LARSON—MATH 556—SAGE WORKSHEET 10
Complements and Cliques

1. Log in to your Sage Cloud account.
 (a) Start Firefox or Chrome browser.
 (b) Go to http://cloud.sagemath.com
 (c) Click “Sign In”.
 (d) Click project Classroom Worksheets.
 (e) Click “New”, call it s10, then click “Sage Worksheet”.

The complement of a graph G is a graph \bar{G} with the same set of points (so $V(\bar{G}) = V(G)$) and with lines $E(\bar{G}) = \{vw : v, w \in V(\bar{G})$ and $vw \notin E(G)\}$ (that is, vw is a line in \bar{G} if and only if it is not a line in G).

2. Evaluate $\text{pete} = \text{graphs.PetersenGraph}()$. To get the complement of a graph G in Sage use $G\.complement()$. So to find the complement of the Petersen graph, and to give the new graph the name pete_complement use $\text{pete_complement} = \text{pete}\,.\text{complement}()$. Use $\text{show}()$ to draw this graph.

3. Find the size of pete_complement.

4. Let $\text{k_3_4} = \text{graphs.CompleteBipartiteGraph}(3,4)$. Find the complement of this graph and use $\text{show}()$ to draw it.
A clique in a graph is a complete subgraph (so the points $S \subseteq V(G)$ induce a clique in graph G if and only if G has a line between every pair of points of S). A clique in a graph is maximal if it is not contained in a larger clique. A clique is maximum if it has more points than any other clique.

To find a maximum clique in a graph G with Sage use `G.clique_maximum()`.

5. Find a maximum clique in the Petersen graph.

6. Find a maximum clique in the complement of the Petersen graph.

The clique number ω is the cardinality of a maximal clique.

To find the clique number of a graph G in Sage, use `G.clique_number()`.

7. Find ω for the Petersen graph.

8. Find ω for the complement of the Petersen graph.

9. Find ω for $k_{3,4}$.

10. Find ω for the complement of $k_{3,4}$.