Lecture

Section 4.3. Homogeneous Linear Equations with
Constant Coefficients Constant Coefficients.

E.g., $7 y^{\prime \prime}+2 y^{\prime}-5 y=0$

$$
x^{2} y^{\prime \prime}+\frac{1}{x} y^{\prime}+y=\cos x \quad x
$$

Example. (HW Exenise 17, p.119.)
Find the general sols. of

$$
3 y^{\prime \prime}+2 y^{\prime}+y=0
$$

Assume: The $D E$ has a soln. of the form

$$
y=e^{m x}
$$

Substitute $y=e^{m x}$ in to the $D E$ and see what happens:

$$
3 m^{2} z^{m x}+2 m e^{m x}+e^{\dot{m} x}=0 \Rightarrow
$$

Can divide both sides of this equation by $e^{m x}$ since $e^{m x} \neq 0$ for all x and any m

$$
y=e^{m x}, m<0 \underbrace{m}_{1} / y=e^{m x}, m>0
$$

$$
3 m^{2}+2 m+1=0
$$

CHARACTERISTIC Equation

We just converted a DE problem into an ALGEBRA problem. We next solve for m,

DIGRESSION:

Recall: - Solus. or roots of the quadratic eq.

$$
A x^{2}+B x+C=0
$$

are always given by the quadratic formula

$$
x_{1,2}=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

Have one of the following:
(1) 2 distinct distinct real roots

$$
x_{1} \neq x_{2} \quad\left(B^{2}-4 A C>0\right)
$$

(2) 1 repeated real root

$$
x_{1}=x_{2} \quad\left(B^{2}-4 A C=0\right)
$$

(3) Complex conjugate pair of roots,

$$
\begin{aligned}
& x_{1}=\alpha+i \beta, x_{2}=\alpha-i \beta \\
& \left(B^{2}-4 A C<0\right)
\end{aligned}
$$

- $i \stackrel{\text { def }}{=} \sqrt{-1} \Rightarrow i^{2}=-1$
- $z=a+i b, a, b$ real
$a=$ real part of z
$b=$ imagining part of z

Solving for m cont $^{\prime} d$:

$$
\begin{aligned}
& 3 m^{2}+2 m+1=0 \\
m_{1,2} & =\frac{-2 \pm \sqrt{4-12}}{6}=\frac{-2 \pm \sqrt{-8}}{6}=\frac{-2 \pm 2 \sqrt{2} i}{6} \\
& =-\frac{1}{3} \pm \frac{\sqrt{2}}{3} i
\end{aligned}
$$

\therefore We get 2 (distinct) solus.:

$$
\begin{aligned}
& y_{1}(x)=e^{m_{1} x}=e^{\left(-\frac{1}{3}-\frac{\sqrt{2}}{3} i\right) x} \\
& y_{2}(x)=e^{m_{2} x}=e^{\left(-\frac{1}{3}+\frac{\sqrt{3}}{3} i\right) x}
\end{aligned}
$$

($\left\{y_{1}, y_{2}\right\}$ is a lin. index. Set since

$$
\begin{aligned}
\frac{y_{1}}{y_{2}} & =\frac{e^{\left(-\frac{1}{3}-\frac{\sqrt{2}}{3} i\right) x}}{e^{\left(-\frac{1}{3}+\frac{\sqrt{2}}{3} i\right) x}}=\frac{e^{-x / 3} e^{i \sqrt{2} x / 3}}{e^{-x / 3} e^{i \sqrt{2} x / 3}}=e^{-i \frac{\sqrt{2}}{3} x-i \frac{\sqrt{2}}{3} x} \\
& \left.=e^{-i \frac{2 \sqrt{2}}{3} x} \neq \text { constant } .\right)
\end{aligned}
$$

General Sole.:

$$
y=c_{1} e^{\left(-\frac{1}{3}-\frac{\sqrt{2}}{3} i\right) x}+c_{2} e^{\left(-\frac{1}{3}+\frac{\sqrt{2}}{3} i\right) x}
$$

However, BY CONVENTION, we want $y(x)$ to appear as the linear combination of of REAL, NOT UNREAL, FUNCTIONS (with the arbitrary constants now being real or complex).

To do this we consider
EULER'S FORMULA
(in complex analysis - accept on faith)
$e^{i \theta} \stackrel{\text { def }}{=} \cos \theta+i \sin \theta, \theta$ a real number

$$
\left(\cdot e^{-i \theta}=e^{i(-\theta)}=\cos (-\theta)+i \sin (-\theta)\right.
$$

