1. Log in to your Sage Cloud account.

 (a) Start the Chrome browser.
 (b) Go to \(\text{http://cloud.sagemath.com} \) and sign in.
 (c) You should see an existing Project for our class. Click on that.
 (d) Click “New”, call it \textbf{c13}, then click “Sage Worksheet”.

2. Try \(\text{plot_step_function([(x,x) for x in [3..9]])} \)

3. Try \(\text{plot_step_function([(i,sin(i)) for i in [5..20]])} \)

4. Try \(\text{plot_step_function([(i*.2,sin(i*.2)) for i in [5..100]])} \)

 Given a list \(L \) of pairs \((x,y)\) you can plot the \textit{step function} that holds \(y \) constant from one \(x \) to the next with \texttt{plot_step_function(L)}.

5. Try \(\text{scatter_plot([(0,1),(2,4),(3.2,6)])} \)

6. Try \(\text{scatter_plot([(x,x) for x in [5..20]])} \)

7. Try \(\text{scatter_plot([(x,x**2) for x in [-5..5]])} \)

8. Try \(\text{scatter_plot([(i*.2,sin(i*.2)) for i in [5..100]])} \)

9. Define a function \texttt{points(x)} that plots all the points \((1,2), (2,3), \ldots (x,x+1)\). Use \texttt{scatter_plot().}
Recursion

A recursive function is a function that calls itself. It must always have a base case so that the recursion eventually stops.

10. Here is an example of a recursive definition of the factorial function. The base case here is the case where the input is 0 or 1.

```python
def factorial(n):
    if n==0 or n==1:
        return 1
    else:
        return n*factorial(n-1)
```

Now try `factorial(0)`, `factorial(1)`, `factorial(2)`, `factorial(3)`, and `factorial(10)`.

11. It is often intuitive to define a function recursively, but usually the same function can be defined without recursion. Here is a function `factorial2(n)` that does the same thing as `factorial(x)` but is not recursive. Test it to make sure it gives the same results.

```python
def factorial2(n):
    result=1
    if n==0:
        return result
    for i in range(1,n+1):
        result=result*i
    return result
```

12. The gcd of 2 non-negative integers is their greatest common divisor. The following recursive function calculates the gcd of integers \(a \) and \(b \) using the fact (which can be proved) that, if \(a \geq b \) then \(\text{gcd}(a,b) = \text{gcd}(a - b, b) \). It uses the fact that \(\text{gcd}(0,a) = \text{gcd}(a,0) = a \), for any non-negative integer \(a \), as the base case.

```python
def gcd(a,b):
    if a==0 or b==0:
        return max(a,b)
    else:
        return gcd(max(a,b)-min(a,b),min(a,b))
```

Try `gcd(0,5)`, `gcd(2,5)`, `gcd(5,5)`, `gcd(10,5)`, `gcd(50,51)`, `gcd(50,55)`, and `gcd(1234,5678)`.