Section 1.6. Inverse Functions and Logarithms.

Two functions are "inverses" of each other if either one "undoes" what the other is doing to x.

E.g., $f(x) = x^3$, $g(x) = \sqrt[3]{x}$

$f(g(x)) = f(\sqrt[3]{x}) = (\sqrt[3]{x})^3 = x$
$g(f(x)) = g(x^3) = \sqrt[3]{x^3} = x$

Notation: Inverse of $f(x)$ is $f^{-1}(x)$, and vice versa.

Warning: $f^{-1}(x) \neq \frac{1}{f(x)} = \text{reciprocal of } f(x)$

(But $(f(x))^{-1} = \frac{1}{f(x)}$)

Terminology: $f(x)$ is said to be invertible if it has an inverse.
3 Ways to Represent Inverses of Functions

1. Algebraically:

- \(f(x) \) and \(f^{-1}(x) \) are inverses if:
 1. \(f(f^{-1}(x)) = x \)
 2. \(f^{-1}(f(x)) = x \)

E.g., \(f(x) = x + 1 \) \(g(x) = x - 1 \)

\[
\begin{align*}
 f(g(x)) &= f(x - 1) = (x - 1) + 1 = x \quad \checkmark \\
 g(f(x)) &= g(x + 1) = (x + 1) - 1 = x \quad \checkmark
\end{align*}
\]

\(g(x) = f^{-1}(x) \).

2. In Tabular Form:

E.g.,

\[
\begin{array}{c|c|c|c}
\text{x} & \text{f(x)} & \text{x}^2 \\
\hline
1 & 1 & 1 \\
2 & 8 & 4 \\
3 & 27 & 9 \\
4 & 64 & 16 \\
\end{array}
\]

Switch Domain and Range of \(f \) to get \(f^{-1} \)

\[
\begin{array}{c|c|c|c}
\text{x} & \text{f^{-1}(x)} & \sqrt{x} \\
\hline
1 & 1 & 1 \\
2 & 8 & 4 \\
3 & 27 & 9 \\
4 & 64 & 16 \\
\end{array}
\]

Domain \(f \) = Range \(f^{-1} \)
Range \(f \) = Domain \(f^{-1} \)
3. **GRAPHICALLY:**

\(f(x) \) and \(f^{-1}(x) \) are inverses if the following is true:

If \((a, b)\) is a point on the graph of \(y = f(x) \) (so \(b = f(a) \)), then \((b, a)\) is a point on the graph of \(y = f^{-1}(x) \) (so \(a = f(b) \)).

This can only happen if the graph of \(y = f^{-1}(x) \) is a reflection of the graph of \(y = f(x) \) about the diagonal line \(y = x \).

E.g.,

\[
\begin{align*}
y &= x^5 \\
(2, 32) \quad y &= x \\
(32, 2) \quad y &= 5x^2
\end{align*}
\]
How to Derive \(f^{-1}(x) \) From \(f(x) \)

E.g., \(f(x) = \frac{1}{x+1} \)

STEP 1. Replace \(f(x) \) by \(y \):

\[
y = \frac{1}{x+1}
\]

STEP 2. Switch \(x \)'s and \(y \)'s:

\[
x = \frac{1}{y+1}
\]

STEP 3. Solve for \(y \):

\[
x = \frac{1}{y+1} \Rightarrow x(y+1) = 1 \Rightarrow xy + x = 1 \Rightarrow xy = 1 - x \Rightarrow y = \frac{1-x}{x} (= \frac{1}{x} - 1)
\]

STEP 4. Replace \(y \) by \(f^{-1}(x) \):

\[
f^{-1}(x) = \frac{1-x}{x}
\]
Graphical Test for Invertibility

Test to see if graph belongs to a function:

VERTICAL LINE TEST

E.g. $y = e^x$

- Of a function
 - Only one y for each x
- Not of a function
 - As many as 2 y's for each x

Test to see if graph belongs to an invertible function:

HORIZONTAL LINE TEST

- Of an invertible function
 - Only one x for each y
- Not of an invertible function
 - As many as 3 x's for each y
The Logarithmic Function

The logarithmic function is the inverse of the exponential function. Let us try to derive a formula for the inverse of \(f(x) = a^x \):

STEP 1. Replace \(f(x) \) by \(y \):

\[y = a^x \]

STEP 2. Switch \(x \)'s and \(y \)'s:

\[x = a^y \]

STEP 3. Solve for \(y \):

\[x = a^y \Rightarrow \text{CANNOT solve for } y \]

\[\text{using operations of addition/subtraction and multiplication/division} \]

\[\checkmark \]

INSTEAD: We stop at \text{STEP 2} and do not solve for \(y \).
Definition. The logarithm to base \(a \) of \(x \), written
\[
\log_a x
\]
is the power to which \(a \) must be raised to get \(x \), i.e.,
\[
\log_a x = y \quad \text{means} \quad a^y = x
\]

So, if \(f(x) = a^x \), we say that
\[
f^{-1}(x) = \log_a x.
\]

Warning: \(y = \log_a x \) is ONLY defined for \(x > 0 \! \).

Example. Compute \(\log_3 27 \).

1st Set \(\log_3 27 = y \)

2nd \(\log_3 27 = y \) means \(3^y = 27 \)
3rd Guess that y has to be 3

\[\log_3 27 = 3 \]
Two Important Log Functions
(On Your Calculators)

\[\log x = \text{COMMON LOG} \]
- to the base 10:
\[\log = \log_{10} \]
- inverse of \(\log_{10} x \) is \(10^x \)

\[\ln x = \text{NATURAL LOG} \]
- to the base \(e \):
\[\ln = \log_e \]
- inverse of \(\log_e x \) is \(e^x \)

Formula to convert \(\log_a x \) to \(\ln \):
\[\log_a x = \frac{\ln x}{\ln a} \]
(You can plug this into calculator)
Some Important Rules of Logs and Exponents

<table>
<thead>
<tr>
<th>Exponents</th>
<th>Logs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $a^x a^y = a^{x+y}$</td>
<td>1. $\log_a xy = \log_a x + \log_a y$</td>
</tr>
<tr>
<td>2. $(a^x)^r = a^{xr}$</td>
<td>2. $r \log_a x = \log_a x^r$</td>
</tr>
<tr>
<td>3. $a^{\log_a x} = x$</td>
<td>3. $\log_a a^x = x$</td>
</tr>
<tr>
<td>4. $a^0 = 1$</td>
<td>4. $\log_a 1 = 0$</td>
</tr>
</tbody>
</table>
Graphs of Log Functions

\[f(x) = \log_a x, \quad a > 1 \]

Eq. \(f(x) = \log x, \quad f(x) = \ln x \)

Features:
- Domain = \(\{ x \mid x > 0 \} \)
- Range = all reals
- \(x \)-intercept = 1
- Vertical asymptote: \(y\)-axis \((x = 0) \)
- Increasing (but very gradually)
- Concave down
Will OMIT graph of \(f(x) = \log_a x \) when \(0 < a < 1 \).