1. The eigenvalues of a real symmetric (square) matrix A are real.

2. (The column and row spaces of) a real symmetric matrix A has a basis of orthogonal eigenvectors.

3. Rayleigh-Ritz Lemma: if the eigenvalues of a real symmetric matrix A are $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$, with corresponding orthonormal eigenvectors $\hat{u}_1, \ldots, \hat{u}_n$ and $W = \text{Span}\{\hat{u}_p, \ldots, \hat{u}_q\}$, with $1 \leq p \leq q \leq n$, then if $\hat{x} \in W$ then $\lambda_q \leq \hat{x} \cdot \hat{x} \leq \lambda_p$.

4. The **Rayleigh-Ritz Theorem** (Min-Max Theorem) says that if the eigenvalues of a real symmetric matrix A are $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$, then $\lambda_n = \min \hat{x}^T A \hat{x}$ for all unit vectors \hat{x}, and $\lambda_1 = \max \hat{x}^T A \hat{x}$ for all unit vectors \hat{x}.

5. Lemma: If V is a vector space, and U and W are subspaces with $\text{dim}(U) + \text{dim}(W) > \text{dim}(V)$ then there is a non-zero vector $\hat{x} \in U \cap W$.

6. **Interlacing Theorem.** If A is a $n \times n$ symmetric matrix of the form $\begin{pmatrix} B & C \\ C^T & D \end{pmatrix}$, with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$, and B is a $k \times k$ symmetric matrix with eigenvalues $\mu_1 \geq \ldots \geq \mu_k$, then $\lambda_i \geq \mu_i$ for $i = 1, \ldots, k$.

7. **Cvetkovic’s Theorem:** the independence number α of a graph is no more than the number of non-negative eigenvalues of the graph (and also no more than the number of non-positive eigenvalues).

Notation: Let ρ_0 be the number of 0 eigenvalues, ρ_+ be the number of positive eigenvalues, and ρ_- be the number of negative eigenvalues. Then **Cvetkovic’s Theorem** says $\alpha \leq \rho_0 + \min\{\rho_+, \rho_-\}$.