Inclusion-Exclusion

Let \(S = \{a, b, c, d, e, f\} \). \(A_1 = \{a, b, c, d\} \), \(A_2 = \{b, c, d, e\} \) and \(A_3 = \{a, d, e\} \).

1. Find \(A_1 \cup A_2 \cup A_3 \) and \(|A_1 \cup A_2 \cup A_3|\). We will find them directly first—and then with theory.

 We know \(|A_1 \cup A_2 \cup A_3| = |S| - |A_1 \cup A_2 \cup A_3|\) and \(A_1 \cup A_2 \cup A_3 = \bar{A}_1 \cap \bar{A}_2 \cap \bar{A}_3 \) (DeMorgan’s Law). So to find \(|A_1 \cup A_2 \cup A_3|\) it is enough to find \(|\bar{A}_1 \cap \bar{A}_2 \cap \bar{A}_3|\).

2. Find \(\bar{A}_1 \), \(\bar{A}_2 \) and \(\bar{A}_3 \).

3. Find \(\bar{A}_1 \cap \bar{A}_2 \cap \bar{A}_3 \) and \(|\bar{A}_1 \cap \bar{A}_2 \cap \bar{A}_3|\).

We will now define an appropriate function \(F \) and calculate \(|\bar{A}_1 \cap \bar{A}_2 \cap \bar{A}_3|\) using Mobius Inversion. The secret here, as with the calculation of the Euler Totient Function, is to find a nice partition that allows us to calculate an expression for \(G \).

Let \(S_K = \{s \in S : s \in \cap_{i \in K} A_i \text{ and } s \in \cap_{j \in K} \bar{A}_j\} \), for every \(K \subseteq [3] \), and let \(F(K) = |S_K| \).

We will show that the non-empty \(S_L \)’s \((L \subseteq K) \) form a partition of \(\cap_{i \in K} A_i \).

We’ll do this for each subset of \([3]\). Note importantly that \(\cap_{i \in \emptyset} A_i = S \).

4. Find \(S_{\{1\}} \) and \(F(\{1\}) \).

5. Find \(S_{\{2\}} \) and \(F(\{2\}) \).

6. Find \(S_{\{3\}} \) and \(F(\{3\}) \).

7. Find \(S_{\{1,2\}} \) and \(F(\{1,2\}) \).
8. Find $S_{\{1,3\}}$ and $F(\{1,3\})$.

9. Find $S_{\{2,3\}}$ and $F(\{2,3\})$.

10. Find S_\emptyset and $F(\emptyset)$.

11. Find $S_{\{1,2,3\}}$ and $F(\{1,2,3\})$.

\[\text{Let } G(K) = \sum_{L \subseteq K} F(L). \]

12. Find $G(\{1\})$ and check that for $L \subseteq \{1\}$ that non-empty S_L’s partition $\cap_{i \in \{1\}} A_i$.

13. Find $G(\{2\})$ and check that for $L \subseteq \{2\}$ that non-empty S_L’s partition $\cap_{i \in \{2\}} A_i$.

14. Find $G(\{3\})$ and check that for $L \subseteq \{3\}$ that non-empty S_L’s partition $\cap_{i \in \{3\}} A_i$.

15. Find $G(\{1,2\})$ and check that for $L \subseteq \{1,2\}$ that non-empty S_L’s partition $\cap_{i \in \{1,2\}} A_i$.

16. Find $G(\{1,3\})$ and check that for $L \subseteq \{1,3\}$ that non-empty S_L’s partition $\cap_{i \in \{1,3\}} A_i$.

17. Find $G(\{2,3\})$ and check that for $L \subseteq \{2,3\}$ that non-empty S_L’s partition $\cap_{i \in \{2,3\}} A_i$.

18. Find $G(\{1,2,3\})$ and check that for $L \subseteq \{1,2,3\}$ non-empty S_L’s partition $\cap_{i \in \{1,2,3\}} A_i$.

19. Find $G(\emptyset)$ and check that for $L \subseteq \emptyset$ that non-empty S_L’s partition $\cap_{i \in \emptyset} A_i$.
We wanted $|\bar{A}_1 \cap \bar{A}_2 \cap \bar{A}_3|$. We see that $F([3]) = |\bar{A}_1 \cap \bar{A}_2 \cap \bar{A}_3|$ directly from the definition. Now we will check the theory, and what we get from that:

20. We know $F([3]) = \sum_{L \subseteq [3]} \mu(L, [3]) G(L)$, and we showed that $G(L) = |\cap_{i \in L} A_i|$. and with a few substitutions we'll get:

$$|\bar{A}_1 \cap \bar{A}_2 \cap \bar{A}_3| = \sum_{J \subseteq [3]} (-1)^{|J|} |\cap_{j \in J} A_j|.$$

Let’s check.

We can now follow these same steps to show that:

$$|S| - |\cup_{i \in [n]} A_i| = |\cap_{i \in [n]} \bar{A}_i| = \sum_{J \subseteq [n]} (-1)^{|J|} |\cap_{j \in J} A_j|.$$