3/19/01

CHAPTER 3 Differentiation

We will now learn about different RULES OF DIFFERENTIATION (= rules of finding derivatives of functions). These actually come from

1) the limit definition of derivative:

\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

2) the limit laws (Sect. 2.3), e.g.,

\[\lim_{x \to 1} (5x^2 + 2x^3) = \lim_{x \to 1} 5x^2 + \lim_{x \to 1} 2x^3 \]

\[= 5 \lim_{x \to 1} x^2 + 2 \lim_{x \to 1} x^3 \]

\[= 5(1)^2 + 2(1)^3 \]

\[= 7 \]

We will set aside the limit definition of derivative and start memorizing formulas and rules that come from it.
Section 3.1. Derivatives of Polynomials and Exponential Functions.

Notation: If we are given, say, the function \(f(x) = x^2 \), we will write for its derivative

\[
f'(x) = \frac{d}{dx} (x^2) \quad \text{or} \quad \frac{d}{dx} x^2 \]

Power Rule

Let \(f(x) = x \). Then

\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h) - x}{h}
\]

\[
= \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 = 1 = 1 \cdot x^0
\]
Let \(f(x) = x^2 \). Then

\[
 f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2hx + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2hx + h^2}{h} = \lim_{h \to 0} (2x + h) = 2x.
\]

It can be shown that, in general,

\[
 \frac{d}{dx}(x^n) = nx^{n-1}, \quad n \text{ any real number!}
\]

Power Rule

Examples:

1. \(\frac{d}{dx}(x^e) = ex^{e-1} \) \((e = 2.71828...) \)

2. \(\frac{d}{dx}\left(\sqrt{x}\right) = \frac{1}{2}x^{-1/2} = \frac{1}{2} \frac{1}{\sqrt{x}} = \frac{1}{2\sqrt{x}} \)

Put in Fractional Form
Recall: \(x^{m/n} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m \).
Example: \(x^{1/2} = \sqrt{x^1} = (\sqrt{x})^1 \).

3. \(\frac{d}{dx} \left(\frac{1}{x} \right) = \frac{d}{dx} (x^{-1}) = (-1) x^{-1-1} = -x^{-2} = \frac{-1}{x^2} \)

Put in negative exponent form
Recall: \(x^{-n} = \frac{1}{x^n} \).

4. \(\frac{d}{dx} (1) = \frac{d}{dx} (x^0) = 0 \cdot x^{0-1} = 0 \cdot x^{-1} = 0 \)

Recall: \(x^0 = 1 \).

5. \(\frac{d}{dx} (x) = \frac{d}{dx} (x^1) = 1 \cdot x^{1-1} = 1 \cdot x^0 = 1 \cdot 1 = 1 \)

6. \(\frac{d}{dx} (x^2) = 2x^{2-1} = 2x^1 = 2x \)

7. \(\frac{d}{dx} (x^3) = 3x^{3-1} = 3x^2 \)
Summary of some derivatives you may forget:

Put off #1 and 2 below

\[
\frac{d}{dx}(1) = 0 \quad \frac{d}{dx}(k) = 0, \quad k \text{ any constant}
\]

\[
E_j, \quad \frac{d}{dx}(2) = 0
\]

\[
\frac{d}{dx}(x) = 1 \quad \frac{d}{dx}(kx) = k, \quad k \text{ any constant}
\]

\[
E_j, \quad \frac{d}{dx}(3x) = 3
\]

Sum/Difference and Constant Multiple Rules

1. \[
E_j, \quad \frac{d}{dx}(x^3 + x^2) = \frac{d}{dx}(x^3) + \frac{d}{dx}(x^2) = 3x^2 + 2x
\]

2. \[
E_j, \quad \frac{d}{dx} \left(\frac{1}{x} - 1 \right) = \frac{d}{dx} \left(\frac{1}{x} \right) - \frac{d}{dx} (1)
\]

\[
= \frac{d}{dx} (x^{-1}) - \frac{d}{dx} (1)
\]

\[
= -x^{-2} - 0
\]

\[
= -\frac{1}{x^2}
\]
\[E. \ y \ \frac{dy}{dx} \left(\frac{1}{2} \cdot x^4 \right) = \frac{1}{2} \cdot \frac{d}{dx} (x^4) = \frac{1}{2} \cdot (4x^3) = 2x^3 \]

\[E. \ y \ \frac{dy}{dx} (2) = \frac{d}{dx} (2 \cdot 1) = 2 \cdot \frac{d}{dx} (1) = 2(0) = 0 \]

\[E. \ y \ \frac{dy}{dx} (3x) = 3 \cdot \frac{d}{dx} (x) = 3(1) = 3 \]

