− β = 1− Φ
(
z1−α

2
− ln(θ)

√
d/2

)

⇒ zβ = z1−α
2
− ln(θ)

√
d/2

⇒ d =
4
(
z1−α

2
− zβ

)2

[ln(θ)]2

or d =
4
(
z1−α

2
+ z1−β

)2

[ln(θ)]2
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Example:

Say we were planning a 2-arm study, and wanted to be able

to detect a hazard ratio of 1.5 with 90% power at a 2-sided

significance level of α = 0.05.

Required number of events:

d =
4
(
z1−α

2
+ z1−β

)2

[ln(θ)]2

=
4(1.96 + 1.282)2

[ln(1.5)]2

≈ 42

0.1644
= 256

# Events required for various Hazard Ratios

Hazard Power

Ratio 80% 90%

1.5 191 256

2.0 66 88

2.5 38 50

3.0 26 35

Most studies are designed to detect a hazard ratio of 1.5-2.0.
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Practical Considerations

• How do we decide on θ?

• How do we translate numbers of failures to numbers of

patients?

Hazard ratios for the exponential distribution

The hazard ratio from two exponential distributions can be

easily translated into more intuitively interpretable quanti-

ties:

Median:

If Ti ∼ exp(λi), then

Median(Ti) = −ln(0.5)/λi

It follows that

Median(T1)

Median(T0)
=

λ0
λ1

= e−β =
1

θ

Hence, doubling the median survival of a treated compared

to a control group will correspond to halving the hazard.
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R-year survival rates

Suppose the R-year survival rate in group 1 is S1(R) and in

group 0 is S0(R). Under the exponential model:

Si(R) = exp(−λiR)

Hence,

ln(S1(R))

ln(S0(R))
=
−λ1R
−λ0R

=
λ1
λ0

= eβ = θ

Hence, doubling the hazard rate from group 1 to group 0 will

correspond to doubling the log of the R-year survival rate.

Note that this result does not depend on R!.

Example: Suppose the 5-year survival rate on treatment A

is 20% and we want 90% power to detect an improvement of

that rate to 30%. The corresponding hazard ratio of treated

to control is:

ln(0.3)

ln(0.2)
=
−1.204

−1.609
= 0.748

From our previous formula, the number of events (deaths)

needed to detect this improvement with 90% power, based

on a 2-sided 5% level test is:

d =
4(1.96 + 1.282)2

[ln(0.748)]2
= 499
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Translating to Number of Enrolled Patients

First, suppose that we will enter N patients into our study

at time 0, and will then continue the study for F units of

time.

Under H0, the probability that an individual will fail during

the study is:

Pr(fail) =
∫ F
0
λ0e

−λ0tdt

= 1− e−λ0F

Hence, if our calculations say we need d failures, then to

decide how many patients to enter, we simply solve

d = (N/2)(1− e−λ0F ) + (N/2)(1− e−λ1F )

To solve the above equation for N , we need to supply values

of F and d. In other words, here we are already deciding

what HR we want to detect (with what power, etc), and for

how long we are going to follow patients. What we get is

the total number of patients we need to enroll in order to

observe the desired number of events in F units of follow-up

time.
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Example: Suppose we want to detect a 50% improvement

in the median survival from 12 months to 18 months with

80% power at α = 0.05, and we plan on following patients

for 3 years (36 months).

We can use the two medians to calculate both the parameters

λ0 and λ1 and the hazard ratio, θ:

Median(Ti) = −ln(0.5)/λi

so λ1 =
−ln(0.5)
M1

=
0.6931

18
= 0.0385

λ0 =
−ln(0.5)
M0

=
0.6931

12
= 0.0578

θ =
λ1
λ0

=
0.0385

0.0578
=

12

18
= 0.667

and from our previous table, # events required is d = 191

(same for θ = 1.5 as it is for 1/1.5=0.667).

So we need to solve:

191 = (N/2)(1− e−0.0578∗36) + (N/2)(1− e−0.0385∗36)

= (N/2)(0.875) + (N/2)(0.7500) = (N/2)(1.625)

⇒ N = 235

(for practical reasons, we would probably round up to 236

and randomize 118 patients to each treatment arm)
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A more realistic accrual pattern

In reality, not everyone will enter the study on the same day.

Instead, the accrual will occur in a “staggered” manner over

a period of time.

The standard assumption:

Suppose individuals enter the study uniformly over an ac-

crual period lasting A units of time, and that after the ac-

crual period, follow-up will continue for another F units of

time.

To translate d toN , we need to calculate the probability that

a patient fails under this accrual and follow-up scenario.

Pr(fail) =
∫ A
0
Pr(fail|enter at a) f (a) da

= 1−
∫A
0 S(a + F ) da

A
(2)

Then solve: d = (N/2)Pr(fail;λ0) + (N/2)Pr(fail;λ1)

= (N/2)Pc + (N/2)Pe

= (N/2)(Pc + Pe)

If we now solve for N (substituting in formula for d), we get:

N =
2 d

(Pc + Pe)

N =
8

(
z1−α

2
+ z1−β

)2

[ln(θ)]2
1

(Pc + Pe)
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How can we get Pc and Pe from (2)?

