NOTATION

\(n \), the number of vertices
\(e \), the number of edges
\(\delta \), the minimum degree
\(\Delta \), the maximum degree
\(\bar{d} \), the average degree
\(n_\delta \), the number of vertices of minimum degree
\(n_\Delta \), the number of vertices of maximum degree
\(n_e \), the number of vertices of even degree
\(n_o \), the number of vertices of odd degree

\(S_n \), the \textit{star} with \(n \) vertices
\(K_n \), the \textit{complete graph} with \(n \) vertices
\(P_n \), the \textit{path} with \(n \) vertices
\(C_n \), the \textit{cycle} with \(n \) vertices
\(E_n \), the \textit{empty graph} with \(n \) vertices

1. Draw \(P_n \) for \(n = 3, 4, 5 \).

(a) Find \(e \) for each of these graphs. Try to find a formula for \(e(P_n) \).

(b) Find \(\delta \) for each of these graphs. Try to find a formula for \(\delta(P_n) \).

(c) Find \(\Delta \) for each of these graphs. Try to find a formula for \(\Delta(P_n) \).

(d) Find \(\bar{d} \) for each of these graphs. Try to find a formula for \(\bar{d}(P_n) \).

(e) Find \(n_\delta \) for each of these graphs. Try to find a formula for \(n_\delta(P_n) \).
(f) Find n_{Δ} for each of these graphs. Try to find a formula for $n_{\Delta}(P_n)$.

(g) Find n_e for each of these graphs. Try to find a formula for $n_e(P_n)$.

(h) Find n_o for each of these graphs. Try to find a formula for $n_o(P_n)$.

2. Draw C_n for $n = 3, 4, 5$.

(a) Find e for each of these graphs. Try to find a formula for $e(C_n)$.

(b) Find δ for each of these graphs. Try to find a formula for $\delta(C_n)$.

(c) Find Δ for each of these graphs. Try to find a formula for $\Delta(C_n)$.

(d) Find \bar{d} for each of these graphs. Try to find a formula for $\bar{d}(C_n)$.

(e) Find n_δ for each of these graphs. Try to find a formula for $n_\delta(C_n)$.

(f) Find n_{Δ} for each of these graphs. Try to find a formula for $n_{\Delta}(C_n)$.

(g) Find n_e for each of these graphs. Try to find a formula for $n_e(C_n)$.

(h) Find n_o for each of these graphs. Try to find a formula for $n_o(C_n)$.