The Division Algorithm says: if \(a \in \mathbb{Z}, b \in \mathbb{N} \) then there are unique integers \(q \) and \(r \) with \(a = bq + r \), and \(0 \leq r < b \).

\(q \) is the quotient and \(r \) is the remainder.

The greatest common divisor (gcd) of integers \(a \) and \(b \) (not both 0) is the largest natural number \(d \) such that \(d \) divides both \(a \) and \(b \).

We write: \(\gcd(a, b) = d \). By definition \(\gcd(a, b) \geq 1 \). If \(\gcd(a, b) = 1 \) we say that \(a \) and \(b \) are relatively prime.

The GCD Theorem says, given an integer \(a \) and positive integer \(b \),

\[
\gcd(a, b) = \min\{ak + bl : k, l \in \mathbb{Z}, ak + bl > 0\}
\]

Euclid’s Lemma says that if \(p \) is a prime, and \(a, b \) are integers and \(p|ab \) then either \(p|a \) or \(p|b \).

1. Find \(\gcd(5, 6) \).

2. Find integers \(k, l \) such that \(\gcd(5, 6) = 5k + 6l \).

3. Find \(\gcd(10, 12) \).

4. Find integers \(k, l \) such that \(\gcd(10, 12) = 10k + 12l \).