1. Log in to your Sage/Cocalc account.

 (a) Start Chrome browser.
 (b) Go to http://cocalc.com
 (c) Click “Sign In”.
 (d) Click project Math 401.
 (e) Click “New”, call it s05, then click “Sage Worksheet”.

Write Sage’s responses.

2. First construct the group \mathbb{Z}_5. Evaluate: $\mathbb{Z}_5 = \text{Integers}(5)$.

3. Now list the elements of \mathbb{Z}_5. Evaluate: $\mathbb{Z}_5 \text{.list()}$.

4. Evaluate: $a = \mathbb{Z}_5(3)$ to define an element a which is the “3” in \mathbb{Z}_5.

5. To check what algebraic structure Sage thinks a belongs to, evaluate: $a \text{.parent()}$.

6. To test a for membership in \mathbb{Z}_5, evaluate: $a \text{ in } \mathbb{Z}_5$.

7. To get the Cayley table for addition in \mathbb{Z}_5, evaluate: $\mathbb{Z}_5 \text{.addition_table(names="elements")}$

8. We know that \mathbb{Z}_5 is actually a partition of the integers. So every integer is in one of these partitions. Which partition is -1 in? Evaluate: $\mathbb{Z}_5(-1)$ to get the canonical equivalence class representative (the remainder from the Division Algorithm).
9. Find the canonical equivalence class representative for 123 in \mathbb{Z}_5. What command will you use?

10. You can also get the multiplication table for \mathbb{Z}_5.
 Evaluate: \mathbb{Z}_5.multiplication_table(names="elements"). Can you tell from the table whether every element of \mathbb{Z}_5 has a multiplicative inverse?

11. Is \mathbb{Z}_5 a field? Evaluate: \mathbb{Z}_5.is_field()

12. Define the additive group \mathbb{Z}_4 of integers mod 4 in Sage. What command will you use?

13. Find the canonical representative for 123 in \mathbb{Z}_4.

14. Find the multiplication table for \mathbb{Z}_4.

15. Is \mathbb{Z}_4 a field? What command will you evaluate to check?