If we assume that the exponential distribution holds, then

we can solve (2) to obtain:

Pi = 1− exp(−λiF )(1− exp(−λiA))

λiA
(3)

(for i = c, e)

Freedman suggested an approximation for Pc and Pe, by

computing the probability of an event at the median duration

of follow-up, (A/2 + F ):

Pi = Pr(fail;λi) = 1− exp[−λi(A/2 + F )] (4)

He showed that this approximation works pretty well for the

exponential distribution (i.e., it gives values close to (3)).
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An alternative formulation

Rubenstein, Gail, and Santner (1981) suggest the following

approach for calculating the total sample size that must be

enrolled:

N =
2

(
z1−α

2
+ z1−β

)2

[ln(θ)]2



1

Pc
+

1

Pe




where Pc and Pe are the expected proportion of patients or

individuals who will fail (have an event) on the control and

treatment arms.

How do we calculate (estimate) Pc and Pe ?

• using the general formula for a distribution S given in

(2)

• using the exact formula for an exponential distribution

given in (3)

• using the approximation given by (4)

Note: all of these formulas can be modified for unequal

assignment to treatment (or exposure) groups by changing

(N/2) in the formulas on p.17-19 to (qc ∗N) and (qe ∗N),

where qc and qe are the proportions assigned to the control

and exposed groups, respectively.
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Freedman’s Approach (1982)

Freedman’s approach is based on the logrank statistic under

the assumption of proportional hazards, but does not require

the assumption of exponential survival distributions.

Total number of events:

d =
(
z1−α

2
+ z1−β

)2


θ + 1

θ − 1



2

Total sample size:

N =
2

(
z1−α

2
+ z1−β

)2

Pe + Pc



θ + 1

θ − 1



2

where Pe and Pc are estimated using (4).

This approximation depends on the assumption of a con-

stant ratio between the number of patients at risk in the two

treatment groups prior to each event time =⇒ r0j ≈ r1j (as

shown in the “heuristic proof”). When this assumption is

not satisfied, the required sample sizes tend to be overesti-

mated.

Q. When would this assumption not be satisfied?

A.When the smallest detectable difference is large.
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Some examples of study design

Example I:

A clinical trial in esophageal cancer will randomize patients

to radiotherapy alone (Rx A) versus radiotherapy plus chemother-

apy (Rx B). The goal of the study is to compare the two

treatments with respect to survival, and we plan to use the

logrank test. From historical data, we know that the median

survival on RX A for this disease is around 9 months. We

want 90% power to detect an improvement in this median

to 18 months. Past studies have been able to accrue ap-

proximately 50 patients per year. Choose a suitable study

design.
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Example II:

A clinical trial in early stage breast cancer will randomize

patients after their surgery to Tamoxifen (ARM A) versus

observation only (ARM B). The goal of the study is to com-

pare the two treatments with respect to time to relapse, and

the logrank test will be used in the analysis. From historical

data, we know that after five years, 65% of the patients will

still be disease free. We would like to have 90% power to

detect an improvement in this disease free rate to 75%. Past

studies have been able to accrue approximately 200 patients

per year. Choose a suitable study design.

440



Example III:

Some investigators in the environmental health department

want to conduct a study to assess the effects of exposure to

toluene on time to pregnancy. They will conduct a cohort

study involving women who work in a chemical factory in

China. It is estimated that 20% of the women will have

workplace exposure to toluene. Furthermore, it is known

that among unexposed women, 80% will become pregnant

within a year. The investigators will be able to enroll 200

women per year into the study, and plan an additional year

of follow-up at the end of accrual. Assuming they have 2

years accrual, what reduction in the 1-year pregnancy rate

for exposed women will they be able to detect with 85%

power? What if they have 3 years of accrual?
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Other important issues:

The approaches just described address the basic question of

calculating a sample size for study with a survival endpoint.

These approaches often need to be modified slightly to ad-

dress the following complications:

• Loss to follow-up
• Non-compliance (or cross-overs)
• Stratification
• Sequential monitoring
• Equivalence hypotheses

Next we summarize some of the main points.
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Loss to follow-up

If some patients are lost to follow up (as opposed to censored

at the end of the trial without the event), the power will be

decreased.

There are two main approaches for dealing with this:

• Simple inflation method - If `*100% of patients

are anticipated to be lost to follow up, calculate target

sample size to be

N ∗ =




1

1− `


 ·N

Example: Say you calculate N = 200, and anticipate

losses of 20%. The simple inflation method would give

you a target sample size of N ∗ = (1/0.8) ∗ 200 = 250.

Warning: people often make the mistake of just in-

flating the original sample size by `*100%, which would

have given N∗ = 240 for the example above.

• Exponential loss assumption - the above approach

assumes that losses contributeNO information. But we

actually have information on them up until the time that

they are lost. Incorporate this by assuming that time to

loss also follows an exponential distribution, and modify

Pe and Pc.
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Noncompliance

If some patients don’t take their assigned treatments, the

power will be decreased. This issue has two sides:

• Drop-outs (de) - patients who cannot tolerate the

medication stop taking it; their hazard rate would be-

come the same as the placebo group (if included in study)

at that point.

• Drop-ins (dc) - patients assigned to less effective ther-

apy may not get relief from symptoms and seek other

therapy, or request to cross-over.

A conservative remedy – adjust Pe and Pc as follows:

P ∗e = Pe(1− de) + Pc de

P ∗c = Pc(1− dc) + Pe dc
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Design Strategy:

1. Decide on

• Type I error (significance level)

• clinically important difference (in terms of HR)

• desired power

2. Determine the number of failures needed

3. Based on past experience

• decide on a reasonable distribution for the controls

(usually exponential)

• estimate anticipated accrual per unit time

• estimate expected rate of loss to follow up

Vary the values ofA and F until you get something prac-

tically feasible that gives the right number of failures.

