LARSON—MATH 353—CLASSROOM WORKSHEET 22
Random Graphs.

1. Log in to your Sage Cloud account.
 (a) Start the Chrome browser.
 (b) Go to http://cloud.sagemath.com and sign in.
 (c) You should see an existing Project for our class. Click on that.
 (d) Click “New”, call it c22, then click “Sage Worksheet”.

Question 1: What’s the probability that a graph is connected? We’ve seen that the order (number of vertices) is essential to the answer of this question.

Question 2: What’s the probability that a graph with order \(n \) is connected?

The answer is: \[
\frac{\text{The number of connected graphs of order } n}{\text{The number of graphs with order } n}
\]

Idea 1: We can estimate this proportion but putting all the order \(n \) graphs in a hat, choosing a random sample, and calculating the proportion of graphs in the sample that are connected.

Note: As \(n \) gets large the number of graphs with order \(n \) gets *very* large. Then the obvious way of calculating the number in the numerator—generate all order \(n \) graphs and check if each is connected—is a non-starter, finite, but practically impossible.

Idea 2: Instead of putting all the order \(n \) graphs in a hat, we can generate individual random graphs by starting with \(n \) vertices, and for each pair of vertices, flipping a coin—if the coin comes up heads, we put an edge between those vertices. So we get a choice of a graph from our hat of graphs without actually generating all of the order \(n \) graphs. Then we can check if this random graph is connected, and repeat several times.

Question 3: What’s the probability that a random graph with order \(n \) is connected?

The probability that there is an edge between a pair of vertices is called the edge-probability \(p \).

Question 4: What’s the probability that a random graph with order \(n \) and edge probability \(p \) is connected?

Result 1: The probability that a random graph with order 3 and edge probability \(p = \frac{1}{2} \) is connected is 0.50.

Result 2: The probability that a random graph with order 100 and edge probability \(p = \frac{1}{2} \) is connected is 1.0.
The *degree* of a vertex of a graph is the number of edges the vertex is adjacent to. The *minimum degree of a graph* is the minimum of the degrees of the graph (it is a graph *invariant*). Here is code to find the minimum degree:

```python
def min_degree(g):
    return min(g.degree())
```

A graph is *Dirac* if the minimum degree of the graph is at least half of the order of the graph (it is a graph *property*). Here is code to test if a graph is Dirac:

```python
def is_dirac(g):
    n = g.order()
    return min_degree(g) >= n/2
```

2. Find the (analytic) probability that a graph with order 3 is Dirac. List all the order 3 graphs. Count the number of them that are Dirac and then divide by the number of order 3 graphs.

3. Find the empirical (experimental) probability that a graph with order 3 is Dirac. Imitate our code that forms random graphs of order 3 (and edge probability $p = 0.5$) and tests whether the graph is connected (so replace the connectedness test with our Dirac test). Do at least 100 experiments.

4. Find the (analytic) probability that a graph with order 3 and edge probability $p = 0.75$ is Dirac. List all the order 3 graphs. Calculate the probability of each graph occurring and then sum up the probabilities of the Dirac ones.

5. Find the empirical (experimental) probability that a graph with order 3 and edge probability $p = 0.75$ is Dirac. Do at least 100 experiments.