A relation R on a set X is a subset of $X \times X$. If $(a, b) \in R$ we sometimes write $a \sim b$, and say \sim is a relation on X (or even \sim_R to be unambiguous).

An equivalence relation on a set X is a relation with 3 properties:

1. $a \sim a$ for every $a \in X$ (reflexive).
2. If $a \sim b$ then $b \sim a$, for every $a, b \in X$ (symmetric).
3. If $a \sim b$ and $b \sim c$ then $a \sim c$, for every $a, b, c \in X$ (transitive).

If \sim is an equivalence relation on X, we define the equivalence class of $a \in X$ as:

$$[a] = \{b \in X : a \sim b\}$$

For integers $a, b \in \mathbb{Z}$, define a divides b (or b is a multiple of a) if there is an integer n such that $an = b$. We write $a|b$.

We define integers $a, b \in \mathbb{Z}$ to be congruent mod n ($n \in \mathbb{N}$) if $n|(a - b)$. We write:

$$a \equiv b \mod n.$$

1. Is it true that $5 \equiv 25 \mod 4$? Explain.

2. Show that congruence mod n defines an equivalence relation on \mathbb{Z}.

 Let $a \sim b$ if $a \equiv b \mod n$.

 (a) Show \sim is reflexive.
(b) Show \sim is symmetric.

(c) Show \sim is transitive.