There are 11 vertices. So Dijkstra's Algorithm will use 10 steps. At each step we'll add the vertex that minimizes $d(u_0, a) + w(u, v)$.

So, ① v gets added to S'
② v gets removed from S
③ The label $L[v]$ is fixed

Step 0 (Initialization)

$S' = \{ u_0 \}$ $L[u_0] = 0$
Step 1
\[L[w_3] = 1, \quad L[w_2] = 8, \quad L[w_1] = 2 \]
add \(w_3 \)

Step 2
\[L[w_3] = 2, \quad L[w_2] = 8, \quad L[w_6] = 9 \]
add \(w_1 \)

Step 3
\[L[w_2] = 8, \quad L[w_4] = 3, \quad L[w_6] = 10 \]
add \(w_4 \)

Step 4
\[L[w_2] = 8, \quad L[w_5] = 6, \quad L[w_6] = 10, \quad L[w_7] = 5 \]
add \(w_7 \)

Step 5
\[L[w_2] = 8, \quad L[w_5] = 6, \quad L[w_6] = 10, \quad L[w_8] = 12, \quad L[w_9] = 14 \]
add \(w_5 \)

Step 6
\[L[w_2] = 8, \quad L[w_4] = 10, \quad L[w_8] = 12, \quad L[w_9] = 14 \]
add \(w_2 \)
Step 7
\[L[\omega_6] = 10, L[\omega_8] = 12, L[v_0] = 14 \]
add \(\omega_6 \)

Step 8
\[L[\omega_6] = 12, L[\omega_8] = 11, L[v_0] = 14 \]
add \(\omega_8 \)

Step 9
\[L[\omega_8] = 12, L[v_0] = 14 \]
add \(\omega_8 \)

Step 10
\[L[v_0] = 14 \]
add \(v_0 \)