4. Consider noncompliance, sequential monitoring, and other

issues impacting sample size
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Included on the next several pages is a SAS program to cal-

culate sample sizes for survival studies. It uses several of the

approaches we’ve discussed, including:

• Rubenstein, Gail and Santner (RGS, 1981)

• Freedman (1982)

• Lachin and Foulkes (1986)

A copy of this program is shown on the next several pages.

The program requires entry of:

• Significance level (alpha)

• Power

• Sides (1 for one-sided test, 2 for two-sided test)

• Accrual period

• Follow up period

• Yearly rate of loss to follow-up

• Proportion randomized to experimental treatment arm

• One of the following:

– Yearly event rate on control and experimental treat-

ment arms

– Yearly event rate on control arm, and the hazard

ratio

– Median time to event on control and experimental

treatment arms
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The SAS program rgsnew.sas

data rgs;

***********************************************************************;

*** enter the following information in this block;

alpha = 0.05; /* significance level */

sides = 2; /* one-sided or two-sided test */

power = 0.90; /* Desired power */

accrual = 2; /* Accrual period in years */

fu = 1.5; /* Follow up after last patient is accrued */

loss = 0.0; /* yearly rate of loss */

qe = 0.5; /* proportion randomized to experimental arm */

*** either enter the median time to event in years on control;

*** or the yearly event rate - leave the other value missing;

medianc = 0.75; /* median time to event on control arm */

probc = .; /* yearly event rate in control arm */

*** either enter the yearly event rate in the experimental arm ;

*** or the hazard ratio for control vs experimental ;

*** or the median time to event on experimental arm in years ;

*** leave the other values missing (.);

mediane = 1.5; /* median time to event on experimental */

probe = .; /* yearly event rate in experimental arm */

rr=.; /* hazard ratio */

***********************************************************************;

beta = 1 - power;

qc = 1 - qe;

zalpha = probit(1-alpha/sides);

zbeta = probit(1-beta);

*** calculate yearly event rate in both arms using medians, if supplied;

if medianc^=. then do;

hazc=-log(0.5)/medianc;

probc=1-exp(-hazc);

end;

if mediane^=. then do;

haze=-log(0.5)/mediane;

probe=1-exp(-haze);

end;

hazc = -log(1-probc);
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*** calculate hazard in experimental group, using yearly event rate;

*** or hazard ratio;

if probe^=. then haze = -log(1-probe);

if rr^=. then haze = hazc/rr;

if probe^=. and haze^=. then do;

put "**************************************************************";

put "WARNING: both yearly event rate and hazard ratio (HR) have";

put " been specified. Calculations will use the HR";

put "**************************************************************" /;

end;

*** calculate median survival times if not supplied;

medianc=-log(0.5)/hazc;

mediane=-log(0.5)/haze;

hazl = -log(1-loss);

avghaz = qc*hazc + qe*haze;

rr = hazc/haze;

log_rr = log(hazc/haze);

totloss=(accrual*0.5 + fu)*loss;

*** compute expected probability of death (event) during trial;

*** given staggered accrual but NO loss;

pc0loss = 1-((exp(-hazc*fu)-exp(-hazc*(accrual+fu)))/(hazc*accrual));

pe0loss = 1-((exp(-haze*fu)-exp(-haze*(accrual+fu)))/(haze*accrual));

*** compute expected probability of event during trial;

*** given staggered accrual AND loss;

pc = (1 - (exp(-(hazc+hazl)*fu)-exp(-(hazc+hazl)*(fu+accrual)))

/((hazc+hazl)*accrual))*(hazc/(hazc+hazl));

pe = (1 - (exp(-(haze+hazl)*fu)-exp(-(haze+hazl)*(fu+accrual)))

/((haze+hazl)*accrual))*(haze/(haze+hazl));

pbar = (1 - (exp(-(avghaz+hazl)*fu)-exp(-(avghaz+hazl)*(fu+accrual)))

/((avghaz+hazl)*accrual))*(avghaz/(avghaz+hazl));

*** compute total sample size assuming loss;

N = int(((zalpha+zbeta)**2)/(log_rr**2)*(1/(qc*pc)+1/(qe*pe))) + 1;

*** Compute sample size using method of Freedman (1982);

N_FRD = int((2*(((rr+1)/(rr-1))**2)*(zalpha+zbeta)**2)/(2*(qe*pe+qc*pc)))+1;
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*** Compute sample size using method of Lachin and Foulkes (1986);

*** with rates under H0 given by pooled hazard;

N_LF = int((zalpha*sqrt((avghaz**2)*(1/pbar)*(1/qc + 1/qe)) +

zbeta*sqrt((hazc**2)*(1/(qc*pc)) + (haze**2)*(1/(qe*pe))))**2/

((hazc-haze)**2)) + 1;

*** compute total sample size assuming no loss;

n_0loss = int(((zalpha+zbeta)**2)/(log_rr**2)*

(1/(qc*pc0loss)+1/(qe*pe0loss))) + 1;

*** compute sample size using simple inflation method for loss;

naive = int(n_0loss/(1-totloss)) + 1;

*** verify that actual power is same as desired power;

newpower = probnorm(sqrt(((N)*(log_rr**2))/(1/(qc*pc) + 1/(qe*pe)))

- zalpha);

if abs(newpower-power)>0.001 then do;

put ’*** WARNING: actual power is not equal to desired power’;

put ’Desired power: ’ power ’ Actual power: ’ newpower;

end;

