Section 3.4: Solutions by Substitution

Three parts:
1. Substitution with a homogeneous DE
 \[M(x,y) \frac{dx}{dx} + N(x,y) \frac{dy}{dx} = 0 \]
2. " " " Bernoulli DE
 \[\frac{dy}{dx} + P(x)y = f(x)y^n \]
3. " " " Potentially separable DE
 \[\frac{dy}{dx} = f(x) + g(y) \]

For an analogy, recall INTEGRATION BY SUBSTITUTION:

\[\int f(g(x)) \cdot g'(x) \, dx = \int f(u) \, du \]

Let \(u = g(x) \). Then
\[\frac{du}{dx} = g'(x) \Rightarrow du = g'(x) \, dx \]

\[\frac{du}{f(u)} = \frac{f'(u)}{f(u)} \, du = \frac{f'(u)}{f(u)} \, du \]

\[= F(u) + C \]

Where \(F \) is the antiderivative of \(f \)

\[= F(g(x)) + C \]
We can transform an integral into one that is more easily solved (i.e., solved by already known techniques) by a "change of variable" or "substitution." E.g., \[\int 2xe^{x^2} \, dx = \int e^u \, du = e^u + C = e^{x^2} + C \]

Let \(u = x^2 \). Then \(\frac{du}{dx} = 2x \Rightarrow du = 2x \, dx \)

We can do something similar with DEs to reduce them to DEs that we already know how to solve.

Homogeneous DEs

Defn: \(f(x, y) \) is said to be a homogeneous function of degree \(\alpha \), where \(\alpha \) is some real number, if when we substitute \(cx \) for \(x \) and \(cy \) for \(y \) with \(c \) any constant, we get

\[f(cx, cy) = c^\alpha f(x, y) \]
E.g., $f(x,y) = 5x^{1/3}y - 3xy^{1/3}$

\[f(cx, cy) = 5(cx)^{1/3}(cy) - 3(cx)(cy)^{1/3} \]
\[= 5c^{1/3}x^{1/3}y - 3c^{1/3}cx^{1/3}y^{1/3} \]
\[= c^{1/3}(5x^{1/3}y - 3xy^{1/3}) = c^{1/3}f(x, y) \]

\[\text{\ because } f(x, y) \text{ is a homogeneous function of degree } \frac{1}{3}. \]

E.g., $f(x,y) = x^3 + y^2$

\[f(cx, cy) = (cx)^3 + (cy)^2 \]
\[= c^3x^3 + c^2y^2 \]
\[\neq c^3f(x, y) \]

\[\text{\ because } f(x, y) \text{ is NOT a homogeneous function.} \]

Roughly speaking,

A homogeneous function of degree \(\alpha \) is a function of the form

\[f(x,y) = x^{m_1}y^{n_1} + x^{m_2}y^{n_2} + \cdots + x^{m_c}y^{n_c} \]

where

\[m_1 + n_1 = \alpha, \quad m_2 + n_2 = \alpha, \quad \ldots, \quad m_c + n_c = \alpha \]
Defn. A first-order DE of the form

\[M(x, y) \, dx + N(x, y) \, dy = 0 \]

is said to be homogeneous if (1) \(M(x, y) \) and \(N(x, y) \) are both homogeneous functions of the same degree.

\(E(x, y) = \frac{(x-y) \, dx + (x+y) \, dy}{M(x, y) \, N(x, y)} \)

\(M(x, y) = x - y = x' - y' \implies \text{homog., of degree 1} \)

\(N(x, y) = x + y = x' + y' \implies \text{homog., of degree 1} \)

\(\therefore \text{DE is homogeneous.} \)

Method of Solution of Homogeneous DEs
With a homogeneous DE, we will make either of the following substitutions:

(1) \[y = ux \]
(i.e., \(y(x) = u(x)x \))

Then \[\frac{dy}{dx} = \frac{d}{dx}(ux) = u \cdot 1 + \frac{d}{dx} x \Rightarrow \]

\[\text{PRODUCT RULE: } (fg)' = fg' + f'g \]

\[\frac{dy}{dx} = u + x \frac{du}{dx} \Rightarrow \frac{dy}{dx} = u dx + x du \]

