Independence Number of a Graph—Cvetkovic’s Theorem.

The Cvetvovic bound of a graph G is the minimum of the number of non-negative and non-positive eigenvalues of the adjacency matrix of the graph.

Notation: Let ρ_0 be the number of 0 eigenvalues, ρ_+ be the number of positive eigenvalues, and ρ_- be the number of negative eigenvalues. Then **Cvetkovic’s Theorem** says $\alpha \leq \rho_0 + \min\{\rho_+, \rho_-\}$.

1. The eigenvalues of p_3 are $\sqrt{2}, -\sqrt{2}, 0$. Find an eigenvector corresponding to each, and check that they are mutually orthogonal (and hence linearly independent, and hence a basis for \mathbb{R}^3).

2. Check Cvetkovic’s Theorem for c_4.
3. Let U, W be 2-dimensional subspaces of \mathbb{R}^3. Argue that there is a non-zero vector in $U \cap W$.