Find C_3

$$C_3 = -\frac{1}{2} \left(\frac{1/2}{4} \right) (-4)^4$$

$$= -\frac{1}{2} \left(\frac{1}{2} \cdot 3 \cdot \frac{1}{2} \cdot 3 \right) \left(\frac{1}{2} \cdot 3 \right)$$

$$= \frac{(-2)(1-4)(1-6)}{2^4 \cdot 4 \cdot 3 \cdot 2}$$

$$= -\frac{3 \cdot 5}{2^7} = -\frac{5}{2^7}$$

So

$$-\frac{1}{2} \left(\frac{1/2}{4} \right) (-4)^4 = \frac{1}{2} \cdot \frac{5}{2^5} \cdot (2^2)^4$$

$$= \frac{5 \cdot 2^8}{2^8} = \boxed{5}$$
Binary Trees with 4 nodes

All have the form

Case $k = 0$ (so $3-k = 3$)

Case $k = 1$ (so $3-k = 2$)

Case $k = 2$ (so $3-k = 1$)
Case $K = 3$

$B_{n+1} = \# \text{of binary trees with } n+1 \text{ nodes}$

Show: $B_{n+1} = \sum_{k=0}^{n} B_k \cdot B_{n-k}$

- Let T be a binary tree with $n+1$ nodes.
- So it has a root node and n other nodes.
- K of these nodes will be
in the left subtree, and
\(k = 0, 1, \ldots, n \)

- there are \(n-k \) remaining
 nodes for the right subtree

- there are \(BT_k \) possibilities
 for the left subtree for
 each choice of \(k \)

- then there are \(BT_{n-k} \)
 possibilities for the right
 subtree

- then for each \(k = 0, \ldots, n \)
 there are \(BT_k \cdot BT_{n-k} \)
 possibilities for a left
 subtree and a right subtree.
Summing up over all possible values for k we get:

$$B_{T_n+1} = \sum_{k=0}^{n} B_T k \cdot B_{T_n-k}$$