Concepts & Notation

- Sec. 1.1: G, graph, $V(G)$, vertices, $E(G)$, edges, planar, incident, adjacent, loop/link, $\nu(G)$, $\epsilon(G)$
- Sec. 1.2: isomorphic, $G \cong H$, complete graph, K_n, empty graph, bipartite graph, complete bipartite graph $K_{m,n}$, k-partite graph, complete k-partite graph, k-cube, complement, G^c, K_n^c, $K_{m,n}^c$, automorphism, vertex-transitive, edge-transitive.
- Sec. 1.3: incidence matrix, $M(G)$, adjacency matrix, $A(G)$.
- Sec. 1.4: subgraph, spanning subgraph, induced subgraph, $G[V']$, edge-induced subgraph, $G[E']$, union $G_1 \cup G_2$, $G_1 + G_2$, intersection $G_1 \cap G_2$.
- Sec. 1.5: degree, k-regular graph, regular graph, degree sequence, graphic; 1st Theorem.
- Sec. 1.6: walk, length, trail, path, components, connected, distance, $d_G(u,v)$, diameter
- Sec. 1.7: closed, cycle, girth; Bipartite Characterization Theorem
- Sec. 1.8: $w(e)$, shortest path problem, tree; Dijkstra’s algorithm.
- Sec. 2.1: acyclic; 3 tree theorems.

Basic Shortest Path Algorithm

The idea of the basic shortest path algorithm to find a shortest path from vertex u_0 to vertex v_0 in a graph is to maintain a set S including v where the shortest distance from u_0 to each vertex in S is known, and to extend S by a single vertex in \bar{S} at each step, using the following formula:

$$d(u_0, \bar{S}) = \min_{u \in S, v \in \bar{S}} \{d(u_0, u) + w(uv)\}$$

Given the distances to all the vertices in S you then consider each of the edges uv from S to \bar{S}, find a minimizing vertex u, add it to S and iterate. Eventually S must equal the entire vertex set.
1. Use the Basic Shortest Path Algorithm to find a shortest path from v_1 to v_6. Include your steps.

Dijkstra’s Shortest Path Algorithm

The main idea is similar. It is a modification designed to keep track of intermediate computations and only consider the edges from one vertex in \bar{S} at each step. It is called a labeling algorithm because at each step we maintain a label $l(v)$ for each vertex v that stores any intermediate computations.

1. Set $l(u_0) = 0$, $l(v) = \infty$ for $v \neq u_0$, $S_0 = \{u_0\}$ and $i = 0$.
2. For each $v \in S_i$, replace $l(v)$ by $\min \{l(u) + w(u,v)\}$. Compute $\min \{l(v)\}$ and let u_{i+1} denote a vertex for which this minimum is attained. Set $S_{i+1} = S_i \cup \{u_{i+1}\}$.
3. If $i = \nu - 1$, stop. If $i < \nu - 1$, replace i by $i + 1$ and go to step 2.

2. Use Dijkstra’s Algorithm to find a shortest path from v_1 to v_6. Include your steps.