1. Let the above graph be G. List the edges of G.

2. Let $E(G)$ be the vertex set of a graph $L(G)$. Draw a dot for each vertex of this new graph and label it.

3. Draw an edge between two vertices of $L(G)$ if the corresponding edges in G are incident.

4. Find a maximum independent set of vertices in $L(G)$. Find $\alpha(L(G))$.

5. Check that the corresponding set of edges is independent in G. Check that $\alpha(L(G)) = \alpha'(G)$.

6. Find a minimum cover in $L(G)$. Find $\beta(L(G))$.

7. Check that the corresponding set of vertices is independent in G. Check that $\beta(L(G)) = \beta'(G)$.

Gallai Identities & Brooks Theorem

- Sec. 7.1: covering, covering number β, independent set, independence number α, edge independence number (matching number) α', edge covering, edge covering number β', Gallai Identites.

- Sec. 8.1: k-vertex coloring, proper (vertex) coloring, chromatic number χ, k-chromatic-critical graph.

- Sec. 8.2: Brooks’ Theorem.
Algorithm to Δ-color a non-regular graph

(a) Let the “colors” be the integers 1, 2, \ldots, Δ.

(b) Choose a non-Δ vertex v.

(c) Partition the vertices according to their distance from v. Let L_i be the vertices at distance i from v.

(d) Let k be the largest index. Consider the vertices in L_k in any order. Color the currently considered vertex with the smallest available color. (Note that there must always be a free color until you get to v itself.)

(e) Repeat for the vertices in L_{k-1}. And so on. Consider each successive level set with smaller index.

8. Find Δ. Choose your v.

9. Write out your level sets L_i.

10. What is k?

11. Assign colors to the vertices in L_k greedily. Repeat for the vertices in L_{k-1}. And so on. Consider each successive level set with smaller index.

12. Color v. Check that you have a proper coloring with no more than Δ colors.