- Used when \(M \) is simpler than \(N \) (since replacing \(dy \) with a messier expression).
- End up with DE in \(u(x) \) and \(x \)
- Solve for \(u \) in terms of \(x \)
- Substitute back \(u = y/x \)
- Homogeneity allows for factoring and cancelling of \(x \)

(2) \[x = vy \]
(i.e., \(x = v(x)y(x) \))

Then \[\frac{d}{dx}(x) = \frac{d}{dx}(vy) = v \frac{dx}{dx} + \frac{dv}{dx} \cdot y \Rightarrow \]

\[1 = v \frac{dv}{dx} + \frac{dx}{dx} \Rightarrow dx = v dv + y dv \]

- Used when \(M \) is simpler than \(N \) (since replacing \(dx \) with a messier expression).
- End up with DE in \(v(x) \) and \(y \)
- Solve for \(y \) in terms of \(v \)
- Substitute back \(v = x/y \)
- Homogeneity allows for factoring and cancelling of \(x \)
Examples.

1. (Exercise 1, p. 57.) Solve the homogeneous equation

\[(x-y)dx + x\,dy = 0\]

by using an appropriate substitution.

Note: DE is homogeneous since

\[M(x,y) = x^1 - y^1 \Rightarrow \text{homog. of degree } 1\]
\[N(x,y) = x^1 \Rightarrow \text{homog. of degree } 1\]

Note: \(N(x,y) = x\) is "simpler" than \(M(x,y) = x - y\) so choose substitution with

\[y = ux\]
\[dy = u\,dx + x\,du\]
\[(x-y)\,dx + x\,dy = 0 \Rightarrow \]
\[(x-ux)\,dx + x(udx+xdu) = 0 \Rightarrow \]
\[x(1-u)\,dx + x(udx+xdu) = 0 \Rightarrow \]
\[\text{Assuming } x \neq 0 \]
\[(1-u)\,dx + udx + xdu = 0 \Rightarrow \]

So the homogeneity of degree 1 of both \(M\) and \(N\) has allowed us to factor out an \(x\) and then cancel the \(x\)

\[(1-u+u)\,dx + xdu = 0 \Rightarrow \]
\[dx + xdu = 0 \Rightarrow \]

Looks like a separable eq

\[x\,du = -dx \Rightarrow \]
\[du = -\frac{1}{x}\,dx \Rightarrow \]

\[\int 1\cdot du = -\int \frac{1}{x}\,dx \Rightarrow \]
\[u = \frac{-\ln |x| + c}{x} \Rightarrow \]

Substitute back:
\[y = ux \Rightarrow u = \frac{y}{x} \]

\[\frac{y}{x} = -\ln |x| + C \Rightarrow \]

\[y = -x \ln |x| + Cx \]
2. (Exercise 3, p. 54.) Solve the homogeneous equation
\[x \, dx + (y - 2x) \, dy = 0 \]
by using an appropriate substitution.

Note: DE is homogeneous since
\[M(x,y) = x' \, \Rightarrow \text{homog. of degree 1? some degree} \]
\[N(x,y) = y' - 2x' \, \Rightarrow \text{homog. of degree 1} \]

Note: \(M(x,y) = x \) is "simpler" than \(N(x,y) = y - 2x \) choose substitution with
\[x = vy \]
\[dx = v \, dy + y \, dv \]
Actually, we are going to use the other inappropriate substitution,
\[y = ux \]
\[dy = u \, dx + x \, du \]
\[
xdx + (y - 2x)\, dy = 0 \implies \\
xdx + (ux - 2x)(udx + xdu) = 0 \implies \\
x\, dx + x(u - 2)(udx + xdu) = 0 \implies \\
dx + (u - 2)(udx + xdu) = 0 \implies \\
dx + u^2\, dx + x\, xdu - 2udx - 2xdu = 0 \implies \\
(1 + u^2 - 2u)\, dx + (ux - 2x)\, du = 0 \implies \\
(u^2 - 2u + 1)\, dx + x\, (u - 2)\, du = 0 \implies \\
(u - 1)^2\, dx + x\, (u - 2)\, du = 0 \implies \\
\text{Looks like a separable eq.,} \\
x\, (u - 2)\, du = -(u - 1)^2\, dx \implies \\
\frac{u - 2}{(u - 1)^2}\, du = -\frac{1}{x}\, dx \implies \\
\int \frac{u - 2}{(u - 1)^2}\, du = -\int \frac{1}{x}\, dx \\
\text{TWO WAYS TO HANDLE THIS INTEGRAL:}
TRICK + INTEGRATION BY SUBSTITUTION