***********************************************************************;

*** compute number of events expected during trial;

***********************************************************************;

*** Compute expected number under null;

n_evth0 = int(n*pbar) + 1;

r=qc/qe;

*** Rubinstein, Gail and Santner (1981) method - simple approximation;

n_evtrgs = int((((r+1)**2)/r)*((zalpha + zbeta)**2)/(log_rr**2)) + 1;

*** Freedman (1982);

n_evtfrd = int((((rr+1)/(rr-1))**2) * (zalpha+zbeta)**2)+1;

*** Using backtracking method of Lachin and Foulkes (1986);

n_evt_c = int(N*qc*pc) + 1;

n_evt_e = int(N*qe*pe) + 1;

n_evtlf = n_evt_c + n_evt_e;
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label sides=’Sides’

alpha=’Alpha’

power=’Power’

beta=’Beta’

zalpha=’Z(alpha)’

zbeta=’Z(beta)’

accrual=’Accrual (yrs)’

fu=’Follow-up (yrs)’

loss=’Yearly Loss’

totloss=’Total Loss’

probc=’Yearly event rate: control’

probe=’Yearly event rate: active’

rr=’Hazard ratio’

log_rr=’Log(HR)’

N=’Total Sample size (RGS)’

N_FRD=’Total Sample size (Freedman)’

N_LF=’Total Sample size (L&F)’

n_0loss=’Sample size (no loss)’

pc=’Pr(event), control’

pe=’Pr(event), active’

pc0loss=’Pr(event| no loss), control’

pe0loss=’Pr(event| no loss), active’

n_evth0=’# events (Ho-pooled)’

n_evtrgs=’# events (RGS)’

n_evtfrd=’# events (Freedman)’

n_evtlf=’# events (L&F)’

medianc=’Median survival, control’

mediane=’Median survival, active’

naive=’Sample size (naive loss)’;

proc print data=rgs label noobs;

title ’Sample size & expected events for comparing two survival distributions’;

title2 ’Using method of Rubinstein, Gail and Santer (RGS, 1981)’;

title3 ’Freedman (1982), or Lachin and Foulkes (L&F, 1986)’;

var sides alpha power accrual fu loss totloss

probc probe medianc mediane pc pe pc0loss pe0loss rr log_rr

n_evth0 n_evtrgs n_evtfrd n_evtlf N N_FRD N_LF n_0loss naive;

format power loss totloss f4.2 medianc mediane f5.3

probc probe rr log_rr pc pe pc0loss pe0loss f6.4;
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Back to Example I:

A clinical trial in esophageal cancer will randomize patients

to radiotherapy alone (Rx A) versus radiotherapy plus chemother-

apy (Rx B). The goal of the study is to compare the two

treatments with respect to survival, and we plan to use the

logrank test. From historical data, we know that the median

survival on Rx A for this disease is around 9 months. We

want 90% power to detect an improvement in this median

to 18 months. Past studies have been able to accrue ap-

proximately 50 patients per year. Choose a suitable study

design.

First, let’s write down what we know:

• desired significance level not stated, so use α = 0.05

(assume a two-sided test)

• assume equal randomization to treatment arms

(unless otherwise stated)

• desired power is 90%

• median survival on control is 9 months ⇒M0 = 9

• want to detect improvement to 18 months on Rx B ⇒
M1 = 18

• Maximum accrual per year is 50 patients
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We have all of the information we need to run the program,

except the accrual and follow up times. We need to use trial

and error to get these.

Number of Total Total

Accrual Follow-up Events Sample Study

Period Period Required Size Duration

1 2.5 88 106 3.5

2 1.5 88 115 3.5

2.5 1 88 122 3.5

3 0.5 88 133 3.5

3 1 88 117 4

Shown on the next page is the output from rgsnew.sas us-

ing Accrual=2, Follow-up=1.5. I’ve given the RGS numbers

above.

Which of the above are feasible designs?
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Sample size & expected events for comparing two survival distributions

Using method of Rubinstein, Gail and Santer (RGS, 1981)

Freedman (1982), or Lachin and Foulkes (L&F, 1986)

Yearly

event

Accrual Follow-up Yearly Total rate:

Sides Alpha Power (yrs) (yrs) Loss Loss control

2 0.05 0.90 2 1.5 0.00 0.00 0.6031

Yearly

event Median Median Pr(event|

rate: survival, survival, Pr(event), Pr(event), no loss),

active control active control active control

0.3700 0.750 1.500 0.8860 0.6737 0.8860

Pr(event|

no loss), Hazard # events # events # events

active ratio Log(HR) (Ho-pooled) (RGS) (Freedman)

0.6737 2.0000 0.6931 94 88 95

Total Sample

Total Sample Total Sample size

# events Sample size Sample size (no (naive

(L&F) size (RGS) (Freedman) size (L&F) loss) loss)

90 115 122 121 115 115
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How do we pick from the feasible designs?

The first 4 designs all have 3 1/2 years total duration, since

the follow-up period starts after the last patient has been

accrued. The shorter the follow-up period given this fixed

study duration, the more patients we have to enroll.

In some cases, it will be much more cost-effective to enroll

fewer patients and follow them for longer. This corresponds

to cases where the initial cost per patient is very high.

In other cases (where the initial cost per patient is lower), it

will be better to enroll more patients. The median follow-up

for the first 4 designs are 3, 2.5, 2.25, and 2 years, respec-

tively. The total cost of treatment could be estimated by

multiplying the number of patients by the median follow-up

time.