Now we put these rules together to differentiate polynomial functions

Derivatives of Polynomials

Example. \ (HW Exercise 10, p. 199)

Differentiate the function

\[\pi(t) = t^6 + 6t^2 - 18t^2 + 2t \]

\[\pi'(t) = \frac{d}{dt} \left(t^6 + 6t^2 - 18t^2 + 2t \right) \]

Notice t instead of x
\[-180-\]

\[
\begin{align*}
\frac{d}{dt}(t^9) + \frac{d}{dt}(6t^7) - \frac{d}{dt}(18t^2) + \frac{d}{dt}(2t)
&= \frac{d}{dt}(t^9) + 6 \frac{d}{dt}(t^7) - 18 \frac{d}{dt}(t^2) + 2 \frac{d}{dt}(t) \\
&= 9t^8 + 6(7t^6) - 18(2t) + 2(1) \\
&= 9t^8 + 42t^6 - 36t + 2
\end{align*}
\]

Derivatives of Non-Polynomials

Like 14 on p. 199

Example. (HW Exercise 14, p. 199.)

Differentiate the function

\[H(t) = \sqrt[3]{t}(t + 2)\]

First rewrite \(H(t)\):

\[H(t) = \sqrt[3]{t}(t + 2) = t^{\frac{1}{3}}(t + 2) = t^{\frac{1}{3}}t + 2t^{\frac{1}{3}}
= t^{\frac{1}{3}+1} + 2t^{\frac{1}{3}} = \left(t^{\frac{4}{3}} + 2t^{\frac{1}{3}}\right)\]

Then differentiate:

\[H'(t) = \frac{d}{dt}(t^{\frac{1}{3}} + 2t^{\frac{1}{3}})\]
\[
\frac{d}{dt} \left(t^{n/2} \right) + \frac{d}{dt} \left(2 t^{1/2} \right) \\
= \frac{4}{3} t^{3/2} + 2 \left(\frac{1}{3} t^{-1/2} \right) \\
\]

\[
= \frac{4}{3} t^{3/2} + \frac{2}{3} t^{-3/2} \\
\]

\[
= \frac{4}{3} \sqrt{t^3} + \frac{2}{3} \frac{1}{\sqrt{t}} \\
\]

\[
= \frac{4}{3} \sqrt{t^3} + \frac{2}{3} \frac{1}{(\sqrt{t})^2} \\
\]

3/20/01
Tues.
Lecture
Differentiation Formulas of the Exponential Function, $f(x) = e^x$

Without Proof

(Sketch proof in this section. Real proof in Section 3.5.)

$$\frac{d}{dx} (e^x) = e^x$$

$f(x) = e^x$ is the ONLY function that is the same as its derivative.

Derivative of xe^x vs. Derivative of e^x

$e^{x-1} \neq xe^{x-1}$

Example. (HW Exercise 6, p.197.)

Differentiate the function

$$y = 5e^x + 3$$

$$y' = \frac{d}{dx} (5e^x + 3) = \frac{d}{dx} (5e^x) + \frac{d}{dx} (3) = 5e^x + 0 = 5e^x$$
2. If \(f(x) = e^x \), what is \(f'(0) \)?

\[
f'(0) = \left. \frac{d}{dx}(e^x) \right|_{x=0} = e^x \bigg|_{x=0} = e^0 = 1
\]

New notation:

Plug \(x = 0 \) into \(e^x \) after you differentiate.

OR

1st:
\[
f'(x) = e^x
\]

2nd:
Plug into \(x = 0 \): \(f'(0) = 1 \)

Slope of tangent line at \(x = 0 \) is 1.
What \(f'(x) \) and \(f''(x) \) Mean

Graphically

(SEE Section 2.10)

First some definitions.

\(f(x) \) is said to **increase** (over an interval) if its graph rises from left to right (over that interval).

E.g., \[y = \ln x \]

\[\begin{array}{c}
\text{\(y \)} \\
\hline
0 \\
x
\end{array} \]

\(f(x) \) is said to **decrease** (over an interval) if its graph falls from left to right (over that interval).

