The Cvetvovic bound of a graph \(G \) is the minimum of the number of non-negative and non-positive eigenvalues of the adjacency matrix of the graph.

Notation: Let \(\rho_0 \) be the number of 0 eigenvalues, \(\rho_+ \) be the number of positive eigenvalues, and \(\rho_- \) be the number of negative eigenvalues. Then Cvetkovic’s Theorem says
\[
\alpha \leq \rho_0 + \min\{\rho_+, \rho_-\}.
\]

1. Find the eigenvalues of \(k_2 \).

2. Check Cvetkovic’s Theorem for \(k_2 \).

3. Find the eigenvalues of \(p_3 \).

4. Check Cvetkovic’s Theorem for \(p_3 \).
5. Find the eigenvalues of k_3.

6. Check Cvetkovic’s Theorem for k_3.

7. The spectrum (set of eigenvalues) of the Petersen graph is: $3^1, 1^5, -2^4$. Check Cvetkovic’s Theorem for the Petersen graph.

8. Let U, W be 2-dimensional subspaces of \mathbb{R}^3. Argue that there is a non-zero vector in $U \cap W$.