The Family of Antiderivatives Associated With a Function f

Antiderivative = opposite of derivative

Definition: F is an antiderivative of f if its derivative is equal to f, i.e.,

$$ F'(x) = f(x). $$

Example. The function $f(x) = 3x^2$ is the derivative of another function $F(x)$, called the antiderivative of $f(x)$. Find (or guess at) $F(x)$,

$$ F'(x) = f(x) \Rightarrow F'(x) = 3x^2 $$

$$ \Rightarrow F(x) = x^3 $$

check: $F''(x) = \frac{d}{dx}(x^3) = 3x^2 = f(x) \checkmark$
Actually, other $F(x)$'s that will also work are:

$F(x) = x^3 + 1$: $F'(x) = \frac{d}{dx}(x^3 + 1) = 3x^2 = f(x)$ ✓

$F(x) = x^3 - 55$: $F'(x) = \frac{d}{dx}(x^3 - 55) = 3x^2 = f(x)$ ✓

$F(x) = x^3 + \frac{3}{4}$: $F'(x) = \frac{d}{dx}(x^3 + \frac{3}{4}) = 3x^2 = f(x)$ ✓

All of these $F(x)$'s are antiderivatives of $f(x) = 3x^2$.

So, we say that the **general antiderivative** or **family of antiderivatives** of $f(x) = 3x^2$ is

$$F(x) = x^3 + C \quad C = \text{any constant}$$
- 287(12) -

\[F'(x) = \frac{d}{dx}(x^3 + C) = 3x^2 + 0 = 3x^2 = f(x) \checkmark \]
Visualizing Antiderivatives Using
the Slopes of Tangent Lines
(SEE Section 2.10, pp. 197-198, as
Well as Section 4.9, p. 332)

Recall that

\[F'(x) = \text{slope of tangent line to } y = F(x) \text{ at } x = a \]

\text{derivative } = \text{slope}

We will first use this idea in an attempt to
sketch \(F(x) \) given a sketch of \(F'(x) = f(x) \), where
\(F(x) \) is the antiderivative of \(f(x) \):
Example. (Exercise 2, p. 174, Sect. 2.10)

The graph of the derivative F' of a function F is shown:

(a) On what intervals is F increasing or decreasing?

(b) At what values of x does F have a local maximum or minimum?

(c) If it is known that $F(0) = 0$, sketch a possible graph of F.

\[y = F'(x) \]
\[y = F'(x) \]

- **F'(x)**
 - **F' > 0**
 - **F' < 0**
 - **F' = 0**

- **F(x)**
 - **F(0) = 0**
 - **local max**
 - **local min**
 - **infl. pt.**

Table: F' vs. F

<table>
<thead>
<tr>
<th>F'</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0</td>
<td>increasing</td>
</tr>
<tr>
<td>= 0</td>
<td>local max (\forall) or local min (\exists) or "plateau"</td>
</tr>
<tr>
<td>< 0</td>
<td>decreasing</td>
</tr>
<tr>
<td></td>
<td>concave up</td>
</tr>
<tr>
<td></td>
<td>concave down</td>
</tr>
<tr>
<td></td>
<td>inflection point</td>
</tr>
</tbody>
</table>

\[\boxed{284(15)} \]
We will now sketch $F(x)$ by connecting a whole bunch of short tangent lines that come from $F'(x) (= f(x))$.

\[F(x) = x^3 + C, \quad F'(x) = 3x^2 \]

Collide a DIRECTION FIELD for $f(x) = 3x^2$.
Example. (Exercise 52, p. 334, Sect. 4.9.)

Use a direction field to graph the antiderivative of

\[f(x) = x \tan x, \quad -\pi/2 < x < \pi/2 \]

that satisfies

\[F(0) = 0. \]

\[f(x) = x \tan x = \text{slope of tangent lines at } x \]
<table>
<thead>
<tr>
<th>x</th>
<th>$f(x) = x \tan x$ = slope of tangent lines at x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\pm \pi/8$</td>
<td>0.16</td>
</tr>
<tr>
<td>$\pm \pi/4$</td>
<td>0.78</td>
</tr>
<tr>
<td>$\pm 3\pi/8$</td>
<td>2.84</td>
</tr>
<tr>
<td>$\pm \pi/2$</td>
<td>∞</td>
</tr>
</tbody>
</table>
Constructing Antiderivatives

(See Section 5.3, pp. 371-372,
as well as Section 4.9, pp. 329-331)

The

ANTIDERIVATIVE

of a function \(f \) is also called the

(INDEFINITE) INTEGRAL

of a function \(f \).