\[\frac{u-2}{(u-1)^2} = \frac{u-1-1}{(u-1)^2} = \frac{u-1}{(u-1)^2} - \frac{1}{(u-1)^2} \]
\[= \frac{1}{u-1} - \frac{1}{(u-1)^2} \Rightarrow \]
\[\int \frac{u-2}{(u-1)^2} \, du = \int \frac{1}{u-1} \, du - \int \frac{1}{(u-1)^2} \, du \]

Let \(w = u-1 \). Then \(\frac{dw}{du} = 1 \Rightarrow \)
\(dw = du \).

\[\int \frac{1}{w} \, dw - \int \frac{1}{w^2} \, dw \]
\[= \ln |w| - \frac{1}{w} + C \]
\[= \ln |u-1| + \frac{1}{u-1} + C \]
\[\frac{u-2}{(u-1)^2} = \frac{A}{u-1} + \frac{B}{(u-1)^2} \]

\[u-2 = A(u-1) + B \]

\[u-2 = Au + (-A+B) \]

\[A = 1 \]

\[-A + B = -2 \]

\[\begin{cases} A = 1 \\ B = -1 \end{cases} \]

\[\int \frac{u-2}{(u-1)^2} \, du = \int \frac{A}{u-1} \, du + \int \frac{B}{(u-1)^2} \, du \]

\[= \int \frac{1}{u-1} \, du - \int \frac{1}{(u-1)^2} \, du \]

\[= \ln|u-1| + \frac{1}{u-1} + C \]
\[\int \frac{u-2}{(u-1)^2} \, du = - \int \frac{1}{x} \, dx \Rightarrow \]

\[\ln |u-1| + \frac{1}{u-1} = - \ln |x| + C \Rightarrow \]

Substitute back.

\[y = ux \Rightarrow u = \frac{y}{x} \]

\[\ln \left| \frac{y}{x} - 1 \right| + \frac{1}{\frac{y}{x} - 1} = - \ln |x| + C \Rightarrow \]

\[\ln \left| \frac{y-x}{x} \right| + \frac{x}{y-x} = - \ln |x| + C \Rightarrow \]

\[\ln (y-x) - \ln |y-x| + \frac{x}{y-x} = - \ln |x| + C \Rightarrow \]

\[(x-y) \ln |x-y| + \frac{x(x-y)}{y-x} = C(x-y) \Rightarrow \]

\[(x-y) \ln |x-y| - x = C(x-y) \Rightarrow \]

\[(x-y) \ln |x-y| - x + y - y = C(x-y) \Rightarrow \]

\[(x-y) \ln |x-y| -(x-y)-y = C(x-y) \Rightarrow \]

\[(x-y) \ln |x-y| - y = C(x-y) + i(x-y) \Rightarrow \]

\[(x-y) \ln |x-y| - y = \frac{(C+1)(x-y)}{C} \Rightarrow \]
\[(x-y) \ln |x-y| - y = C(x-y)\]

Solution in SOLUTIONS MANUAL
Bernoulli DEs

Definition: A Bernoulli equation is a DE of the form

\[\frac{dy}{dx} + P(x)y = -f(x)y^\alpha, \]

where \(\alpha \) is any real number.

