The determinant of a square triangular matrix is the product of its diagonal entries.

Determinant Computation Rules

- The determinant of a square matrix A equals the determinant of any matrix formed by a pivot operation.
- The determinant of a square matrix A equals *negative* the determinant of any matrix formed by switching 2 rows.

Let $A = \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix}$.

If there is a non-zero vector \vec{x} and scalar λ with $A\vec{x} = \lambda \vec{x}$ then λ is an *eigenvalue* of A and \vec{x} is a corresponding *eigenvector*.

If $A\vec{x} = \lambda \vec{x}$, then $A\vec{x} - \lambda \vec{x} = 0$, and $(A - \lambda I)\vec{x} = 0$.

Since \vec{x} is non-zero that means that $(A - \lambda I)$ is not invertible, that the RREF has a 0-row, and that $\det(A) = 0$.

1. Find $(A - \lambda I)$.

2. Use the 2×2 determinant formula to find $\det(A - \lambda I)$.
 $(\lambda$ is a variable—so your answer will have λs in it).
3. Solve \(\det(A - \lambda I) = 0 \).

4. For each solution \(\lambda \), write the equation \((A - \lambda I)x = 0 \), and solve for \(x \).

5. Check that your eigenvalue-eigenvector pairs work!