The indefinite integral of a function \(f \)
is denoted by

\[
\int f(x) \, dx = F(x) + C
\]

General antiderivative (or family of antiderivatives) of \(f(x) \) where

\[
\frac{d}{dx} (F(x) + C) = F'(x) + 0 = F'(x) = f(x)
\]
So we have

Differentialiation, \(\frac{d}{dx} \)

and

Integration, \(\int dx \)

two reverse processes:

Differentialiation

\[\frac{d}{dx}(F(x) + C) = F'(x) = f(x) \]

\[F(x) + C \quad \text{Antiderivative} \quad \uparrow \quad f(x) \quad \text{Derivative} \]

\[\int f(x) \, dx = F(x) + C \]

Integration
Examples:

1. Antiderivative of \(f(x) = 0 \)?
 Ask: What function has derivative \(0 \)?
 Answer: Any constant function \(F(x) = C \).
 So
 \[
 \int 0 \, dx = C.
 \]

2. Antiderivative of \(f(x) = 3 \)?
 Ask: What function has derivative \(3 \)?
 Answer: The linear function \(F(x) = 3x \).
 So
 \[
 \int 3 \, dx = 3x + C \quad \text{"Tag on" a } C.
 \]

3. Antiderivative of \(f(x) = x \)?
 Ask: What function has derivative \(x \)?
 Answer: Try \(F(x) = x^2 \).
 Then
 \[
 F'(x) = 2x \neq x = f(x)
 \]
 Try \(F(x) = \frac{1}{2} x^2 \).
 Then
 \[
 F'(x) = x = f(x) \checkmark
 \]
\[\int x \, dx = \frac{1}{2} x^2 + C \]

"Tag on" a \(C \).

4. Antiderivative of \(f(x) = x^2 \)?

Ask: What function has derivative \(x^2 \)?

Answer: Try \(F(x) = x^3 \). Then

\[F'(x) = 3x^2 \neq x^2 = f(x) \]

Try \(F(x) = \frac{1}{3} x^3 \). Then

\[F'(x) = x^2 = f(x) \checkmark \]

So

\[\int x^2 \, dx = \frac{1}{3} x^3 + C \]

"Tag on" a \(C \).
In general:

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

or \(\frac{1}{n+1}, x^{n+1} \)

Otherwise, we can get:

$$\frac{x^{-1+1}}{-1+1} = \frac{x^0}{0} = \frac{0}{0} = \text{undefined}!$$
1. Antiderivative of \(f(x) = e^x \)?
 What function has derivative \(e^x \)?
 Recall: \(\frac{d}{dx}(e^x) = e^x \).

So
\[
\int e^x \, dx = e^x + C
\]
(derivative of this must equal this)

2. Antiderivatives of \(f(x) = \sin x \) and \(f(x) = \cos x \)?
 What function has derivative \(\sin x \)? \(= \cos x \)?
 Recall: \(\frac{d}{dx}(\cos x) = -\sin x \Rightarrow \)
 \(\frac{d}{dx}(-\cos x) = -\frac{d}{dx}(\cos x) = -(\sin x) = \sin x \)
 \(\frac{d}{dx}(\sin x) = \cos x \)

So
\[
\int \sin x \, dx = -\cos x + C
\]
\[
\int \cos x \, dx = \sin x + C
\]
3. Antiderivative of \(f(x) = x^{-1} = \frac{1}{x} \)?

NOTE: Cannot use formula
\[
\int x^n \, dx = \frac{x^{n+1}}{n+1} + C.
\]

What function has derivative \(\frac{1}{x} \)?

