Let $I = \langle x^2y^5, x^3y^4, x^4y^2 \rangle \subseteq \mathbb{R}[x, y].$

1. Draw a representation of the monomials contained in this ideal.

2. Find the set of monomials x^α such that $x^\alpha y^k$ is contained in I for some $k \geq 0.$

3. Let J be the ideal generated by these monomials. J is an ideal in $\mathbb{R}[x]$ and thus has a single generator. Find the generator of $J.$

4. Let $m = \min\{k : x^2y^k \in J\}.$ Find $m.$

5. Let J_0 be ideal in $\mathbb{R}[x]$ generated by the set of monomials of the form x^β where $x^\beta y^0 \in I.$ Find the generator of $J_0.$
6. Let \(J_1 \) be ideal in \(\mathbb{R}[x] \) generated by the set of monomials of the form \(x^\beta \) where \(x^\beta y^1 \in I \). Find the generator of \(J_1 \).

7. Let \(J_2 \) be ideal in \(\mathbb{R}[x] \) generated by the set of monomials of the form \(x^\beta \) where \(x^\beta y^2 \in I \). Find the generator of \(J_2 \).

8. Let \(J_3 \) be ideal in \(\mathbb{R}[x] \) generated by the set of monomials of the form \(x^\beta \) where \(x^\beta y^3 \in I \). Find the generator of \(J_3 \).

9. Let \(J_4 \) be ideal in \(\mathbb{R}[x] \) generated by the set of monomials of the form \(x^\beta \) where \(x^\beta y^4 \in I \). Find the generator of \(J_4 \).

10. Draw a representation of the monomials contained in the ideal generated by \(x^2 y^m \), and the generators of \(J_0, J_1, J_2, J_3 \) and \(J_4 \).