Some prefer to keep the accrual period as short as possi-

ble, given how many patients can feasibly be enrolled. This

will tend to give the smallest number of patients among the

feasible designs. Which design would this correspond to?

Another issue to think about is whether the background con-

ditions of the disease are changing rapidly (like AIDS) or are

fairly stable (like many types of cancer). For the former situ-

ation, it would be best to have a study with a short duration

so the results will have more interpretation.
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Using the information given, there are a lot of other quanti-

ties we can calculate:

• The hazard ratio of control to treated is:

median(Rx B)

median(Rx A)
=

18

9
= 2

• The hazard rates for the two treatment arms are:

for Rx A: λ0 =
− log(0.5)

median(Rx A)
=
− log(0.5)

9
= 0.0770

for Rx B: λ1 =
− log(0.5)

median(Rx B)
=
− log(0.5)

18
= 0.0385

• The yearly probability of an event is:

for Rx A: Pr(T < 1|λ0) = 1− e(−λ0∗t)

= 1− e(−0.0770∗12) = 0.603

for Rx B: Pr(T < 1|λ1) = 1− e(−λ1∗t)

= 1− e(−0.0385∗12) = 0.370

What would happen above if we used time t

in years (i.e., t=1) instead of months?

What would happen if we calculated both the

hazard rate and yearly event probability using

time in years?
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Based on a design with 2.5 years accrual and

1 year follow-up:

• The median follow-up time

median FU = A/2 + F

= 30/2 + 12 = 27 months

• The probability of an event during the entire study is:

(using the approximation in notes)

for Rx A: Pc = 1− exp(−λ0 ∗ [A/2 + F ])

= 1− exp(−0.0770 ∗ 27) = 0.875

for Rx B: Pe = 1− exp(−λ0 ∗ [A/2 + F ])

= 1− exp(−0.0385 ∗ 27) = 0.646

(the above numbers differ from what you’d get in the

printout from the program, since it calculates the exact

probability under the exponential distribution, instead

of using the approximation)

In the calculations above, all of the “time” periods were in

terms of months. You have to remember to keep the scale

the same throughout.

To use the program, you need to translate the time scale in

terms of years. So a median of 18 months survival would be

entered as median=1.5.
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What happens if we add loss to follow-up?

Required sample size for A=2.5, FU=1 year

Yearly Number of Total Total

Loss to Events Sample Study

Follow-up Required Size Duration

0 88 122 3.5

5% 88 128 3.5

10% 88 133 3.5

20% 88 147 3.5
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Sequential Design and Analysis of survival stud-

ies

In clinical trials and other studies, it is often desirable to

conduct interim analyses of a study while it is still ongoing.

Rationale:

• ethical: if one treatment is substantially worse than

another, then it is wrong to continue to give the inferior

treatment to patients.

• timely reporting: if the hypothesis of interest has

been clearly established halfway through the study, then

science and the public may benefit from early reporting.

WARNING!!

Unplanned interim analyses can seriously inflate the true

type I error of a trial. If interim analyses are to be performed,

it is ESSENTIAL to carefully plan these in advance, and to

adjust all tests appropriately so the the type I error is of the

desired size.
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How does the type I error become inflated?

Consider a two group study comparing treatments A and B.

Suppose the data are normally distributed (sayXi ∼ N(µA, σ
2)

in group A, and similarly for group B), so that the null hy-

pothesis of interest is

H0 : µA = µB

It is not too hard to figure out how the type I error can get

inflated if a naive approach is used.

Suppose we plan to do K interim analyses, and that exactly

m individuals will enter each treatment between each anal-

ysis. The test statistic at the kth analysis will be

Zk =

∑k
i=1

∑m
j=1(XAij −XBij)/km√

2σ/km
=

∑k
i=1 di/k√
2σ/km

where di is the difference between the two group means at

the ith analysis,

di = XAi −XBi

and XAi and XBi are the means in groups A and B of the

m individuals who entered in the i-th time period.
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(naive) Interim monitoring procedure:

• Allow m patients to enter on each treatment arm

(total of 2m additional patients)

• Calculate Zk based on the current data

• Reject the null hypothesis if |Zk| > z1−α/2, where α is

the desired type I error.

The overall type I error rate for the study is:

Pr(|Z1| > z1−α/2 or |Z2| > z1−α/2... or |ZK| > z1−α/2)

If the test at each interim analysis is performed at level α,

then clearly this probability will exceed α. The table below

shows the Type I error rate if each test is done at α = 0.05

for various values of K:

Number of interim analyses (K)

1 2 3 4 5 10 25

5% 8.3% 10.7% 12.6% 14.2% 19.3% 26.6%

(from Lee, Statistical Methods for Survival Data, Table

12.9)
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For survival data, the calculations become MUCHmore com-

plicated since the data collected within each time interval

continues to change as time goes on!

What can we do to protect against this type I error inflation?

Pocock Approach:

Pick a smaller significance level (say α′) to use at each interim

analysis so that the overall type I error stays at level α.

A problem with the Pocock method is that even the very

last analysis has to be performed at level α′. This tends to

be very conservative at the final analysis.

O’Brien and Fleming Approach:

A preferable approach would be to vary the alpha levels used

for each of the K interim analyses, and try to keep the very

last one “close” to the desired overall significance level. The

O’Brien-Fleming approach does that.
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Comments and notes:

• There are several other approaches available for sequen-

tial design and analysis. The O’Brien and Fleming

approach is probably the most popular in practice.