E.g., \[y = e^{-x} \]

\[\begin{array}{c}
\text{\(y \)} \\
\hline
0 \\
x
\end{array} \]
The bending of a curve is called its concavity:

\[\text{bend upward} = \text{chord above curve} \]
\[\text{bend downward} = \text{chord below curve} \]

\(f(x) \) is said to be **concave up** (over an interval) if its graph bends upward (over that interval)

\[y = e^x \]

\[\text{inc.} \quad \text{dec.} \]
\[0 \quad x \]

\(f(x) \) is said to be **concave down** (over an interval) if its graph bends downward (over that interval)

\[y = -e^x \]

\[\text{inc.} \quad \text{dec.} \]
\[x \quad 0 \]
Now some concepts.

\(f(x) \) increasing \(\Rightarrow \) slopes > 0 \(\Rightarrow f'(x) > 0 \)

\(f(x) \) decreasing \(\Rightarrow \) slopes < 0 \(\Rightarrow f'(x) < 0 \)

\(f(x) \) neither increasing nor decreasing \(\Rightarrow \) slope = 0
\(\Rightarrow f'(x) = 0 \)
\(f'(x) \) increasing \(\Rightarrow \) \(f''(x) > 0 \) and \(f(x) \) concave up

slopes getting more positive \(\Rightarrow \) slopes increasing

slopes getting less negative \(\Rightarrow \) slopes increasing

\(f'(x) \) decreasing \(\Rightarrow \) \(f''(x) < 0 \) and \(f(x) \) concave down

slopes getting less positive \(\Rightarrow \) slopes decreasing

slopes getting more negative \(\Rightarrow \) slopes decreasing
Example. With the constant function \(f(x) = 3 \),
the graph is a horizontal line.

\[
\begin{array}{c}
\text{No increasing/decreasing.} \\
\text{No bending upward/downward.}
\end{array}
\]

and \(f'(x) = 0 \), \(f''(x) = 0 \).

Examples.

1. (HW Exercise 41, p. 200)

On what interval is the function

\[f(x) = x + 2e^x - 3x \]

increasing?

Lecture

Need to find all values of \(x \) that make \(f'(x) > 0 \).

STEP 1. Find \(f'(x) \).

\[
\begin{align*}
f'(x) &= \frac{d}{dx} (x + 2e^x - 3x) \\
&= \frac{d}{dx} (1) + 2 \frac{d}{dx} (e^x) - 3 \frac{d}{dx} (x)
\end{align*}
\]

\[
\begin{align*}
&= 0 + 2e^x - 3
\end{align*}
\]

\[
\begin{align*}
&= 2e^x - 3
\end{align*}
\]

Note: The solution for increasing intervals of the function \(f(x) = x + 2e^x - 3x \) requires further analysis to determine the intervals where \(f'(x) > 0 \). This involves finding critical points and testing intervals to confirm the nature of the function's increase.
\[
\begin{align*}
&= 0 + 2e^x - 3(1) \\
&= 2e^x - 3
\end{align*}
\]

STEP 2. Set \(f'(x) > 0 \) and solve for \(x \).

\[
f'(x) > 0 \Rightarrow 2e^x - 3 > 0 \Rightarrow 2e^x > 3
\]

\[
\Rightarrow e^x > \frac{3}{2} \Rightarrow \ln e^x > \ln \left(\frac{3}{2} \right)
\]

\[
\Rightarrow x > \ln \left(\frac{3}{2} \right) \approx 0.4
\]

\[
\ln \left(\frac{3}{2} \right) \approx 0.4
\]

\[
\left(\ln \left(\frac{3}{2} \right), \infty \right)
\]

\(f(x) \) increasing over this interval
2. (HW Exercise 42, p. 200.)

On what interval is the function

\[f(x) = x^3 - 4x^2 + 5x \]

concave up?

HINT:
- Find \(f'(x) \).
- Then find \(f''(x) \).
- Then set \(f''(x) > 0 \) (means "concave up") and solve for \(x \).

3. (HW Exercise 43, p. 200.)

Find the points on the curve

\[y = x^3 - x^2 - x + 1 \]

where the tangent is horizontal.

HINT:
- Find \(f'(x) \).
- Set \(f'(x) = 0 \) and solve for \(x \).