LARSON—MATH 356—HOMEWORK 09
Test 3 Review.

You should know the following definitions, theorems, algorithms, and proofs for the test. Write out careful definitions, theorem statements, algorithms, proofs, and solutions. Turn these in at test time.

Notation & Concepts

Give a definition for each of the following concepts and an example illustrating the concept.

1. level sets
2. eccentricity
3. radius
4. center
5. diameter
6. radius critical graph

Theorems

State each of the following theorems.

7. Kruskal’s Algorithm Theorem.
8. Dijkstra’s Algorithm Theorem.
9. Tree Center Theorem.

Proofs

10. Prove the Kruskal’s Algorithm Theorem.
11. Prove the Tree Center Theorem.
Algorithms

12. State and explain Kruskal’s Algorithm.

13. Apply the Dijkstra’s Algorithm pseudo-code to find a tree of minimum distances from a vertex to each of the others.

Problems

14. Use Kruskal’s algorithm to find a minimum weight spanning tree of a weighted graph.

15. Use Dijkstra’s algorithm to find a minimum shortest path in a weighted or unweighted graph (Petersen Graph).

16. Explain how to use Dijkstra’s algorithm to find the level sets of a vertex.

17. Explain how to use Dijkstra’s algorithm to find the radius of a connected graph.

18. Explain how to use Dijkstra’s algorithm to find the diameter of a connected graph.

19. Give an example of a radius critical graph and explain why it is radius critical.

20. Find a formula for the radius of the cycle graphs \(C_n\). Explain.

21. Find a formula for the diameter of the cycle graphs \(C_n\). Explain.

22. Find a formula for the radius of the star graphs \(S_n\). Explain.

23. Find a formula for the diameter of the star graphs \(S_n\). Explain.

24. Find the radius and diameter of this graph. Explain.

25. Is this graph radius critical? Explain.