LARSON—OPER 731—SAGE WORKSHEET 03

Matrices.

1. Log in to your Sage Cloud account.
 (a) Start Chrome browser.
 (b) Go to http://cloud.sagemath.com
 (c) Click “Sign In”.
 (d) Click class project.
 (e) Click “New”, call it s03, then click “Sage Worksheet”.

2. We can represent the system of linear equations
 \[
 \begin{align*}
 2x + y &= 5 \\
 x + 3y &= 7
 \end{align*}
 \]
 with the matrix
 \[
 A = \begin{bmatrix}
 2 & 1 & 5 \\
 1 & 3 & 7
 \end{bmatrix}
 \]
 Enter this in Sage by evaluating:
 \[A = \text{matrix}(2, 3, [2, 1, 5, 1, 3, 7])\]

3. Evaluate A to see your matrix.

4. Evaluate A.rref() to find a matrix that represents an equivalent system in row-reduced echelon form. What do you get?

5. Consider the system:
 \[
 \begin{align*}
 x + 3y &= 5 \\
 x + 3y &= 7
 \end{align*}
 \]
 Find a matrix that represents this system, and enter it in Sage. Then use Sage to find the row-reduced echelon form of this matrix. Then rewrite (on your own, without Sage) this as an equivalent system of linear equations and interpret.
6. Evaluate \(A=\text{matrix}(2,2,[1,2,3,4]) \), and \(b=\text{vector}([5,6]) \). Solve the matrix equation \(A\hat{x} = \hat{b} \) by evaluating \(A.\text{solve_right}(b) \). What do you get?

7. Find the dot product of \(\hat{b} \) with itself \((\hat{b} \cdot \hat{b}) \): evaluate \(b.\text{dot_product}(b) \).

8. Find the length of \(\hat{b} \): evaluate \(b.\text{norm}() \). To get a numerical approximation: evaluate \(n(b.\text{norm}()) \).

9. Let \(x=A.\text{solve_right}(b) \). Evaluate \(A*x \) to check your answer.

10. Let \(M=\text{matrix}(2,2,[1,2,3,4]) \). Evaluate \(M.\text{eigenvalues}() \) to find the eigenvalues of \(M \).

11. Evaluate \(M.\text{eigenvectors_right}() \) to find the eigenvectors of \(M \). What does the output mean? Let \(x \) be one of the eigenvectors and \(\lambda \) be the corresponding eigenvalue. Check that \(M\hat{x} = \lambda\hat{x} \).

12. Is \(M \) invertible? Evaluate \(M.\text{is_invertible}() \).

13. Evaluate \(\text{det}(M) \) to find the determinant of \(M \).

14. Evaluate \(M_{\text{inv}} = M.\text{inverse}() \) to find the inverse of \(M \). Check: evaluate \(M*M_{\text{inv}} \).

15. Evaluate \(M.\text{transpose}() \) to find the transpose of \(M \). Find the product of \(M \) and its transpose.

16. Let \(A \) be any \(2 \times 3 \) matrix. Find its transpose. Find their product. What do you notice about the resulting matrix?