LARSON—MATH 591—CLASSROOM WORKSHEET 14
Dividing Polynomials

The Division Algorithm says that, given polynomials $f, g \in \mathbb{R}[x]$, there are unique polynomials $q, r \in \mathbb{R}[x]$, such that $f = gq + r$ (or $f(x) = g(x)q(x) + r(x)$) such that the degree of r is less than the degree of g.

Here g is the divisor, q is the quotient and r is the remainder.

1. Let $f = 2x^3 + 5x^2 + 5x + 2$ and let $g = x + 1$. Divide f by g: use long division of polynomials to find q and r.
2. Let \(f = x^7 + 3x^5 + 2x^3 + 2x^2 + 1 \) and let \(g = x + 1 \). Divide \(f \) by \(g \): use long division of polynomials to find \(q \) and \(r \).