• There are many variations on the theme of sequential

design. The type we have discussed here is calledGroup

sequential analysis.

– There are other approaches that require continuous

analysis after each new individual enters the study!

– There are also approaches where the randomization

itself is modified as the trial proceeds. E.g. Ze-

len’s “Play the winner rule” (New England Journal of

Medicine 300, 1979, page 1242) and Ware’s “ECMO”

study (Statistical Science, 4, 1989, page 298)

• Some designs allow for early stopping in the absence of a

sufficient treatment effect as the trial progresses. These

procedures are referred to as “stochastic curtailment” or

“conditional power” calculations.
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• Designing a group sequential trial for survival data re-

quires sophisticated and highly specialized software. EaSt,

a package from CYTEL SOFTWARE that does stan-

dard (fixed) survival designs, as well as sequential de-

signs.

• Many “non-statistical” issues enter decisions about whether

or not to stop a trial early

• P-values based on analyses of studies with sequential

designs are difficult to interpret.

• Once you do 5 interim analyses, then adding more makes

little difference. Some clinical trials groups (HSPH AIDS

group) have large randomized Phase III studies mon-

itored at least once per year (for safety reasons), and

most studies have 1-3 interim looks.

• Going from a fixed to a group sequential design adds

only about 3-4% to the required maximum sample size.

This is a good rule of thumb to use in calculating the

sample size when you plan on doing interim monitoring.
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Competing Risks and Multiple Failure Times

So far, we’ve been acting as if there was only one endpoint

of interest, and that censoring due to death (or some other

event) was independent of the event of interest.

However, in many contexts it is likely that the time to cen-

soring is somehow correlated with the time to the event of

interest. In general, we often have several different types

of failure (death, relapse, opportunistic infection, etc) which

are related (i.e., dependent or “competing” risks).

Examples:

• After a bone marrow transplantation, patients are fol-

lowed to evaluate “leukemia-free survival”, so the end-

point is time to leukemia relapse or death. This endpoint

conists of two types of failures (competing risks):

– leukemia relapse

– non-relapse deaths

• In cardiovascular studies, deaths from other causes (such

as cancer) are considered competing risks.

• In actuarial analyses, we look at time to death, but want

to provide separate estimates of hazards for each cause

of death (multiple decrement lifetables).
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Another example: For the MAC study, the analyses you

have been doing of time to MAC assume that the censoring

time is independent.

Recall:

T = time to event of interest (MAC)

U = time to censoring (death, loss to FU)

X = min(T, U)

δ = I(T ≤ U)

Observable Data: (X, δ)

What are the possiblities here?

• (1) Failure T and censoring U are independent

• (2) Failure T and censoring U are dependent
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Case (1): Independent failure times

(this includes the case of independent censoring)

BOTTOM LINE ⇒ NO PROBLEM

Nonparametric estimation:

In this case, we can use the Kaplan-Meier estimator to esti-

mate ST (t) = P (T > t).

Parametric estimation:

If we know the joint distribution of (T, U) has a certain

parametric form (exponential, Weibull, log-logistic), then we

can use the likelihood for (X, δ) to get parameter estimates

of the marginal distribution of ST (t).

Semi-parametric estimation:

We can apply the Cox regression model to assess the effects

of covariates on the marginal hazard.
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Case (2): Dependent failure times

BOTTOM LINE ⇒ BIG PROBLEM

Tsiatis (1975) showed that ST (t) = P (T ≥ t) (i.e., the sur-

vival function for the event T of interest) cannot be “identi-

fied” from data of the form (X, δ) for each subject.

In fact, observing (X, δ) does not provide enough informa-

tion to estimate the joint distribution of (T, U) so that we

can even check whether the assumption of independence is

valid.

When is it reasonable to assume independent risks?

• when censoring occurs because the study ends, or be-

cause the subject moves to a different state

• and there is no trend over time in health status of en-

rolling patients

In the case of our MAC study, the fact that someone dies

may reflect that they would have been at greater risk of MAC

if they had not died than someone else who remained alive

at that point.

The assumption of independence means that the hazard for

someone who is censored at time t is exactly the same as that

for someone with the same covariates who is also at risk at

time t.
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What is the impact of dependent competing risks?

Slud and Byar (1988) show that dependent causes of death

can potentially make risk factors appear protective:

If we have

T = death from cause of interest

and U = censoring, from death due to other cause

and a single binary covariate Z

Z =




1 if risk factor is present

0 otherwise

and we calculate the Kaplan-Meier survival estimates Ŝ1(t)

for Z = 1 and Ŝ0(t) for Z = 0 assuming independent cen-

soring, then we could (in their hypothetical example) end up

reversing the sign of the survival functions:

True ordering between survival distributions:

S1(t) < S0(t) for all t

Kaplan Meier estimates of survival distributions:

Ŝ1(t) > Ŝ0(t) for all t
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What can we do if we suspect dependent risks?

A lot of people have tried to tackle this problem!
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There has been a lively debate in the literature

about the best way to attack this problem. The

two sides are basically divided about which type

of model to use:

• based on cause-specific hazard functions (observ-

ables)

• based on latent variable models (unobservables)

The first approach focuses on what the observed survival is

due to a certain cause of failure, acknowleding that there are

other types of failures operating at the same time.