Notes:
1. When \(\alpha = 0 \), we have a linear first-order DE

\[\frac{dy}{dx} + P(x)y = f(x). \]

2. When \(\alpha = 1 \), we still have a linear first-order DE

\[\frac{dy}{dx} + P(x)y = f(x)y \quad \Rightarrow \quad \frac{dy}{dx} + [P(x) - f(x)]y = 0. \]

Method of Solution of Bernoulli DEs
Assume \(\alpha \neq 0,1 \) in:

\[
\frac{dy}{dx} + P(x)y = f(x)y^{\alpha}
\]

Let \(u = y^{1-(1-\alpha)} \) (where \(u = u(x) \)). Then

\[
y = \frac{1}{1-\alpha} u
\]

\[
\frac{dy}{dx} = \frac{1}{1-\alpha} \left(\frac{1}{1-\alpha} \frac{du}{dx} \right)
\]

CHAIN RULE:

\[
\frac{d}{dx} \left[f(x) \right]^n = n \left[f(x) \right]^{n-1} \cdot \frac{df}{dx}
\]

Substitute these expressions for \(y \) and \(\frac{dy}{dx} \) in the DE.

The DE will reduce to a LINEAR FIRST-ORDER DE which we solve by the method given in Sect. 2.3.
Example: (Exercise 15, p. 57.) Solve the Bernoulli equation
\[
x \frac{dy}{dx} + \frac{1}{x} y = \frac{1}{y^2}
\]
by using an appropriate substitution.

Step 1. First divide through by \(x\):
\[
\frac{dy}{dx} + \frac{1}{x} y = \frac{1}{x} y^{-2}
\]
\[
P(x) = \frac{1}{x} \quad f(x) = \frac{1}{x}
\]

Step 2. We have a Bernoulli equation with \(\alpha = -2\). So, let \(u = y^{1-\alpha}\):
\[
u = y^{1-(-2)} = y^3 \quad \Rightarrow \quad u = y^3
\]
\[
\int u^2 \, dy = y \quad \Rightarrow \quad \left[u^2 \right] = y
\]
\[
\frac{dy}{dx} u^2 = \frac{1}{3} u^{\frac{1}{3}-1} \quad \Rightarrow \quad \frac{du}{dx} = \frac{1}{3} u^{-\frac{2}{3}} \frac{dy}{dx}
\]
\[
\frac{dy}{dx} = \frac{1}{3} u^{-\frac{2}{3}} \frac{du}{dx}
\]
STEP 3. Substitute \(y = u^{1/3} \) into the DE:

\[
\frac{dy}{dx} + \frac{1}{x} y = \frac{1}{x} y^{-2} \Rightarrow \\
\frac{1}{3} u^{-2/3} \frac{du}{dx} + \frac{1}{x} u^{1/3} = \frac{1}{x} (u^{1/3})^{-2} \Rightarrow \\
\frac{1}{3} u^{-2/3} \frac{du}{dx} + \frac{1}{x} u^{1/3} = \frac{1}{x} u^{-2/3} \Rightarrow \\
3 u^{2/3} \left(\frac{1}{3} u^{-2/3} \frac{du}{dx} + \frac{1}{x} u^{1/3} \right) = 3 u^{2/3} \left(\frac{1}{x} u^{-2/3} \right) \Rightarrow \\
u^{2/3-2/3} \frac{du}{dx} + \frac{3}{x} u^{2/3+1/3} = \frac{3}{x} u^{3/3-3/3} \Rightarrow \\
\frac{du}{dx} + \frac{3}{x} u = \frac{3}{x}
\]

LINEAR FIRST-ORDER DE (in u)

\[u' + P(x)u = f(x) \]

\[\frac{u}{u^{2/3}} = \frac{3}{x} \]

STEP 4. Solve linear first-order DE in usual way:

\[
\mu(x) = e^{-\int P(x)dx} = e^{-\int \frac{1}{x} dx} = e^{-\ln x} = e^{\ln x^{-1}} = e^{\ln x^3} = x^3
\]

will assume \(I = (0, \infty) \)
$$x^2 \left(\frac{du}{dx} + \frac{3}{x} u \right) = x^3 \left(\frac{3}{x} \right) \implies$$

$$x^2 \frac{du}{dx} + 3x^2 u = 3x^3 \implies$$

$$\frac{d}{dx}(x^2 u) = x^3 \left(\frac{du}{dx} \right) + \left(\frac{du}{dx} \right) x = x^3 \frac{du}{dx} + 3x^2 u \checkmark$$

