1st Isomorphism Theorem. If G is an abelian group, H is any group, and $\phi : G \to H$ is a homomorphism, then $G/\ker \phi \cong \phi(G)$.

(Here, $\phi(G) = \{\phi(g) : g \in G\}$, and if ϕ is onto—so $\phi(G) = H$—then $G/\ker \phi \cong H$).

We’ll investigate what this says for $\phi : \mathbb{Z} \to \mathbb{Z}_5$ with $\phi(k) = [k]$.

1. Find $\ker \phi$.

2. Find $\phi(\mathbb{Z})$.

3. Find $\mathbb{Z}/\ker \phi$.

4. Check that $\mathbb{Z}/\ker \phi \cong \phi(\mathbb{Z})$.
A *ring* R is a set with 2 closed binary relations satisfying certain properties. The operations are usually written “+” and “·”, as a ring is a generalization of the integers $(\mathbb{Z}, +, \cdot)$:

(a) $(R, +)$ is an abelian group: so there is an additive identity 0, and additive inverses.

(b) (R, \cdot) is associative.

(c) Distributive properties: for every $a, b, c \in R$ $(a + b) \cdot c = a \cdot c + b \cdot c$, and $a \cdot (b + c) = a \cdot b + a \cdot c$.

\mathbb{Z} and \mathbb{Z}_n are our paradigm examples of rings.

5. Explain why \mathbb{Z}_n is a ring.