LARSON—OPER 731—HOMEWORK WORKSHEET 04
Barycentric Coordinates

Let X^1, X^2, and X^3 be non-collinear points in the plane. Let X^* be a point in the triangle formed by these points. There are unique real numbers λ_1, λ_2, λ_3 in $[0, 1]$ where

$$X^* = \lambda_1 X^1 + \lambda_2 X^2 + \lambda_3 X^3.$$

The tuple $(\lambda_1, \lambda_2, \lambda_3)$ is called the barycentric coordinates of X^*.

1. Let $X^1 = (1, 1)$, $X^2 = (3, 2)$, and $X^3 = (2, 4)$. Find the barycentric coordinates of the point $X^* = (2, 3)$.

2. Prove that the barycentric coordinates of this point are unique.

3. Find a formula for the barycentric coordinates of an arbitrary point X^* in the triangle formed by arbitrary non-colinear points X^1, X^2, and X^3 in the plane.