1.4.2

(a) Let K_n be a complete graph on n vertices. Let V' be any subset of $V = V(K_n)$.

Example:

Let $V = \{v_1, v_2, v_3, v_4\}$

$G[V'] = \{v_2, v_4\}$

Since an induced subgraph has every edge the parent graph has, $G[V']$ must be a complete graph.
(b) Let G be a bipartite graph and $V' \subseteq V = V(G)$.
What can we say about $G[V']$?

We know the vertices of G can be partitioned into sets \overline{X} and \overline{Y}.

So V' must have some edges from \overline{X} and some from \overline{Y}. So $G[V']$ must be bipartite.