Organizational Notes

1. Don’t forget to send your Notes / Classroom worksheet after each class (make the email subject useful: like “Math 656 c22 notes”).

2. The VCU Discrete Math Seminar is every Wednesday.

3. h07 (the Gallai-Edmonds decomposition worksheet) is due today.

4. Read ahead! Next up we’ll talk about Network Flow problems (Sec. 4.3)

Concepts & Notation

• Edmonds-Gallai Decomposition (West paper).

• Petersen’s Theorem (Sec. 3.3).

• Network Flows (Sec. 4.3).

Review

1. (Gallai-Edmonds Structure Theorem). Let A, C, D, be the sets in the Gallai-Edmonds Decomposition of a graph G. Let G_1, \ldots, G_k be the components of $G[D]$. If M is a maximum matching in G then:

 (a) M covers C and matches A into distinct components of $G[D]$.

 (b) Each G_i is factor-critical and M restricts to a near-perfect matching on G_i.

 (c) If $S \subseteq A$ is non-empty then $N_G(S)$ has a vertex in at least $|S| + 1$ of G_1, \ldots, G_k.

 (d) $def(A) = def(G) = k - |A|$.
Notes

1. (Petersen’s Theorem) If a graph has a perfect matching and no cut edges then it has a perfect matching.

2. What is a directed graph?

3. What is a network?

4. What is the capacity $c(e)$ of an edge e?

5. What are source and sink vertices?

6. What is a flow? What is $f^+(v)$ and $f^-(v)$?

7. What is a feasible flow? What are capacity constraints?

8. What are conservation constraints?

9. What is the value $val(f)$ of a flow f?

10. What is a maximum flow?

11. What is a f-augmenting path?

12. What is the tolerance of a flow?

13. (Lemma) If P is an f-augmenting path with tolerance z then changing flow by $+z$ on edges followed forward by P and by $-z$ on edges followed backward by P produces a feasible flow f' with $vaf(f') = val(f) + z$.