1. Log in to your Sage/Cocalc account.
 (a) Start Firefox or Chrome browser.
 (b) Go to http://cocalc.com and “Sign In”.
 (c) Click project Classroom Worksheets.
 (d) Click “New”, call it s09, then click “Sage Worksheet”.

We can use Sage to find graphs with certain properties. The first thing to learn is a way to name graphs and have Sage return graphs with certain names.

2. Evaluate Pete = graphs.PetersenGraph(). A useable name for the Petersen Graph, called a “graph6 string” can be found by evaluating Pete.graph6_string(). What did you get?

3. A graph6 string is just a way to code the adjacency matrix of a graph. Since the adjacency matrix is not unique, neither is this code. Given a graph6 string Sage knows how to de-code it, and construct the graph. Evaluate g = Graph(’IheA@GUAo’). This creates a graph named g from the graph6 string ’IheA@GUAo’. Now evaluate g.show() to see what g looks like and draw it.

4. Let k_3_4 = graphs.CompleteBipartiteGraph(3,4). Find a graph6 string for this graph.

5. Here is code to generate all graphs with 3 points, test them to see if they are connected and bipartite, and to print out the graph6 string for any that are. Evaluate and write the result.

 for g in graphs(3):
 if g.is_connected() and g.is_bipartite():
 print g.graph6_string()

6. You should have gotten a graph6 string for a single graph. Now use that string to generate and show a graph. What graph was it? Draw it.
7. Imitate the preceding code to find graph6 strings for all connected bipartite graphs with 4 points.

8. Now use `show` to see what they look like and draw them here.

Earlier we proved an interesting result about the structure of \(\tau \)-critical bipartite graphs. \(\alpha \)-critical graphs are also interesting. Define a graph to be \(\alpha \)-critical if the deletion of any edge increases its independence number.

9. Prove that the triangle \(C_3 \) (the cycle on 3 points) is \(\alpha \)-critical.

In the last worksheet we used the following code to define an independence number function. Here is that code again together with a test for whether a graph \(g \) has the property of being connected and \(\alpha \)-critical.

```python
def independence_number(g):
    return g.independent_set(value_only=True)

def is_alpha_critical(g):
    if not g.is_connected():
        return False
    alpha = independence_number(g)
    for e in g.edges():
        gc = copy(g)
        gc.delete_edge(e)
        alpha_prime = independence_number(gc)
        if alpha_prime <= alpha:
            return False
    return True
```

10. Here is code to print graph6 strings of all connected graphs with 5 points that are \(\alpha \)-critical. What are they?

```python
for g in graphs(5):
    if is_alpha_critical(g):
        print g.graph6_string()
        g.show()
```