Konig's theorem

If \(G \) is a bipartite graph then the independence number \(\alpha \) and the matching number \(\nu \) sum to the order \(n \):

\[\alpha + \nu = n \]

Proof

Let \((\overline{V}, V) \) be a partition of \(V(G) \) into independent sets, let \(M \) be a maximum matching (so \(\nu = |M| \)) and let \(M_{\overline{V}} \) be the vertices in \(\overline{V} \) that are incident to edges in \(M \) and \(M_V \) be the vertices in \(V \) incident to edges in \(M \). Let \(\overline{V}_0 = \overline{V} \setminus M_{\overline{V}} \) and \(V_0 = V \setminus M_V \). Note that there are no edges from any vertex in \(\overline{V}_0 \) to any vertex in \(V_0 \).
Let S' be the set of vertices that can be reached by m-alternating paths from vertices in X_0. It is important to note that S' cannot contain any vertex in T_0 if it did there would be an m-augmenting path from some M-unsaturated vertex in T_0 to an M-unsaturated vertex in T_0 but then Berge's Theorem implies that M is not a maximum matching. Let $S^v = S' \cap M^v$, $S^v = S' \cap M^v$ and

$I = T_0 \cup S^v \cup (T \setminus S^v)$. Note that $T \setminus S^v$ includes every vertex in T_0 as well as every vertex in $M_0 \setminus S'$. I is independent.

So $x \geq |I| = n - r$.

We showed $x \leq n - r$,

So $x = n - r$.