$$
=\cos \theta+i(-\sin \theta)
$$

$$
=\cos \theta-i \sin \theta)
$$

$$
\begin{aligned}
\therefore e^{\left(-\frac{1}{3}-\frac{\sqrt{2}}{3} i\right) x} & =e^{-\frac{1}{3} x} \cdot e^{-\frac{\sqrt{2}}{3} i x} \\
& =e^{-\frac{1}{3} x} e^{-i \frac{\sqrt{2}}{3} x} \\
& =e^{-\frac{1}{3} x}\left(\cos \frac{\sqrt{2}}{3} x-i \sin \frac{\sqrt{2}}{3} x\right) \\
e^{\left(-\frac{1}{3}+\frac{\sqrt{2}}{3} i\right) x} & =e^{-\frac{1}{3} x}\left(\cos \frac{\sqrt{2}}{3} x+i \sin \frac{\sqrt{2}}{3} x\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore y(x)= & c_{1} e^{-\frac{1}{3} x}\left(\cos \frac{\sqrt{2}}{3} x-i \sin \frac{\sqrt{2}}{3} x\right) \\
& +c_{2} e^{-\frac{1}{3} x}\left(\cos \frac{\sqrt{2}}{3} x+i \sin \frac{\sqrt{2}}{3} x\right) \\
= & \underbrace{\left(c_{1}+c_{2}\right)}_{\text {REPLACE BY NEW } c_{1}} e^{-\frac{1}{3} x} \cos \frac{\sqrt{2}}{3} x
\end{aligned}
$$

$$
\begin{aligned}
& +\underbrace{i\left(c_{2}-c_{1}\right)}_{\text {REPLACE BY }} e^{-\frac{1}{3} x} \sin \frac{\sqrt{2}}{3} x
\end{aligned} \Rightarrow
$$

In general:
If $y_{1}=e^{(\alpha-i \beta) x}$ and $y_{2}=e^{(\alpha+i \beta) x}$
then the gen. soln. is written as

$$
y=c_{1} e^{\alpha x} \cos \beta x+c_{2} e^{\alpha x} \sin \beta x
$$

Two Distinct Real Roots

Example. (HW Exercise 8, p. 119.)
Find the general solution of

$$
\begin{gathered}
\frac{y^{\prime \prime}-3 y^{\prime}+2 y=0}{y=e^{m x}: y^{\prime \prime}-3 y^{\prime}+2 y=0 \Rightarrow} \\
m^{2} e^{m x}-3 m e^{m x}+2 e^{m x}=0 \Rightarrow \\
m^{2}-3 m+2=0 \Rightarrow \\
(m-1)(m-2)=0 \Rightarrow \\
m_{1}=1, m_{2}=2 \Rightarrow \\
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} \Rightarrow \\
y=c_{1} e^{x}+c_{2} e^{2 x} \quad \text { DONE! }
\end{gathered}
$$

Repeated Roots

Example. (HW Exercise 9, p. 119 .)
Find the general solution of

$$
\frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}+16 y=0
$$

$y=e^{m x}: \quad y^{\prime \prime}+8 y^{\prime \prime}+16 y=0 \Rightarrow$

$$
\begin{aligned}
& m^{2} f^{2 x}+8 m e^{m x}+16 e^{\max }=0 \Rightarrow \\
& m^{2}+8 m+16=0 \Rightarrow \\
& (m+4)(m+4)=0 \Rightarrow \\
& m_{1}=-4, m_{2}=-4
\end{aligned}
$$

-4 is A REPEATED Root
$\therefore y_{1}=e^{-4 x}$ and $y_{2}=e^{-4 x}$ so that the general solution is

$$
y=c_{1} e^{-4 x}+c_{2} e^{-4 x} ?
$$

NO!

With $y_{1}=e^{-4 x}$ and $y_{2}=e^{-4 x},\left\{y_{1}, y_{2}\right\}$ is linearly dependent, so no general solution can betormed from y_{1} and y_{2}.

We have one solution,

$$
y_{1}=e^{-4 x}
$$

We need a second solution, y_{2}.
It turns out that a second solution can still be found from $y_{1}=e^{-4 x}$ using the REDUCTION OF ORDER FORMULA (4.2)

$$
\begin{aligned}
& y_{2}=y_{1} \int \frac{e^{-\int P(x) d x}}{y_{1}^{2}} d x \\
& \left(y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0\right)
\end{aligned}
$$

So, we have

$$
\begin{aligned}
& y_{2}=e^{-4 x} \int \frac{e^{-\int 8 d x}}{\left(e^{-4 x}\right)^{2}} d x \\
& \Delta=e^{-4 x \cdot 2}=e^{-8 x}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-4 x} \int \frac{e^{-8 x}}{e^{-8 x}} d x \\
& =e^{-4 x} \int 1 d x \\
& =e^{-4 x}(x / 4 /(4) \Rightarrow \\
y_{2} & =x e^{-4 x}
\end{aligned}
$$

4|9/01,' General sold.:

$$
y=c_{1} e^{-4 x}+c_{2} x e^{-4 x}
$$

NOTE: For second-order $D E_{s}$, always "tag on" an x to make the secondsoln. distinct,
If you have something like

$$
\begin{aligned}
& y^{(4)}+16 y^{\prime \prime \prime}+96 y^{\prime \prime}+256 y^{\prime}+256 y=0 \Rightarrow \\
& m^{4}+16 m^{3}+96 m^{2}+256 m+256=0 \Rightarrow \\
& (m+4)^{4}=0 \Rightarrow \\
& m_{1}=m_{2}=m_{3}=m_{4}=-4,
\end{aligned}
$$

then "tag on" increasing powers of x :

$$
\begin{aligned}
& y_{1}=e^{-4 x}, y_{2}=x e^{-4 x}, y_{3}=x^{2} e^{-4 x}, \\
& y_{4}=x^{3} e^{-4 x}
\end{aligned}
$$

