LARSON—MATH 401—CLASSROOM WORKSHEET 19

Lagrange’s Theorem.

1. \(\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\} \). Let \(H = \{0, 3\} \). Show that \(H \) is a subgroup of \(\mathbb{Z}_6 \).

2. Write out the cosets \(k + H \) for \(k \in \mathbb{Z}_6 \).

3. How many distinct cosets are there?

4. Do you notice anything interesting about the number of elements in each coset?

 For a finite group \(G \) and subgroup \(H \), the index of \(H \) in \(G \), denoted \([G : H]\), is the number of distinct cosets of \(H \) in \(G \).

5. Find \([\mathbb{Z}_6 : H]\).

 Lagrange’s Theorem says: for a finite group \(G \) and subgroup \(H \), \([G : H] = \frac{|G|}{|H|}\).

6. Verify Lagrange’s Theorem in the case above, for finite group \(\mathbb{Z}_6 \) and subgroup \(H \).