LARSON—MATH 401—CLASSROOM WORKSHEET 25

Rings.

A ring R is a set with 2 closed binary relations satisfying certain properties. The operations are usually written “$+$” and “\cdot”, as a ring is a generalization of the integers $(\mathbb{Z}, +, \cdot)$:

1. $(R, +)$ is a group: so there is an additive identity 0, and additive inverses.

2. Distributive properties: for every $a, b, c \in R$ $(a + b) \cdot c = a \cdot c + b \cdot c$, and $a \cdot (b + c) = a \cdot b + a \cdot c$.

\mathbb{Z} and \mathbb{Z}_n are our paradigm examples of rings.

1. Explain why \mathbb{Z}_n is a ring.

2. Let R be a ring and $a \in R$. Show: $0a = 0$.