The second approach attempts to estimate what the survival

associated with a certain failure type would have been, if the

other types of failures had been removed.
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General Case of Multiple Failure Types

In general, say we have m different types of failure (say,

causes of death), and the respective times to failure are:

T1, T2, T3, · · · , Tm
and we observe T = min(T1, T2, . . . , Tm)

We can write the cause-specific hazard function for the j-th

failure type as:

λj(t) = lim
∆t→0

1

∆t
Pr(t ≤ T < t +∆t, J = j|T ≥ t)

The overall hazard of death is the sum over the failure types:

λ(t) =
m∑

j=1
λj(t)

where λ(t) = lim
∆t→0

1

∆t
Pr(t ≤ T < t +∆t|T ≥ t)

Q. Can we estimate these quantities? ...even if

the risks are dependent?

A. Yes, Prentice (1978) shows that probabilities

that can be expressed as a function of the cause-

specific hazards can be estimated.
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For example, estimable quantities include:

(a) The overall survival probability3:

ST (t) = P (T ≥ t) = exp
[
−

∫ t
0
λ(u)du

]

= exp


−

∫ t
0

∑

j
λj(u)du




(b) Conditional probability of failing from cause

j in the interval (τi−1, τi]

Q(i, j) = [ST (τi−1)]
−1 ∫ τ

τ−1 λj(u) ST (u) du

(c) Conditional probability of surviving ith inter-

val

ρi = 1−
m∑

j=1
Q(i, j)

3Note: previously I said you couldn’t estimate ST (t), but that was when T was
the time to event of interest (possibly unobservable) and U was the possibly cor-
related censoring time. Here, ST (t) is the survival distribution for the minimum
of all failures, which can always be observed
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Estimators:

(a) The MLE of Q(i, j) is simply

Q̂(i, j) =
dij
ri

i.e., the number of failures (deaths) due to cause j during

the i-th interval among the ri subjects at risk of failure

at the beginning of the interval.

(b) The MLE of ρi is::

ρ̂i =
ri − ∑m

j=1 dij
ri

= 1−
∑m
j=1 dij
ri

(c) The MLE of ST (t) is based on ρi:

ŜT (τi) =
i∏

k=1
ρk
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So what can’t we estimate?

Compare the cause-specific hazard function:

λj(t) = lim
∆t→0

1

∆t
Pr(t ≤ T < t +∆t, J = j|T ≥ t)

with the marginal hazard function:

λj(t) = lim
∆t→0

1

∆t
Pr(t ≤ Tj < t +∆t|Tj ≥ t)

We can get estimates of the cause-specific hazard function,

since we can estimate ST (t) = P (T ≥ t) even if the fail-

ure times are dependent. (In other words, we can observe

whether each patient is still alive or not)

But unfortunately, we can’t estimate the marginal hazard

function when the risks are dependent, since we can’t esti-

mate Sj(t) = P (Tj ≥ t). (we can’t tell when they would

have had event Tj if they have a different event first)

This is the main tricky issue of competing risks analyses.
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Back to original question...

What can we do if we suspect dependent risks?

Ex. Say we have two types of failures, T1 and T2, and we

think they are dependent. However, we are interested in the

first type of failure T1, and view the competing risk T2 as

censoring (like in bone marrow transplant example).

Methods of summarizing data with competing risks:

(1) Summarize the cause-specific hazard rate over time

(2) Use the Kaplan-Meier estimate anyway, ŜT1(t)

(3) Report the complement to the KM, 1− ŜT1(t)

(4) Use cumulative incidence curves (crude incidence

curve)

(5) Use the conditional probability function

(6) Give upper and lower bounds for the true marginal

survival function, in the absence of the competing risk

Pepe and Mori review the first 5 of these options, and rec-

ommend against option (2), but note that this is often what

people end up doing.
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To make the example more concrete:

Say we are interested in time to MAC or death, whichever

occurs first. We define:

T = time to MAC or death

and U = censoring (assumed independent)

and the type of failure is denoted by j

j =




M if event is MAC

D if event is death from other causes

In the alternative “latent variable” framework, we would de-

fine

TM = time to MAC

and TD = time to Death

although we might not be able to observe TM if TD occurred

first.
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Methods for competing risks:

(1) Summarizing the cause-specific hazard over

time

As mentioned above, this is one of the quantities that we

can estimate. Our basic estimator during time interval i is

Q̂(i, j) =
dij
ri
.

So we can plot λ̂j(t) over time, and get some insight as to

biological phenomona involved.

However, if you remember some of the plots I showed you of

hazards over time, they tended to be highly variable. Several

contributions have been made towards “smoothing” out the

inherent variability in the estimates of cause-specific hazards.

• Efron (1988)

• Ramlau-Hansen (1983)

• Tanner and Wong (1983)

Drawback: the hazard functions alone do not give overall

effect of a covariate on survival.

Example: If the hazard functions for λj(t) for two treat-

ments cross, we can’t say which treatment leads to lower

overall event rate.
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Figure from Pepe and Mori for Leukemia Data

Kernel Estimates of Cause-Specific Hazards
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Methods for competing risks:

(2) Applying Kaplan-Meier to cause-specific λj’s

Say we evaluate the MAC survival distribution by treating

• all MAC cases as “events”

• any deaths without MAC as “censorings”

and construct the Kaplan-Meier survival curve.

What are we estimating?

S∗M(t) = exp
[
−

∫ t
0
λM(u) du

]

where λM(t) is the cause-specific hazard for MAC:

λM(t) = lim
∆t→0

1

∆t
Pr(t ≤ T < t +∆t, j = M |T ≥ t)

i.e., the conditional probability that MAC occurs in a short

period of time, given that the subject is alive andMAC-free.

