Lecture

Introduction. Motivation for the Course.
$f(x)=x^{2}$ is an example of
A REAL-VALUEA, FUNCTION

- of a single variable

Plug in a value of x and get back a value of the function, e.g., -

$$
x=2 \Rightarrow f(2)=4
$$

$f(x)=x^{2}$ has a graph (a CURVE):

(Here y is set equal to $f(x)$.)
$f(x)=x^{2}$ - has a derivative:

$$
\frac{d}{d x}\left(x^{2}\right)=2 x
$$

- 2~
$f(x)=x^{2}$ also has an integral:

$$
\int x^{2} d x=\frac{x^{3}}{3}+C
$$

In this course, you are going to
lear how to work with g ing

1. REAL-VALUED FUNCTIONS OF

MORE THAN ONE VARIABLE,

$$
e . g ., f(x, y)=x^{2}+y^{2}
$$

2. VECTOR -VALUED FUNCTIONS OF MORE THAN ONE VARIABLE, e.g., $f(x, y)=\left(x^{2}, y^{2}\right)$

With $f(x, y)=x^{2}+y^{2}$, you can plug in a value of x and of y and get back a value of the function, e. g.,

$$
(x, y)=(1,2) \Rightarrow f(1,2)=1^{2}+2^{2}=5
$$

$f(x, y)=x^{2}+y^{2}$ has a graph (a SURFACE):
$-3-$

- (1) Primitive Method for Graphing
by hand
Use prior knowledge of $2 D$ graphing. (for functions of the form $y=f(x)$) and graph \qquad 3D surface in horizontal or vertical slices \qquad

Like looking at the corner of a room

$-8-$
(2) "Lo w-Tech" Method for Graphing function
(3) "High - Tech" Method for Graphing

- Use DPGraph, which is software that produces 3D graphs which can be animated

Available in one of two ways.

1. Through Prof. Hassan Sedaghat's website: \qquad
http:// www. people. ecu, edu/~ hsedagha
Spring 2003 courses:
Math 307: Multivariable Calculus $\leftarrow \mathrm{click}_{\mathrm{ol}}$ $\frac{1}{4}$
Software 4 CLCK
\downarrow
VCU Math 307: Software related.
Required Software: DPGraph
Access.... by clicking here and
2. Through DPGraph's website: http: //www. dpgraphicom/
subscribers. html

Subscribing institutions sorted by name: ... V...

CLICK ONCE ON this for "vcu"

Virginia Common wealth University,
CLICK ONCE ON

Save to Disk (Drive) \qquad
\qquad
$-\quad S$
SAVE AS
Save in: Desktop
filename: InstallDPGraph.exe from www. davidparker.com C:IWINDows I Desktop

Background \qquad
为
ClICK ON
\forall \qquad

$$
-\nabla
$$

Ey OPGraph

graph3d $\left(x^{*} 2+y^{*} 2=z\right)$
Click on Scrollbar above to activate the scrollbar

$-18-$

$f(x, y)=x^{2}+y^{2}$ has partial derivatives:
Recall : $f(x)=x^{2}$

$$
-\frac{d}{d x}\left(x^{2}\right)=2 x
$$

Here: $f(x, y)=x^{2}+y^{2}$

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(x^{2}+y^{2}\right)=\frac{\partial}{\partial x}\left(x^{2}\right)+\frac{\partial}{\partial x}\left(y^{2}\right) \\
& \text { The "partial of } \\
& \text { f with respect } \\
& \text { like } \\
& \text { like } \\
& \text { to } x \\
& =2 x+0 \\
& =2 x \\
& \frac{\partial}{\partial y}\left(x^{2}+y^{2}\right)=\frac{\partial}{\partial y}\left(x^{2}\right)+\frac{\partial}{\frac{\partial}{\partial x}\left(y^{2}\right)} \\
& \text { The "partial of } \\
& \frac{d}{d y} \text { (constant) } \\
& \frac{d}{d y}\left(y^{2}\right) \\
& f \text { with respect } \\
& \text { to } y^{\prime \prime}=-0+2 y \\
& =2 y
\end{aligned}
$$

Also: $f(x, y)=x^{2}+y^{2}$ has a "total derivative (or "total differential) \qquad that puts together these partial derivatives

SEE Section 11,4 (which we are going to skip but which I am willing to go over with anyone who is interested) \qquad
$f(x, y)=x^{2}+y^{2}$ has "partial integrals":
SEE MATH 3O1 (Differential. Equations) - Exact Equations.

Also: $f(x, y)=x^{2}+y^{2}$ has "a "total integral"
SEE Chapter 12 -
Double Integrals

ASIDE and OPTIONAL !!!:
In an ADVANCED CALCULUS course (which covers a lot of the theory behind (cAlculus I, II, III) and in Section 12.9 of our text to some extent (which we will not cover) the "derivative" of a real-valued or vector - valued function of two or more variables is defined.

Let

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right)
$$

be a vector -valued function of n variables. E.g.g

$$
f\left(x_{1}, x_{2}\right)=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right) \\
f_{2}\left(x_{1}, x_{2}\right) \\
f_{3}\left(x_{1}, x_{2}\right)
\end{array}\right)=\left(\begin{array}{c}
2 x_{1}+x_{2} \\
x_{1}^{2}+e^{x_{2}} \\
\sin x_{1}+\cos x_{2}
\end{array}\right) .
$$

$-22-$
Then the (TOTAL) DERIVATTVE OF f DIFFERENTIAL OF F I
TACOBIAN MATRIX OFf
is given by an $m \times n$ (m rows, n columns) matrix, whose elements are partial derivatives of f, f_{2}, \ldots., f_{m} and which is denoted by $D^{2} f$? '

$$
\begin{aligned}
& D f=\left(\begin{array}{lll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}}-\frac{\partial f_{2}}{\partial x_{2}} \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}-\frac{\partial f_{m}}{\partial x_{2}} \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right) \\
&\text { E.g.r with _fox, } \left.x_{2}\right)=\left(\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right) \\
f_{2}\left(x_{1}, x_{2}\right) \\
f_{3}\left(x_{1}, x_{2}\right)
\end{array}\right) \\
&=\left(\begin{array}{l}
2 x_{1}+x_{2} \\
x_{1}^{2}+e^{x_{2}} \\
\sin x_{1}+\cos x_{2}
\end{array}\right)
\end{aligned}
$$

$-23-$

$$
D f=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} \\
\frac{\partial f_{3}}{\partial x_{1}} & \frac{\partial f_{3}}{\partial x_{2}}
\end{array}\right)=\left(\begin{array}{ll}
2-1 & \\
\frac{2 x}{\partial x_{1}} e^{x_{2}} \\
\cos x_{1}-\sin x_{2}
\end{array}\right)
$$

If the (TOTAL) DERIVATIVE is evaluated at a particular point $\vec{x}_{0}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then_it ... is denoted $b y$

$$
D f\left(\vec{x}_{0}\right)=D f\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

Egg., Evaluate Bf at $\vec{x}_{0}=(3,-5)$

$$
f\left(x_{1}, x_{2}\right)=\left(\begin{array}{c}
2 x_{1}+x_{2} \\
x_{1}^{2}+e^{x_{2}} \\
\sin x_{1}+\cos x_{2}
\end{array}\right)
$$