$$\frac{d}{dx}(x^3 u) = 3x^2 \implies$$

$$\int \frac{d}{dx}(x^3 u) \, dx = \int -3x^2 \, dx \implies$$

$$x^3 u = x^3 + C \implies$$

$$u = 1 + \frac{C}{x^3}$$

STEP 5. Substitute back and replace u by y:

$$u = y^3 \implies$$

$$y^3 = 1 + \frac{C}{x^3}$$

$$y = \left(1 + \frac{C}{x^3} \right)^{\frac{1}{3}}$$
Equations of the Form

\[\frac{dy}{dx} = f(Ax + By + C) \quad B \neq 0 \]

Note: If \(B = 0 \), then we have

\[\frac{dy}{dx} = f(Ax + C) \]

which is a separable DE.

Method of Solution

Assume \(B \neq 0 \)

Let \(u = Ax + By + C \) (where \(u = Ax + By(x) + C \) so \(u = u(x) \)). Then

\[\frac{du}{dx} = \frac{d}{dx} (Ax + By + C) = A + B \frac{dy}{dx} \Rightarrow \]

\[\frac{du}{dx} = A + B \frac{dy}{dx} \Rightarrow \]
\[\frac{dy}{dx} = \frac{1}{B} \left(\frac{dy}{dx} - A \right) \]

Substitute these expressions for \(y \) and \(\frac{dy}{dx} \) in the DE.

The DE will reduce to a SEPARABLE DE, which we solve by the method given in Sect. 2.1.
Example. (Exercise 27, p. 58.) Solve the DE

$$\frac{dy}{dx} = 2 + \sqrt{y-2x+3}.$$

STEP 1. This DE is of the form

$$\frac{dy}{dx} = f(Ax + By + C):$$

$$f(w) = 2 + \sqrt{w}$$

$$A = -2, \quad B = 1, \quad C = 3$$

STEP 2. Let $$u = Ax + By + C;$$

$$u = y - 2x + 3 \Rightarrow$$

$$\frac{du}{dx} = \frac{dy}{dx} - 2 \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + 2$$

STEP 3. Substitute $$u = -2x + y + 3$$ and $$\frac{dy}{dx} = \frac{du}{dx} + 2$$ into the DE:
\[
\frac{dy}{dx} = 2 + \sqrt{y - 2x + 3} \\
\downarrow \\
\frac{du}{dx} + 2 = 2 + \sqrt{u} \\
\downarrow \\
\frac{du}{dx} = \sqrt{u} \\
\uparrow \\
\text{SEPARABLE DE (in u)} \\
\frac{du}{dx} = 1 \cdot \frac{\sqrt{u}}{\int g(x) \, dx} \\
\text{STEP 4. Solve separable DE in usual way:} \\
\frac{1}{\sqrt{u}} \, du = \cdot dx \\
\downarrow \\
u^{1/2} \, du = \cdot dx \\
\int u^{-1/2} \, du = -\int 1 \, dx \\
\downarrow \\
u^{-\frac{1}{2} + 1} = x + C \\
\downarrow \\
2\sqrt{u} = x + C
STEP 5. Substitute back and replace

\(u \) by \(y - 2x + 3 \):

\[u = y - 2x + 3 \Rightarrow \]

\[2\sqrt{y - 2x + 3} = x + C \Rightarrow \]

\[\sqrt{y - 2x + 3} = \frac{x}{2} + C \]

\[\text{WARNING: Do not rewrite this as} \]

\[y - 2x + 3 = \left(\frac{x}{2} + C \right)^2 \Rightarrow \]

\[y = \left(\frac{x}{2} + C \right)^2 + 2x - 3 \]

\[\text{Where} \]

\[\sqrt{y - 2x + 3} = \left(\frac{x}{2} + C \right)^2 \]

\[\text{can be negative since this} \]

\[\text{quantity is squared and made} \]

\[\text{non-negative} \]

\[\text{is not equivalent to} \]
\[
\sqrt{y-2x+3} = \frac{x}{2} + C
\]

Cannot be negative since equal to a square root. Cannot be negative for square root to make sense.