The interpretation of the Kaplan-Meier curve is as the

“exponential of the negative cumulative cause-

specific hazard”.

Clinicians (and others!) have difficulty understanding this

function, since it has no direct clinical interpretation.
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Figure from Pepe and Mori for Leukemia Data

Kaplan Meier with Cause Specific Hazards

They thought this was such a bad idea, that they
did not include any plot of this!
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Methods for competing risks:

(3) Using the complement of the Kaplan-Meier

Another function used fairly often in the competing risks

area is sometimes referred to as the pure probability

function:

1− S∗j (t) = 1− exp
[
−

∫ t
0
λj(u) du

]

In our MAC example, 1−S∗M(t) could be interprested as the

predictive probability of MAC by time t if the risk of death

could be removed.

If we were designing a new study for a miracle drug that

seemed so powerful that it would not only reduce MAC but

prevent all death from other causes in HIV-infected patients,

then we could use estimates 1 − Ŝ∗M(t) to help design our

new study.

This would be pretty optimistic, and there has been a lot of

work on the strict (and untestable) assumptions required to

interpret the KM curve in this manner.

Pepe and Mori contend that this function is irrelevant for

summarizing data from a competing risks study.
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Figure from Pepe and Mori for Leukemia Data

Complement Kaplan-Meier Functions
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Methods for competing risks:

(4) Using Cumulative Incidence Curves

This has also been termed the “crude incidence curve”, and

estimates themarginal probability of an event in the

setting where other competing risks are acknowledged to ex-

ist.

Description of Method: the method is described in

more detail in Kalbfleisch and Prentice (p.169).

Tests for covariates: Tests for comparing cumulative

incidence curves among treatment groups (or some other co-

variate) have been developed by Bob Gray (1988). They

are similar to logrank tests in that they are “linear rank”

statistics.

If we were able to follow up all subjects to time t, then the

cumulative incidence curves would relfect what proportion

of the total study population have had the particular event

(i.e., MAC) by time t.
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Figure from Pepe and Mori for Leukemia Data

Cumulative Incidence Curves
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Methods for competing risks:

(5) Conditional Probability Curves

This has the same flavor as the complement KM, but a more

natural interpretation. Pepe and Mori define the conditional

probability function as:

ĈPM(t) = P (TM ≤ t|TD ≥ t)

=
P̂M(t)

1− P̂D(t)

where P̂M(t) =
∫ t
0
ŜT (u)

dNM(u)

Y (u)

and P̂D(t) =
∫ t
0
ŜT (u)

dND(u)

Y (u)

In the above, ŜT (u) is the KM estimate of the overall mac-

free survival distribution, and the terms NM(u), ND(u), and

Y (u) reflect the “counting process” for the number of sub-

jects with MAC, death, and at risk at time u, respectively.

In the absence of censoring, the interpretation is the propor-

tion of patients who develop MAC among those who do not

die of other causes.

Tests: Pepe and Mori also present tests, which are sums

over time of weighted differences between the conditional

(or marginal) probabilities for two groups.
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Figure from Pepe and Mori for Leukemia Data

Conditional Probability and Marginal Curves
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Methods for competing risks:

(6) Bounds on Net Survival Curves

As noted previously, we cannot estimate Sj(t) = P (Tj ≥ t)

if the failure times are dependent (eg, we can’t estimate the

survival function for MAC if time to MAC is correlated with

time to death without MAC).

However, we may be able to say something about the range

of Sj(t) by finding upper and lower bounds that contain

Sj(t).

• Peterson (1976) obtained general bounds based on the

minimal and maximal dependence structure for (TM , TD).

The bounds allow any possible dependence structure,

but can be very wide.

• Slud and Rubenstein (1983) obtained tighter bounds

on Sj(t) by using additional information, but require the

user to specify reasonable bounds on a function ρ. Once

ρ is supplied, the marginal distribution Sj,ρ(t) can be

obtained.

• Klein and Moeshberger (1988) use the framework

of Clayton and Oakes for bivariate survival to obtain

tighter bounds than those of Peterson. Again, the user

has to supply bounds on a function θ, and once this is

given Ŝj,θ(t) can be obtained.
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Figure from Klein and Moeschberger (1988)

Bounds on Net Survival Curves
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One last example: Promotion of Faculty at HSPH

I was asked to analyze the school’s data from 1980-1995 on

promotion of Faculty from Assistant Professor to Associate

Professor to assess whether there were differences between

males and females and among academic areas (social, labo-

ratory, quantitative).

Problem:

Would you think that “censoring” (someone leaving their

tenure track position prior to getting promoted) is indepen-

dent of the probability of promotion?

I considered 3 approaches for accounting for censoring:

Method I: assumes those who departed would NOT have

been promoted

Method II: assumes those who departed would have been

promoted at the same rate as those who stayed

Method III: assumes 50% of those who departed would not

have been promoted, and the other 50% would

have been promoted at the same rate as those

who stayed

Which Method corresponds to “non-informative”

(independent) censoring?
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Results: Cumulative probabilities of promotion

Effect of Gender on Promotion

Overall Males Females

Method I: 0.631 0.719 0.451

Method II: 0.933 1.000 0.674

Method III: 0.736 0.825 0.531

Effect of Academic Area on Promotion

Overall Quantitative Social Laboratory

Method I: 0.631 0.703 0.238 0.701

Method II: 0.933 0.950 0.389 1.000

Method III: 0.736 0.803 0.287 0.801
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