Actually, there are two!

\[x > 0: \quad F(x) = \ln(x) \quad \text{positive} \]
\[
\frac{d}{dx}(F(x)) = \frac{d}{dx}(\ln x) = \frac{1}{x}
\]

\[x < 0: \quad F(x) = \ln(-x) \quad \text{negative} \]
\[
\frac{d}{dx}(F(x)) = \frac{d}{dx}(\ln(-x)) = \frac{1}{x} \cdot \frac{d}{dx}(-x) = \frac{x}{x} \cdot (1) = \frac{1}{x}
\]

Chain Rule
\[
\frac{d}{dx} \ln(f(x)) = \frac{1}{f(x)} \cdot f'(x)
\]

Can put these two \(F(x) \)’s together into one function

\[
F(x) = \ln|x| = \begin{cases} \ln x & , \quad x > 0 \\ \ln(-x) & , \quad x < 0 \end{cases}
\]

So,
\[
\int \frac{1}{x} \, dx = \ln|x| + C
\]
Properties of Antiderivatives
(or Indefinite Integrals)

1. \[\int (f(x) \pm g(x)) \, dx = \int f(x) \, dx \pm \int g(x) \, dx \]

 Example:
 \[\int (x^2 + \frac{1}{x}) \, dx = \int x^2 \, dx + \int \frac{1}{x} \, dx \]

 \[= \frac{x^3}{3} + \ln |x| + C \]

 Just "tag on" one \(C \)

2. \[\int c f(x) \, dx = c \int f(x) \, dx \]

 Example:
 \[\int 3e^x \, dx = 3 \int e^x \, dx \]

 \[= 3e^x + C \]

 "Tag on" \(C \) lost
Examples. Find the most general antiderivative $F(x) + C$ of the function $f(x)$.

1. (Exercise 2, p. 334)

$f(x) = 1 - x^3 + 12x^5$

$$
\int f(x)\,dx = \int (1 - x^3 + 12x^5)\,dx \\
= \int x^0\,dx - \int x^3\,dx + 12\int x^5\,dx \\
= \frac{x^{0+1}}{0+1} - \frac{x^{3+1}}{3+1} + 12\cdot\frac{x^{5+1}}{5+1} + C \\
= \frac{x^1}{1} - \frac{x^4}{4} + 12\cdot\frac{x^6}{6} + C \\
= x - \frac{x^4}{4} + 2x^6 + C
$$

Check: \(\frac{d}{dx} \left(x - \frac{x^4}{4} + 2x^6 + C \right) \)

\[\begin{align*}
11/20/01 & \quad \text{Tues,} \\
= \frac{d}{dx}(x) - \frac{1}{4}\frac{d}{dx}(x^4) + 2\frac{d}{dx}(x^6) + \frac{d}{dx}(C) \\
= 1 - \frac{1}{4}(4x^3) + 2(6x^5) + 0 \\
= 1 - x^3 + 12x^5 \quad \checkmark
\]
3. (Exercise 10, p. 334.)

\[f(x) = 3e^x + 7\sec^2 x \]

\[
\int f(x) \, dx = \int (3e^x + 7\sec^2 x) \, dx \\
= 3\int e^x \, dx + 7\int \sec^2 x \, dx \\
= 3e^x + 7\tan x + C
\]

Recall: \(\frac{d}{dx}(\tan x) = \sec^2 x \)
4. (Exercise 12, p. 334.)

\[f(x) = \frac{x^2 + x + 1}{x} \]

HINT

\[\int f(x) \, dx = \int \left(x + 1 + \frac{1}{x} \right) \, dx \]

\[= \int x \, dx + \int 1 \, dx + \int \frac{1}{x} \, dx \]

\[= \frac{x^2}{2} + x + \ln|x| + C \]
Example: (Exercise 14, p. 334.)

Find antiderivative F of f that satisfies given condition.

$F(x) = 4 - 3 \left(1 + x^2\right)^{-1} = 4 - 3 \cdot \frac{1}{1 + x^2}$

$F(0) = 4$

Called "given condition" or "initial condition." We will use this to determine a specific value for C.

\[
\int f(x) \, dx = \int \left(4 - 3 \cdot \frac{1}{1 + x^2}\right) \, dx
\]

\[
= 4 \int dx - 3 \int \frac{1}{1 + x^2} \, dx
\]

\[
= 4x - 3 \tan^{-1} x + C = F(x)
\]

Recall: \(\frac{d}{dx} (\tan^{-1} x) = \frac{1}{1 + x^2} \)

Apply $F(0) = 4$ to $F(x) = 4x - 3 \tan^{-1} x + C$

to determine C:
\(- 2.87 \ (31) -

\begin{align*}
4 &= F(0) = 4(0) - 3\tan^{-1}(0) + C \\
4 &= 4(0) - 3\tan^{-1}(0) + C \\
&= 0 \text{ by calculator} \\
4 &= 0 - 3(0) + C \\
&= C \\
C &= 4
\end{align*}

\[
F(x) = 4x - 3\tan^{-1}x + 4
\]